51
|
Calderon B, Carrero JA, Unanue ER. The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Curr Opin Immunol 2014; 26:32-40. [PMID: 24556398 PMCID: PMC4118295 DOI: 10.1016/j.coi.2013.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/21/2023]
Abstract
The islets of Langerhans normally contain resident antigen presenting cells (APCs), which in normal conditions are mostly represented by macrophages, with a few dendritic cells (DC). We present here the features of these islet APCs, making the point that they have a supportive function in islet homeostasis. Islet APCs express high levels of major histocompatibility complexes (MHC) molecules on their surfaces and are highly active in antigen presentation in the autoimmune diabetes of the NOD mouse: they do this by presenting peptides derived from molecules of the β-cells. These APCs also are instrumental in the localization of diabetogenic T cells into islets. The islet APC present exogenous peptides derived from secretory granules of the β-cell, giving rise to unique peptide-MHC complexes (pMHC) that activate those non-conventional T cells that bypass thymus selection.
Collapse
Affiliation(s)
- Boris Calderon
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA
| | - Javier A Carrero
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA
| | - Emil R Unanue
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO, USA.
| |
Collapse
|
52
|
Marrero I, Hamm DE, Davies JD. High-throughput sequencing of islet-infiltrating memory CD4+ T cells reveals a similar pattern of TCR Vβ usage in prediabetic and diabetic NOD mice. PLoS One 2013; 8:e76546. [PMID: 24146886 PMCID: PMC3798422 DOI: 10.1371/journal.pone.0076546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/25/2013] [Indexed: 12/29/2022] Open
Abstract
Autoreactive memory CD4+ T cells play a critical role in the development of type 1 diabetes, but it is not yet known how the clonotypic composition and TCRβ repertoire of the memory CD4+ T cell compartment changes during the transition from prediabetes to diabetes. In this study, we used high-throughput sequencing to analyze the TCRβ repertoire of sorted islet-infiltrating memory CD4+CD44high T cells in 10-week-old prediabetic and recently diabetic NOD mice. We show that most clonotypes of islet-infiltrating CD4+CD44high T cells were rare, but high-frequency clonotypes were significantly more common in diabetic than in prediabetic mice. Moreover, although the CD4+CD44high TCRβ repertoires were highly diverse at both stages of disease development, dominant use of TRBV1 (Vβ2), TRBV13-3 (Vβ8.1), and TRBV19 (Vβ6) was evident in both prediabetic and diabetic mice. Our findings strongly suggest that therapeutic targeting of cells specifically expressing the dominant TCRβ might reduce pancreatic infiltration in prediabetic mice and attenuate the progression to diabetes.
Collapse
Affiliation(s)
- Idania Marrero
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | | | | |
Collapse
|
53
|
Mohan JF, Calderon B, Anderson MS, Unanue ER. Pathogenic CD4⁺ T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. ACTA ACUST UNITED AC 2013; 210:2403-14. [PMID: 24127484 PMCID: PMC3804950 DOI: 10.1084/jem.20130582] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the nonobese diabetic mouse, a predominant component of the autoreactive CD4(+) T cell repertoire is directed against the B:9-23 segment of the insulin B chain. Previous studies established that the majority of insulin-reactive T cells specifically recognize a weak peptide-MHC binding register within the B:9-23 segment, that to the 12-20 register. These T cells are uniquely stimulated when the B:9-23 peptide, but not the insulin protein, is offered to antigen presenting cells (APCs). Here, we report on a T cell receptor (TCR) transgenic mouse (8F10) that offers important new insights into the biology of these unconventional T cells. Many of the 8F10 CD4(+) T cells escaped negative selection and were highly pathogenic. The T cells were directly recruited into islets of Langerhans, where they established contact with resident intra-islet APCs. Immunogenic insulin had to be presented in order for the T cells to localize and cause disease. These T cells bypassed an initial priming stage in the pancreatic lymph node thought to precede islet T cell entry. 8F10 T cells induced the production of antiinsulin antibodies and islets contained immunoglobulin (IgG) deposited on β cells and along the vessel walls.
Collapse
Affiliation(s)
- James F Mohan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
54
|
Abstract
During transplant rejection, migrating T cells infiltrate the grafted organ, but the signals that direct this migration are incompletely understood. In this issue of the JCI, Walch et al. debunk two classical paradigms concerning transplant rejection, with important consequences for the design of antirejection therapeutics.
Collapse
Affiliation(s)
- Terry B Strom
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
55
|
Walch JM, Zeng Q, Li Q, Oberbarnscheidt MH, Hoffman RA, Williams AL, Rothstein DM, Shlomchik WD, Kim JV, Camirand G, Lakkis FG. Cognate antigen directs CD8+ T cell migration to vascularized transplants. J Clin Invest 2013; 123:2663-71. [PMID: 23676459 DOI: 10.1172/jci66722] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/21/2013] [Indexed: 01/22/2023] Open
Abstract
The migration of effector or memory T cells to the graft is a critical event in the rejection of transplanted organs. The prevailing view is that the key steps involved in T cell migration - integrin-mediated firm adhesion followed by transendothelial migration - are dependent on the activation of Gαi-coupled chemokine receptors on T cells. In contrast to this view, we demonstrated in vivo that cognate antigen was necessary for the firm adhesion and transendothelial migration of CD8+ effector T cells specific to graft antigens and that both steps occurred independent of Gαi signaling. Presentation of cognate antigen by either graft endothelial cells or bone marrow-derived APCs that extend into the capillary lumen was sufficient for T cell migration. The adhesion and transmigration of antigen-nonspecific (bystander) effector T cells, on the other hand, remained dependent on Gαi, but required the presence of antigen-specific effector T cells. These findings underscore the primary role of cognate antigen presented by either endothelial cells or bone marrow-derived APCs in the migration of T cells across endothelial barriers and have important implications for the prevention and treatment of graft rejection.
Collapse
Affiliation(s)
- Jeffrey M Walch
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Rejection of transplanted organs is a complex and highly dynamic immune process. Two-photon laser-scanning intravital microscopy (LSIM) allows for real-time, deep tissue, high-resolution imaging in physiological conditions. The recent application of this technology to study organ rejection started to provide a clearer picture of the spatiotemporal immunological dynamics of organ rejection. RECENT FINDINGS To date, LSIM has been applied to transplanted skin, islet, and kidney in mice, as well to constantly moving organs such as transplanted lung and heart. To characterize the dynamics of innate and adaptive immune cell infiltration, time-lapse imaging of various fluorescent-reporter mice was performed. Overall, these studies revealed differences between the anatomical location of infiltrating neutrophils and monocytes in various transplanted organs. In addition, the dynamics of lymphocytic infiltration revealed different transendothelial migration routes in vascularized versus nonvascularized transplanted tissues. SUMMARY LSIM is a very powerful tool that can be used to carefully dissect the immune cells dynamics in rejection and in tolerance induction in transplantation. Many dynamic biological processes can only be investigated using LSIM. Thus, LSIM promises to greatly enhance our knowledge in transplantation immunobiology and will help tailoring specific therapeutics in relation to the transplanted tissue.
Collapse
|
57
|
Carrero JA, Calderon B, Towfic F, Artyomov MN, Unanue ER. Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse. PLoS One 2013; 8:e59701. [PMID: 23555752 PMCID: PMC3608568 DOI: 10.1371/journal.pone.0059701] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/17/2013] [Indexed: 01/12/2023] Open
Abstract
Our ability to successfully intervene in disease processes is dependent on definitive diagnosis. In the case of autoimmune disease, this is particularly challenging because progression of disease is lengthy and multifactorial. Here we show the first chronological compendium of transcriptional and cellular signatures of diabetes in the non-obese diabetic mouse. Our data relates the immunological environment of the islets of Langerhans with the transcriptional profile at discrete times. Based on these data, we have parsed diabetes into several discrete phases. First, there is a type I interferon signature that precedes T cell activation. Second, there is synchronous infiltration of all immunological cellular subsets and a period of control. Finally, there is the killing phase of the diabetogenic process that is correlated with an NF-kB signature. Our data provides a framework for future examination of autoimmune diabetes and its disease progression markers.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | | | | | |
Collapse
|
58
|
Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM, Kay TWH. Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 2012; 9:148-68. [PMID: 23804258 DOI: 10.1900/rds.2012.9.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in our understanding of the pathogenesis of type 1 diabetes have occurred in all steps of the disease. This review outlines the pathogenic mechanisms utilized by the immune system to mediate destruction of the pancreatic beta-cells. The autoimmune response against beta-cells appears to begin in the pancreatic lymph node where T cells, which have escaped negative selection in the thymus, first meet beta-cell antigens presented by dendritic cells. Proinsulin is an important antigen in early diabetes. T cells migrate to the islets via the circulation and establish insulitis initially around the islets. T cells within insulitis are specific for islet antigens rather than bystanders. Pathogenic CD4⁺ T cells may recognize peptides from proinsulin which are produced locally within the islet. CD8⁺ T cells differentiate into effector T cells in islets and then kill beta-cells, primarily via the perforin-granzyme pathway. Cytokines do not appear to be important cytotoxic molecules in vivo. Maturation of the immune response within the islet is now understood to contribute to diabetes, and highlights the islet as both driver and target of the disease. The majority of our knowledge of these pathogenic processes is derived from the NOD mouse model, although some processes are mirrored in the human disease. However, more work is required to translate the data from the NOD mouse to our understanding of human diabetes pathogenesis. New technology, especially MHC tetramers and modern imaging, will enhance our understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Kate L Graham
- St. Vincent´s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Pearl JE, Torrado E, Tighe M, Fountain JJ, Solache A, Strutt T, Swain S, Appelberg R, Cooper AM. Nitric oxide inhibits the accumulation of CD4+CD44hiTbet+CD69lo T cells in mycobacterial infection. Eur J Immunol 2012; 42:3267-79. [PMID: 22890814 DOI: 10.1002/eji.201142158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 06/27/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022]
Abstract
Animals lacking the inducible nitric oxide synthase gene (nos2(-/-)) are less susceptible to Mycobacterium avium strain 25291 and lack nitric oxide-mediated immunomodulation of CD4(+) T cells. Here we show that the absence of nos2 results in increased accumulation of neutrophils and both CD4(+) and CD8(+) T cells within the M. avium containing granuloma. Examination of the T-cell phenotype in M. avium infected mice demonstrated that CD4(+)CD44(hi) effector T cells expressing the Th1 transcriptional regulator T-bet (T-bet(+)) were specifically reduced by the presence of nitric oxide. Importantly, the T-bet(+) effector population could be separated into CD69(hi) and CD69(lo) populations, with the CD69(lo) population only able to accumulate during chronic infection within infected nos2(-/-) mice. Transcriptomic comparison between CD4(+)CD44(hi)CD69(hi) and CD4(+)CD44(hi)CD69(lo) populations revealed that CD4(+)CD44(hi)CD69(lo) cells had higher expression of the integrin itgb1/itga4 (VLA-4, CD49d/CD29). Inhibition of Nos2 activity allowed increased accumulation of the CD4(+) CD44(hi)T-bet(+)CD69(lo) population in WT mice as well as increased expression of VLA-4. These data support the hypothesis that effector T cells in mycobacterial granulomata are not a uniform effector population but exist in distinct subsets with differential susceptibility to the regulatory effects of nitric oxide.
Collapse
Affiliation(s)
- John E Pearl
- Trudeau Institute Inc, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Yin N, Xu J, Ginhoux F, Randolph GJ, Merad M, Ding Y, Bromberg JS. Functional specialization of islet dendritic cell subsets. THE JOURNAL OF IMMUNOLOGY 2012; 188:4921-30. [PMID: 22508930 DOI: 10.4049/jimmunol.1103725] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DC) play important roles in both tolerance and immunity to β cells in type 1 diabetes. How and why DC can have diverse and opposing functions in islets remains elusive. To answer these questions, islet DC subsets and their specialized functions were characterized. Under both homeostatic and inflammatory conditions, there were two main tissue-resident DC subsets in islets, defined as CD11b(lo/-)CD103(+)CX3CR1(-) (CD103(+) DC), the majority of which were derived from fms-like tyrosine kinase 3-dependent pre-DC, and CD11b(+)CD103(-)CX3CR1(+) (CD11b(+) DC), the majority of which were derived from monocytes. CD103(+) DC were the major migratory DC and cross-presented islet-derived Ag in the pancreatic draining lymph node, although this DC subset displayed limited phagocytic activity. CD11b(+) DC were numerically the predominant subset (60-80%) but poorly migrated to the draining lymph node. Although CD11b(+) DC had greater phagocytic activity, they poorly presented Ag to T cells. CD11b(+) DC increased in numbers and percentage during T cell-mediated insulitis, suggesting that this subset might be involved in the pathogenesis of diabetes. These data elucidate the phenotype and function of homeostatic and inflammatory islet DC, suggesting differential roles in islet immunity.
Collapse
Affiliation(s)
- Na Yin
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Calderon B, Unanue ER. Antigen presentation events in autoimmune diabetes. Curr Opin Immunol 2012; 24:119-28. [PMID: 22178549 PMCID: PMC3523676 DOI: 10.1016/j.coi.2011.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
Antigen presenting cells (APC) be they dendritic cells (DC) or macrophages reside in all tissues. Their role varies from presenting antigen, clearing the tissue from unwanted material, helping in the remodeling that follows injury and inflammation, to a supporting or trophic function. Their features, biology, and turnover may be unique for each organ, modulated by the particular anatomy and physiology of the tissue. These features affect the handling and presentation of antigens, either exogenous such as those from viruses or bacteria, or endogenous, autologous proteins in situations of autoimmunity. Herein, we focus on the resident APC of the islets of Langerhans and their role in autoimmune diabetes. The intra-islet APC are central cells in diabetogenesis by presenting beta cell derived antigens and by modulating the localization of T cells into the islets.
Collapse
Affiliation(s)
- Boris Calderon
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
62
|
Michelsen NV, Brusgaard K, Tan Q, Thomassen M, Hussain K, Christesen HT. Investigation of Archived Formalin-Fixed Paraffin-Embedded Pancreatic Tissue with Whole-Genome Gene Expression Microarray. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/275102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of formalin-fixed, paraffin-embedded (FFPE) tissue overcomes the most prominent issues related to research on relatively rare diseases: limited sample size, availability of control tissue, and time frame. The use of FFPE pancreatic tissue in GEM may be especially challenging due to its very high amounts of ribonucleases compared to other tissues/organs. In choosing pancreatic tissue, we therefore indirectly address the applicability of other FFPE tissues to gene expression microarray (GEM). GEM was performed on archived, routinely fixed, FFPE pancreatic tissue from patients with congenital hyperinsulinism (CHI), insulinoma, and deceased age-appropriate neonates, using whole-genome arrays. Although ribonuclease-rich, we obtained biologically relevant and disease-specific, significant genes; cancer-related genes; genes involved in (a) the regulation of insulin secretion and synthesis, (b) amino acid metabolism, and (c) calcium ion homeostasis. These results should encourage future research and GEM studies on FFPE tissue from the invaluable biobanks available at the departments of pathology worldwide.
Collapse
Affiliation(s)
- Nete V. Michelsen
- Department of Clinical Genetics, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark
| | - Qihua Tan
- Department of Clinical Genetics, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark
| | - Khalid Hussain
- Great Ormond Street Children’s Hospital NHS Trust and Institute of Child Health, London WC1N 1EH, UK
| | - Henrik T. Christesen
- H.C. Andersen Children’s Hospital, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark
| |
Collapse
|
63
|
Bettini M, Vignali DAA. T cell-driven initiation and propagation of autoimmune diabetes. Curr Opin Immunol 2011; 23:754-60. [PMID: 22056379 DOI: 10.1016/j.coi.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/14/2011] [Indexed: 12/18/2022]
Abstract
The destruction of beta cells in type 1 diabetes in humans and in autoimmune diabetes in the NOD mouse model is a consequence of chronic islet inflammation in the pancreas. The T cell-driven autoimmune response is initiated by environmental triggers which are influenced by the state of intestinal homeostasis and the microbiota. The disease process can be separated into two phases: firstly, initiation of mild, controlled, long-term infiltration and secondly, propagation of invasive inflammation which quickly progresses to beta cell deletion and autoimmune diabetes. In this review, we will discuss the cellular and molecular triggers that might be required for these two phases in the context of other issues including the unique anatomical location of pancreas, the location of T cell priming, the requirements for islet entry, and the events that ultimately drive beta cell destruction and the onset of diabetes.
Collapse
Affiliation(s)
- Maria Bettini
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, United States
| | | |
Collapse
|
64
|
Abstract
The microbiome is a complex community of Bacteria, Archaea, Eukarya, and viruses that infect humans and live in our tissues. It contributes the majority of genetic information to our metagenome and, consequently, influences our resistance and susceptibility to diseases, especially common inflammatory diseases, such as type 1 diabetes, ulcerative colitis, and Crohn's disease. Here we discuss how host-gene-microbial interactions are major determinants for the development of these multifactorial chronic disorders and, thus, for the relationship between genotype and phenotype. We also explore how genome-wide association studies (GWAS) on autoimmune and inflammatory diseases are uncovering mechanism-based subtypes for these disorders. Applying these emerging concepts will permit a more complete understanding of the etiologies of complex diseases and underpin the development of both next-generation animal models and new therapeutic strategies for targeting personalized disease phenotypes.
Collapse
Affiliation(s)
- Herbert W Virgin
- Department of Pathology and Immunology, Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
65
|
Calderon B, Carrero JA, Miller MJ, Unanue ER. Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proc Natl Acad Sci U S A 2011; 108:1561-6. [PMID: 21220322 PMCID: PMC3029745 DOI: 10.1073/pnas.1018973108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the entry of autoreactive T cells to their target organ is important in autoimmunity because this entry initiates the inflammatory process. Here, the events that lead to specific localization of diabetogenic CD4 T cells into islets of Langerhans resulting in diabetes were examined. This was evaluated in two models, one in which T cells specific for a hen-egg white lysozyme (HEL) peptide were injected into mice expressing HEL on β cells and the other using T cells in the nonobese diabetic mouse strain, which develops spontaneous diabetes. Only T cells specific for β-cell antigens localized in islets within the first hours after their injection and were found adherent to intraislet dendritic cells (DCs). DCs surrounded blood vessels with dendrites reaching into the vessels. Localization of antigen-specific T cells did not require chemokine receptor signaling but involved class II histocompatibility and intercellular adhesion molecule 1 molecules. We found no evidence for nonspecific localization of CD4 T cells into normal noninflamed islets. Thus, the anatomy of the islet of Langerhans permits the specific localization of diabetogenic T cells at a time when there is no inflammation in the islets.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Female
- Flow Cytometry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/immunology
- Intercellular Adhesion Molecule-1/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence, Multiphoton
- Muramidase/genetics
- Muramidase/immunology
- Muramidase/metabolism
Collapse
Affiliation(s)
- Boris Calderon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Javier A. Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark J. Miller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Emil R. Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|