51
|
Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532:195-200. [PMID: 27027288 DOI: 10.1038/nature17623] [Citation(s) in RCA: 1259] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Abstract
Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.
Collapse
|
52
|
Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders. Neurochem Res 2016; 41:1507-15. [DOI: 10.1007/s11064-016-1876-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
|
53
|
Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke. Neural Plast 2015; 2015:608581. [PMID: 26682073 PMCID: PMC4670869 DOI: 10.1155/2015/608581] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
Stroke remains a leading cause of adult motor disabilities in the world and accounts for the greatest number of hospitalizations for neurological disease. Stroke treatments/therapies need to promote neuroplasticity to improve motor function. Physical exercise is considered as a major candidate for ultimately promoting neural plasticity and could be used for different purposes in human and animal experiments. First, acute exercise could be used as a diagnostic tool to understand new neural mechanisms underlying stroke physiopathology. Indeed, better knowledge of stroke mechanisms that affect movements is crucial for enhancing treatment/rehabilitation effectiveness. Secondly, it is well established that physical exercise training is advised as an effective rehabilitation tool. Indeed, it reduces inflammatory processes and apoptotic marker expression, promotes brain angiogenesis and expression of some growth factors, and improves the activation of affected muscles during exercise. Nevertheless, exercise training might also aggravate sensorimotor deficits and brain injury depending on the chosen exercise parameters. For the last few years, physical training has been combined with pharmacological treatments to accentuate and/or accelerate beneficial neural and motor effects. Finally, physical exercise might also be considered as a major nonpharmacological preventive strategy that provides neuroprotective effects reducing adverse effects of brain ischemia. Therefore, prestroke regular physical activity may also decrease the motor outcome severity of stroke.
Collapse
|
54
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
55
|
Caleo M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience 2015; 311:180-94. [PMID: 26493858 DOI: 10.1016/j.neuroscience.2015.10.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
Ischemic injuries within the motor cortex result in functional deficits that may profoundly impact activities of daily living in patients. Current rehabilitation protocols achieve only limited recovery of motor abilities. The brain reorganizes spontaneously after injury, and it is believed that appropriately boosting these neuroplastic processes may restore function via recruitment of spared areas and pathways. Here I review studies on circuit reorganization, neuronal and glial plasticity and axonal sprouting following ischemic damage to the forelimb motor cortex, with a particular focus on rodent models. I discuss evidence pointing to compensatory take-over of lost functions by adjacent peri-lesional areas and the role of the contralesional hemisphere in recovery. One key issue is the need to distinguish "true" recovery (i.e. re-establishment of original movement patterns) from compensation in the assessment of post-stroke functional gains. I also consider the effects of physical rehabilitation, including robot-assisted therapy, and the potential mechanisms by which motor training induces recovery. Finally, I describe experimental approaches in which training is coupled with delivery of plasticizing drugs that render the remaining, undamaged pathways more sensitive to experience-dependent modifications. These combinatorial strategies hold promise for the definition of more effective rehabilitation paradigms that can be translated into clinical practice.
Collapse
Affiliation(s)
- M Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
56
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
57
|
Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 2015; 274:100-14. [PMID: 26277685 DOI: 10.1016/j.expneurol.2015.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions.
Collapse
Affiliation(s)
- Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
| | - Vivien J Coulson-Thomas
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Simona Foscarin
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
58
|
Walters R, Medintz IL, Delehanty JB, Stewart MH, Susumu K, Huston AL, Dawson PE, Dawson G. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons. ASN Neuro 2015; 7:7/4/1759091415592389. [PMID: 26243591 PMCID: PMC4550297 DOI: 10.1177/1759091415592389] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery. In this study, we compared three zwitterionic QD coatings differing only in their regions of positive or negative charge, as well as a positively charged (NH2) polyethylene glycol (PEG) coat, for their ability to deliver the cell-membrane-penetrating chaperone lipopeptide JB577 (WG(Palmitoyl)VKIKKP9G2H6) to individual cells in neonatal rat hippocampal slices. We confirm both that preferential uptake in neurons, and the lack of uptake in glia, is strongly associated with having a region of greater negative charge on the QD coating. In addition, the role of negatively charged chondroitin sulfate of the extracellular matrix (ECM) in restricting uptake was further suggested by digesting neonatal rat hippocampal slices with chondroitinase ABC and showing increased uptake of QDs by oligodendrocytes. Treatment still did not affect uptake in astrocytes or microglia. Finally, the future potential of using QDs as vehicles for trafficking proteins into cells continues to show promise, as we show that by administering a histidine-tagged green fluorescent protein (eGFP-His6) to hippocampal slices, we can observe neuronal uptake of GFP.
Collapse
Affiliation(s)
- Ryan Walters
- Committee on Neurobiology, University of Chicago, IL, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Michael H Stewart
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Alan L Huston
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | - Glyn Dawson
- Committee on Neurobiology, University of Chicago, IL, USA Departments of Pediatrics, Biochemistry and Molecular Biology, University of Chicago, IL, USA
| |
Collapse
|
59
|
The role of neuronal versus astrocyte-derived heparan sulfate proteoglycans in brain development and injury. Biochem Soc Trans 2015; 42:1263-9. [PMID: 25233401 DOI: 10.1042/bst20140166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Astrocytes modulate many aspects of neuronal function, including synapse formation and the response to injury. Heparan sulfate proteoglycans (HSPGs) mediate some of the effects of astrocytes on synaptic function, and participate in the astrocyte-mediated brain injury response. HSPGs are a highly conserved class of proteoglycans, with variable heparan sulfate (HS) chains that play a major role in determining the function of these proteins, such as binding to growth factors and receptors. Expression of both the core proteins and their HS chains can vary depending on cellular origin, thus the functional impact of HSPGs may be determined by the cell type in which they are expressed. In the brain, HSPGs are expressed by both neurons and astrocytes; however, the specific contribution of neuronal HSPGs compared with astrocyte-derived HSPGs to development and the injury response is largely unknown. The present review examines the current evidence regarding the roles of HSPGs in the brain, describes the cellular origins of HSPGs, and interrogates the roles of HSPGs from astrocytes and neurons in synaptogenesis and injury. The importance of considering cell-type-specific expression of HSPGs when studying brain function is discussed.
Collapse
|
60
|
Miyata S, Kitagawa H. Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J Biochem 2014; 157:13-22. [PMID: 25381371 DOI: 10.1093/jb/mvu067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chondroitin sulphate proteoglycans (CSPGs), consisting of core proteins linked to one or more chondroitin sulphate (CS) chains, are major extracellular matrix (ECM) components of the central nervous system (CNS). Multi-functionality of CSPGs can be explained by the diversity in structure of CS chains that undergo dynamic changes during development and under pathological conditions. CSPGs, together with other ECM components, form mesh-like structures called perineuronal nets around a subset of neurons. Enzymatic digestion or genetic manipulation of CSPGs reactivates neural plasticity in the adult brain and improves regeneration of damaged axons after CNS injury. Recent studies have shown that CSPGs not only act as non-specific physical barriers that prevent rearrangement of synaptic connections but also regulate neural plasticity through specific interaction of CS chains with its binding partners in a manner that depends on the structure of the CS chain.
Collapse
Affiliation(s)
- Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
61
|
Abstract
Even after 20 years of granting orphan status for chondroitinase by US FDA, there is no visible outcome in terms of clinical use. The reasons are many. One of them could be lack of awareness regarding the biological application of the enzyme. The biological activity of chondroitinase is due to its ability to act on chondroitin sulfate proteoglycans (CSPGs). CSPGs are needed for normal functioning of the body. An increase or decrease in the level of CSPGs results in various pathological conditions. Chondroitinase is useful in conditions where there is an increase in the level of CSPGs, namely spinal cord injury, vitreous attachment and cancer. Over the last decade, various animal studies showed that chondroitinase could be a good drug candidate. Research focusing on developing a suitable carrier system for delivering chondroitinase needs to be carried out so that pharmacological activity observed in vitro and preclinical studies could be translated to clinical use. Further studies on distribution of chondroitinase as well need to be focused so that chondroitinase with desired attributes could be discovered. The present review article discusses about various biological applications of chondroitinase, drug delivery systems to deliver the enzyme and distribution of chondroitinase among microbes.
Collapse
Affiliation(s)
- Narayanan Kasinathan
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Subrahmanyam M Volety
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| |
Collapse
|
62
|
Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 2014; 8:319. [PMID: 25352781 PMCID: PMC4196547 DOI: 10.3389/fncel.2014.00319] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
Post-ischemic inflammation is important in ischemic stroke pathology. However, details of the inflammation process, its resolution after stroke and its effect on pathology and neural damage have not been clarified. Brain swelling, which is often fatal in ischemic stroke patients, occurs at an early stage of stroke due to endothelial cell injury and severe inflammation by infiltrated mononuclear cells including macrophages, neutrophils, and lymphocytes. At early stage of inflammation, macrophages are activated by molecules released from necrotic cells [danger-associated molecular patterns (DAMPs)], and inflammatory cytokines and mediators that increase ischemic brain damage by disruption of the blood–brain barrier are released. After post-ischemic inflammation, macrophages function as scavengers of necrotic cell and brain tissue debris. Such macrophages are also involved in tissue repair and neural cell regeneration by producing tropic factors. The mechanisms of inflammation resolution and conversion of inflammation to neuroprotection are largely unknown. In this review, we summarize information accumulated recently about DAMP-induced inflammation and the neuroprotective effects of inflammatory cells, and discuss next generation strategies to treat ischemic stroke.
Collapse
Affiliation(s)
- Takashi Shichita
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
63
|
Siebert JR, Conta Steencken A, Osterhout DJ. Chondroitin sulfate proteoglycans in the nervous system: inhibitors to repair. BIOMED RESEARCH INTERNATIONAL 2014; 2014:845323. [PMID: 25309928 PMCID: PMC4182688 DOI: 10.1155/2014/845323] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are widely expressed in the normal central nervous system, serving as guidance cues during development and modulating synaptic connections in the adult. With injury or disease, an increase in CSPG expression is commonly observed close to lesioned areas. However, these CSPG deposits form a substantial barrier to regeneration and are largely responsible for the inability to repair damage in the brain and spinal cord. This review discusses the role of CSPGs as inhibitors, the role of inflammation in stimulating CSPG expression near site of injury, and therapeutic strategies for overcoming the inhibitory effects of CSPGs and creating an environment conducive to nerve regeneration.
Collapse
Affiliation(s)
- Justin R. Siebert
- Lake Erie College of Osteopathic Medicine at Seton Hill, 20 Seton Hill Drive, Greensburg, PA 15601, USA
| | - Amanda Conta Steencken
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Donna J. Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
64
|
Lang BT, Wang J, Filous AR, Au NPB, Ma CHE, Shen Y. Pleiotropic molecules in axon regeneration and neuroinflammation. Exp Neurol 2014; 258:17-23. [DOI: 10.1016/j.expneurol.2014.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
|
65
|
Wahl AS, Schwab ME. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci 2014; 8:381. [PMID: 25018717 PMCID: PMC4072965 DOI: 10.3389/fnhum.2014.00381] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
After stroke the central nervous system reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its circuits, form new contacts, erase others, and remap related cortical and spinal cord regions. This plasticity can lead to a surprising degree of spontaneous recovery. It includes the activation of neuronal molecular mechanisms of growth and of extrinsic growth promoting factors and guidance signals in the tissue. Rehabilitative training and pharmacological interventions may modify and boost these neuronal processes, but almost nothing is known on the optimal timing of the different processes and therapeutic interventions and on their detailed interactions. Finding optimal rehabilitation paradigms requires an optimal orchestration of the internal processes of re-organization and the therapeutic interventions in accordance with defined plastic time windows. In this review we summarize the mechanisms of spontaneous plasticity after stroke and experimental interventions to enhance growth and plasticity, with an emphasis on anti-Nogo-A immunotherapy. We highlight critical time windows of growth and of rehabilitative training and consider different approaches of combinatorial rehabilitative schedules. Finally, we discuss potential future strategies for designing repair and rehabilitation paradigms by introducing a “3 step model”: determination of the metabolic and plastic status of the brain, pharmacological enhancement of its plastic mechanisms, and stabilization of newly formed functional connections by rehabilitative training.
Collapse
Affiliation(s)
- Anna-Sophia Wahl
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Department of Health, Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Department of Health, Sciences and Technology, ETH Zurich Zurich, Switzerland
| |
Collapse
|
66
|
Xie L, Sun F, Wang J, Mao X, Xie L, Yang SH, Su DM, Simpkins JW, Greenberg DA, Jin K. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:6009-19. [PMID: 24829408 PMCID: PMC4128178 DOI: 10.4049/jimmunol.1303492] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling by the mammalian target of rapamycin (mTOR) plays an important role in the modulation of both innate and adaptive immune responses. However, the role and underlying mechanism of mTOR signaling in poststroke neuroinflammation are largely unexplored. In this study, we injected rapamycin, a mTOR inhibitor, by the intracerebroventricular route 6 h after focal ischemic stroke in rats. We found that rapamycin significantly reduced lesion volume and improved behavioral deficits. Notably, infiltration of γδ T cells and granulocytes, which are detrimental to the ischemic brain, was profoundly reduced after rapamycin treatment, as was the production of proinflammatory cytokines and chemokines by macrophages and microglia. Rapamycin treatment prevented brain macrophage polarization toward the M1 type. In addition, we also found that rapamycin significantly enhanced anti-inflammation activity of regulatory T cells (Tregs), which decreased production of proinflammatory cytokines and chemokines by macrophages and microglia. Depletion of Tregs partially elevated macrophage/microglia-induced neuroinflammation after stroke. Our data suggest that rapamycin can attenuate secondary injury and motor deficits after focal ischemia by enhancing the anti-inflammation activity of Tregs to restrain poststroke neuroinflammation.
Collapse
Affiliation(s)
- Luokun Xie
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Fen Sun
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Jixian Wang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - XiaoOu Mao
- Buck Institute for Research on Aging, Novato, CA 94945; and
| | - Lin Xie
- Buck Institute for Research on Aging, Novato, CA 94945; and
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Dong-Ming Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Morgantown, WV 26506
| | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107;
| |
Collapse
|
67
|
Madinier A, Quattromani MJ, Sjölund C, Ruscher K, Wieloch T. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke. PLoS One 2014; 9:e93121. [PMID: 24664200 PMCID: PMC3963994 DOI: 10.1371/journal.pone.0093121] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE) several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT), and with subsequent housing in either standard (STD) or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN) immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13–22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25–30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new therapies enhancing tactile/proprioceptive function after stroke.
Collapse
Affiliation(s)
- Alexandre Madinier
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Miriana Jlenia Quattromani
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carin Sjölund
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
68
|
Shen Y. Traffic lights for axon growth: proteoglycans and their neuronal receptors. Neural Regen Res 2014; 9:356-61. [PMID: 25206823 PMCID: PMC4146200 DOI: 10.4103/1673-5374.128236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 01/19/2023] Open
Abstract
Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like traffic lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs) often lead to "stop" and "go" growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identification of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon regeneration.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, 460 w 12 Ave, Columbus, OH 43210, USA
| |
Collapse
|
69
|
Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Res 2014; 1551:45-58. [PMID: 24440774 DOI: 10.1016/j.brainres.2014.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/17/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Reactive astrogliosis is an essential feature of astrocytic response to all forms of central nervous system (CNS) injury and disease, which may benefit or harm surrounding neural and non-neural cells. Despite extensive study, its molecular triggers remain largely unknown in term of ischemic stroke. In the current study we investigated the role p38 mitogen-activated protein kinase (MAPK) in astrogliosis both in vitro and in vivo. In a mouse model of middle cerebral artery occlusion (MCAO), p38 MAPK activation was observed in the glia scar area, along with increased glial fibrillary acidic protein (GFAP) expression. In primary astrocyte cultures, hypoxia and scratch injury-induced astrogliosis was attenuated by both p38 inhibition and knockout of p38 MAPK. In addition, both knockout and inhibition of p38 MAPK also reduced astrocyte migration, but did not affect astrocyte proliferation. In a mouse model of permanent MCAO, no significant difference in motor function recovery and lesion volume was observed between conditional GFAP/p38 MAPK knockout mice and littermates. While a significant reduction of astrogliosis was observed in the GFAP/p38 knockout mice compared with the littermates. Our findings suggest that p38 MAPK signaling pathway plays an important role in the ischemic stroke-induced astrogliosis and thus may serve as a novel target to control glial scar formation.
Collapse
|
70
|
Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K. Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 2014; 11:344-8. [PMID: 24578611 PMCID: PMC3936028 DOI: 10.7150/ijms.8140] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Reactive gliosis and glial scar formation have been evidenced in the animal model of ischemic stroke, but not in human ischemic brain. Here, we have found that GFAP, ED1 and chondroitin sulphate proteoglycans (CSPG) expression were significantly increased in the cortical peri-infarct regions after ischemic stroke, compared with adjacent normal tissues and control subjects. Double immunolabeling showed that GFAP-positive reactive astrocytes in the peri-infarct region expressed CSPG, but showed no overlap with ED1-positive activated microglia. Our findings suggest that reactive gliosis and glial scar formation as seen in animal models of stroke are reflective of what occurs in the human brain after an ischemic injury.
Collapse
Affiliation(s)
- Lijie Huang
- 1. Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China ; 2. Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhe-Bao Wu
- 1. Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China ; 2. Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- 1. Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China ; 2. Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Weiming Zheng
- 1. Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China ; 2. Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Bei Shao
- 2. Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Brian Wang
- 3. Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Fen Sun
- 3. Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Kunlin Jin
- 1. Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China ; 2. Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China ; 3. Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| |
Collapse
|
71
|
Berezin V, Walmod PS, Filippov M, Dityatev A. Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases. PROGRESS IN BRAIN RESEARCH 2014; 214:353-88. [DOI: 10.1016/b978-0-444-63486-3.00015-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
72
|
Schwartz NB, Domowicz MS. Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:89-115. [DOI: 10.1007/978-1-4939-1154-7_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
73
|
Chen XR, Liao SJ, Ye LX, Gong Q, Ding Q, Zeng JS, Yu J. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats. Brain Res 2013; 1543:324-33. [PMID: 24326094 DOI: 10.1016/j.brainres.2013.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/22/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023]
Abstract
Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction.
Collapse
Affiliation(s)
- Xin-ran Chen
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Song-jie Liao
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lan-xiang Ye
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Gong
- Department of Neurology, the Second People's Hospital of Guangdong Province, Guangzhou 510000, China
| | - Qiao Ding
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jin-sheng Zeng
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Yu
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
74
|
Lemarchant S, Pruvost M, Montaner J, Emery E, Vivien D, Kanninen K, Koistinaho J. ADAMTS proteoglycanases in the physiological and pathological central nervous system. J Neuroinflammation 2013; 10:133. [PMID: 24176075 PMCID: PMC4228433 DOI: 10.1186/1742-2094-10-133] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022] Open
Abstract
ADAMTS-1, -4, -5 and -9 belong to ‘a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)’ family and more precisely to the proteoglycanases subgroup based on their common ability to degrade chondroitin sulfate proteoglycans. They have been extensively investigated for their involvement in inflammation-induced osteoarthritis, and a growing body of evidence indicates that they may be of key importance in the physiological and pathological central nervous system (CNS). In this review, we discuss the deregulated expression of ADAMTS proteoglycanases during acute CNS injuries, such as stroke and spinal cord injury. Then, we provide new insights on ADAMTS proteoglycanases mediating synaptic plasticity, neurorepair, angiogenesis and inflammation mechanisms. Altogether, this review allows us to propose that ADAMTS proteoglycanases may be original therapeutic targets for CNS injuries.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, A, I, Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P,O, Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
75
|
Elder J, Cortes M, Rykman A, Hill J, Karuppagounder S, Edwards D, Ratan RR. The epigenetics of stroke recovery and rehabilitation: from polycomb to histone deacetylases. Neurotherapeutics 2013; 10:808-16. [PMID: 24092615 PMCID: PMC3805866 DOI: 10.1007/s13311-013-0224-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.
Collapse
Affiliation(s)
- Jessica Elder
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Epidemiology, Weill Medical College of Cornell University, New York, NY USA
| | - Mar Cortes
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
| | - Avrielle Rykman
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
| | - Justin Hill
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
- />Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY USA
| | - Saravanan Karuppagounder
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY USA
| | - Dylan Edwards
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
| | - Rajiv R. Ratan
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
- />Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY USA
| |
Collapse
|
76
|
Soleman S, Filippov MA, Dityatev A, Fawcett JW. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013; 253:194-213. [PMID: 24012743 DOI: 10.1016/j.neuroscience.2013.08.050] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 01/15/2023]
Abstract
The extracellular matrix (ECM) is known to regulate important processes in neuronal cell development, activity and growth. It is associated with the structural stabilization of neuronal processes and synaptic contacts during the maturation of the central nervous system. The remodeling of the ECM during both development and after central nervous system injury has been shown to affect neuronal guidance, synaptic plasticity and their regenerative responses. Particular interest has focused on the inhibitory role of chondroitin sulfate proteoglycans (CSPGs) and their formation into dense lattice-like structures, termed perineuronal nets (PNNs), which enwrap sub-populations of neurons and restrict plasticity. Recent studies in mammalian systems have implicated CSPGs and PNNs in regulating and restricting structural plasticity. The enzymatic degradation of CSPGs or destabilization of PNNs has been shown to enhance neuronal activity and plasticity after central nervous system injury. This review focuses on the role of the ECM, CSPGs and PNNs; and how developmental and pharmacological manipulation of these structures have enhanced neuronal plasticity and aided functional recovery in regeneration, stroke, and amblyopia. In addition to CSPGs, this review also points to the functions and potential therapeutic value of these and several other key ECM molecules in epileptogenesis and dementia.
Collapse
Affiliation(s)
- S Soleman
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
77
|
Gherardini L, Gennaro M, Pizzorusso T. Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats. Cereb Cortex 2013; 25:202-12. [PMID: 23960208 DOI: 10.1093/cercor/bht217] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ischemic stroke insults may lead to chronic functional limitations that adversely affect patient movements. Partial motor recovery is thought to be sustained by neuronal plasticity, particularly in areas close to the lesion site. It is still unknown if treatments acting exclusively on cortical plasticity of perilesional areas could result in behavioral amelioration. We tested whether enhancing plasticity in the ipsilesional cortex using local injections of chondroitinase ABC (ChABC) could promote recovery of skilled motor function in a focal cortical ischemia of forelimb motor cortex in rats. Using the skilled reaching test, we found that acute and delayed ChABC treatment induced recovery of impaired motor skills in treated rats. vGLUT1, vGLUT2, and vGAT staining indicated that functional recovery after acute ChABC treatment was associated with local plastic modification of the excitatory cortical circuitry positive for VGLUT2. ChABC effects on vGLUT2 staining were present only in rats undergoing behavioral training. Thus, the combination of treatments targeting the CSPG component of the extracellular matrix in perilesional areas and rehabilitation could be sufficient to enhance functional recovery from a focal stroke.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Neuroscience, CNR, Pisa 56124, Italy, Institute of Clinical Physiology, CNR, Siena 53100, Italy and
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Pisa 56124, Italy, NEUROFARBA Dept, University of Florence, Florence 50135, Italy
| |
Collapse
|
78
|
Li L, Liu QR, Xiong XX, Liu JM, Lai XJ, Cheng C, Pan F, Chen Y, Yu SB, Yu ACH, Chen XQ. Neuroglobin Promotes Neurite Outgrowth via Differential Binding to PTEN and Akt. Mol Neurobiol 2013; 49:149-62. [DOI: 10.1007/s12035-013-8506-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/03/2013] [Indexed: 12/30/2022]
|
79
|
Pakulska MM, Vulic K, Shoichet MS. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J Control Release 2013; 171:11-6. [PMID: 23831055 DOI: 10.1016/j.jconrel.2013.06.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
Abstract
Chondroitinase ABC (ChABC) is a promising therapeutic for spinal cord injury as it can degrade the glial scar that is detrimental to regrowth and repair. However, the sustained delivery of bioactive ChABC is a challenge requiring highly invasive methods such as intra-spinal injections, insertion of intrathecal catheters, or implantation of delivery vehicles directly into the tissue. ChABC is thermally unstable, further complicating its delivery. Moreover, there are no commercial antibodies available for its detection. To achieve controlled release, we designed an affinity-based system that sustained the release of bioactive ChABC for at least 7days. ChABC was recombinantly expressed as a fusion protein with Src homology domain 3 (SH3) with an N-terminal histidine (HIS) tag and a C-terminal FLAG tag (ChABC-SH3). Protein purification was achieved using a nickel affinity column and, for the first time, direct quantification of ChABC down to 0.1nM was attained using an in-house HIS/FLAG double tag ELISA. The release of active ChABC-SH3 was sustained from a methylcellulose hydrogel covalently modified with an SH3 binding peptide. The rate of release was tunable by varying either the binding strength of the SH3-protein/SH3-peptide pair or the SH3-peptide to SH3-protein ratio. This innovative system has the potential to be used as a platform technology for the release and detection of other proteins that can be expressed using a similar construct.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | | |
Collapse
|
80
|
Noninvasive strategies to promote functional recovery after stroke. Neural Plast 2013; 2013:854597. [PMID: 23864962 PMCID: PMC3707231 DOI: 10.1155/2013/854597] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/02/2013] [Indexed: 01/17/2023] Open
Abstract
Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.
Collapse
|
81
|
Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 2013; 27:469-78. [PMID: 23392917 DOI: 10.1177/1545968312474119] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurogenesis, the birth of new neurons, occurs throughout life in the subventricular zone and produces immature neurons that migrate tangentially through the rostral migratory stream to the olfactory bulb. This migration is tightly regulated by both structural and chemical influences. Interestingly, brain insults such as ischemic stroke increase neurogenesis and redirect neuroblast migration to the injury site. This injury-redirected neurogenesis and migration is coupled with angiogenic vasculature and is influenced by many of the factors that positively and negatively affect migration under developmental or normal adult conditions. Additionally, cytokines and chemokines such as stromal cell-derived factor-1 strongly influence neuronal migration poststroke. However, neuronal repopulation or brain regeneration is extremely limited. This limitation may potentially be due to the hostile poststroke microenvironment including the formation of the physical and chemical barriers of glial scar. Furthermore, interspecies differences in poststroke neurogenesis between rodents and humans complicate the translation of experimental results to humans. Despite these challenges, many drugs and other potential therapies have recently been evaluated for potential neurogenic properties poststroke. Improved understanding of poststroke neurorepair may lead to new and more effective neurorestorative therapies.
Collapse
|
82
|
Marasco A, Limongiello A, Migliore M. Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Sci Rep 2012; 2:928. [PMID: 23226594 PMCID: PMC3514644 DOI: 10.1038/srep00928] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Realistic modeling of neurons are quite successful in complementing traditional experimental techniques. However, their networks require a computational power beyond the capabilities of current supercomputers, and the methods used so far to reduce their complexity do not take into account the key features of the cells nor critical physiological properties. Here we introduce a new, automatic and fast method to map realistic neurons into equivalent reduced models running up to > 40 times faster while maintaining a very high accuracy of the membrane potential dynamics during synaptic inputs, and a direct link with experimental observables. The mapping of arbitrary sets of synaptic inputs, without additional fine tuning, would also allow the convenient and efficient implementation of a new generation of large-scale simulations of brain regions reproducing the biological variability observed in real neurons, with unprecedented advances to understand higher brain functions.
Collapse
Affiliation(s)
- Addolorata Marasco
- Department of Mathematics and Applications R. Caccioppoli, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | | | | |
Collapse
|
83
|
Chien PN, Ryu SE. Protein Tyrosine Phosphatase σ in Proteoglycan-Mediated Neural Regeneration Regulation. Mol Neurobiol 2012; 47:220-7. [DOI: 10.1007/s12035-012-8346-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
|