51
|
Mack KL, Shorter J. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Front Mol Biosci 2016; 3:8. [PMID: 27014702 PMCID: PMC4791398 DOI: 10.3389/fmolb.2016.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
52
|
Osborne DM, Fitzgerald DP, O'Leary KE, Anderson BM, Lee CC, Tessier PM, McNay EC. Intrahippocampal administration of a domain antibody that binds aggregated amyloid-β reverses cognitive deficits produced by diet-induced obesity. Biochim Biophys Acta Gen Subj 2016; 1860:1291-8. [PMID: 26970498 DOI: 10.1016/j.bbagen.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND The prevalence of high fat diets (HFD), diet-induced obesity (DIO) and Type 2 diabetes continues to increase, associated with cognitive impairment in both humans and rodent models. Mechanisms transducing these impairments remain largely unknown: one possibility is that a common mechanism may be involved in the cognitive impairment seen in obese and/or diabetic states and in dementia, specifically Alzheimer's disease (AD). DIO is well established as a risk factor for development of AD. Oligomeric amyloid-β (Aβ) is neurotoxic, and we showed that intrahippocampal oligomeric Aβ produces cognitive and metabolic dysfunction similar to that seen in DIO or diabetes. Moreover, animal models of DIO show elevated brain Aβ, a hallmark of AD, suggesting that this may be one source of cognitive impairment in both conditions. METHODS Intrahippocampal administration of a novel anti-Aβ domain antibody for aggregated Aβ, or a control domain antibody, to control or HFD-induced DIO rats. Spatial learning measured in a conditioned contextual fear (CCF) task after domain antibody treatment; postmortem, hippocampal NMDAR and AMPAR were measured. RESULTS DIO caused impairment in CCF, and this impairment was eliminated by intrahippocampal administration of the active domain antibody. Measurement of hippocampal proteins suggests that DIO causes dysregulation of hippocampal AMPA receptors, which is also reversed by acute domain antibody administration. CONCLUSIONS Our findings support the concept that oligomeric Aβ within the hippocampus of DIO animals may not only be a risk factor for development of AD but may also cause cognitive impairment before the development of dementia. GENERAL SIGNIFICANCE AND INTEREST Our work integrates the engineering of domain antibodies with conformational- and sequence-specificity for oligomeric amyloid beta with a clinically relevant model of diet-induced obesity in order to demonstrate not only the pervasive effects of obesity on several aspects of brain biochemistry and behavior, but also the bioengineering of a successful treatment against the long-term detrimental effects of a pre-diabetic state on the brain. We show for the first time that cognitive impairment linked to obesity and/or insulin resistance may be due to early accumulation of oligomeric beta-amyloid in the brain, and hence may represent a pre-Alzheimer's state.
Collapse
Affiliation(s)
- Danielle M Osborne
- Behavioral Neuroscience, University at Albany, Albany, NY, United States; Center for Neuroscience Research, University at Albany, Albany, NY, United States
| | - Dennis P Fitzgerald
- Hofstra North Shore-Long Island School of Medicine, Hofstra University, Hempstead, NY, United States
| | - Kelsey E O'Leary
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brian M Anderson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, United States
| | - Christine C Lee
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, United States; Center for Neuroscience Research, University at Albany, Albany, NY, United States; Biological Sciences, University at Albany, Albany, NY, United States.
| |
Collapse
|
53
|
The Human Disease-Associated Aβ Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin. mBio 2016; 7:e01815-15. [PMID: 26758179 PMCID: PMC4725003 DOI: 10.1128/mbio.01815-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED There is increasing evidence that many amyloids in living cells have physiological functions. On the surfaces of fungal cells, amyloid core sequences in adhesins can aggregate into 100- to 1,000-nm-wide patches to form high-avidity adhesion nanodomains on the cell surface. The nanodomains form through interactions that have amyloid-like properties: binding of amyloid dyes, perturbation by antiamyloid agents, and interaction with homologous sequences. To test whether these functional interactions are mediated by typical amyloid interactions, we substituted an amyloid core sequence, LVFFA, from human Aβ protein for the native sequence IVIVA in the 1,419-residue Candida albicans adhesin Als5p. The chimeric protein formed cell surface nanodomains and mediated cellular aggregation. The native sequence and chimeric adhesins responded similarly to the amyloid dye thioflavin T and to amyloid perturbants. However, unlike the native protein, the nanodomains formed by the chimeric protein were not force activated and formed less-robust aggregates under flow. These results showed the similarity of amyloid interactions in the amyloid core sequences of native Als5p and Aβ, but they also highlighted emergent properties of the native sequence. Also, a peptide composed of the Aβ amyloid sequence flanked by amino acids from the adhesin formed two-dimensional sheets with sizes similar to the cell surface patches of the adhesins. These results inform an initial model for the structure of fungal cell surface amyloid nanodomains. IMPORTANCE Protein amyloid aggregates are markers of neurodegenerative diseases such as Alzheimer's and Parkinsonism. Nevertheless, there are also functional amyloids, including biofilm-associated amyloids in bacteria and fungi. In fungi, glycoprotein adhesins aggregate into cell surface patches through amyloid-like interactions, and the adhesin clustering strengthens cell-cell binding. These fungal surface amyloid nanodomains mediate biofilm persistence under flow, and they also moderate host inflammatory responses in fungal infections. To determine whether the amyloid-like properties of fungal surface nanodomains are sequence specific, we ask whether a disease-associated amyloid core sequence has properties equivalent to those of the native sequence in a fungal adhesin. A chimeric adhesin with an amyloid sequence from the Alzheimer's disease protein Aβ instead of its native sequence effectively clustered the adhesins on the cell surface, but it showed a different response to hydrodynamic shear. These results begin an analysis of the sequence dependence for newly discovered activities for fungal surface amyloid nanodomains.
Collapse
|
54
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
55
|
Lee CC, Julian MC, Tiller KE, Meng F, DuConge SE, Akter R, Raleigh DP, Tessier PM. Design and Optimization of Anti-amyloid Domain Antibodies Specific for β-Amyloid and Islet Amyloid Polypeptide. J Biol Chem 2015; 291:2858-73. [PMID: 26601942 DOI: 10.1074/jbc.m115.682336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 12/25/2022] Open
Abstract
Antibodies with conformational specificity are important for detecting and interfering with polypeptide aggregation linked to several human disorders. We are developing a motif-grafting approach for designing lead antibody candidates specific for amyloid-forming polypeptides such as the Alzheimer peptide (Aβ). This approach involves grafting amyloidogenic peptide segments into the complementarity-determining regions (CDRs) of single-domain (VH) antibodies. Here we have investigated the impact of polar mutations inserted at the edges of a large hydrophobic Aβ42 peptide segment (Aβ residues 17-42) in CDR3 on the solubility and conformational specificity of the corresponding VH domains. We find that VH expression and solubility are strongly enhanced by introducing multiple negatively charged or asparagine residues at the edges of CDR3, whereas other polar mutations are less effective (glutamine and serine) or ineffective (threonine, lysine, and arginine). Moreover, Aβ VH domains with negatively charged CDR3 mutations show significant preference for recognizing Aβ fibrils relative to Aβ monomers, whereas the same VH domains with other polar CDR3 mutations recognize both Aβ conformers. We observe similar behavior for a VH domain grafted with a large hydrophobic peptide from islet amyloid polypeptide (residues 8-37) that contains negatively charged mutations at the edges of CDR3. These findings highlight the sensitivity of antibody binding and solubility to residues at the edges of CDRs, and provide guidelines for designing other grafted antibody fragments with hydrophobic binding loops.
Collapse
Affiliation(s)
- Christine C Lee
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Mark C Julian
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Kathryn E Tiller
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Fanling Meng
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Sarah E DuConge
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Rehana Akter
- the Department of Chemistry, Stony Brook University, Stony Brook, New York 11794
| | - Daniel P Raleigh
- the Department of Chemistry, Stony Brook University, Stony Brook, New York 11794
| | - Peter M Tessier
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| |
Collapse
|
56
|
Moreno-Del Álamo M, de la Espina SMD, Fernández-Tresguerres ME, Giraldo R. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 2015; 5:14669. [PMID: 26423724 PMCID: PMC4589793 DOI: 10.1038/srep14669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| | | | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| |
Collapse
|
57
|
Abstract
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| |
Collapse
|
58
|
Sormanni P, Aprile FA, Vendruscolo M. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins. Proc Natl Acad Sci U S A 2015; 112:9902-7. [PMID: 26216991 PMCID: PMC4538631 DOI: 10.1073/pnas.1422401112] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions.
Collapse
Affiliation(s)
- Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
59
|
Aprile FA, Sormanni P, Vendruscolo M. A Rational Design Strategy for the Selective Activity Enhancement of a Molecular Chaperone toward a Target Substrate. Biochemistry 2015; 54:5103-12. [PMID: 26192230 DOI: 10.1021/acs.biochem.5b00459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular chaperones facilitate the folding and assembly of proteins and inhibit their aberrant aggregation. They thus offer several opportunities for biomedical and biotechnological applications, as for example they can often prevent protein aggregation more effectively than other therapeutic molecules, including small molecules and antibodies. Here we present a method of designing molecular chaperones with enhanced activity against specific amyloidogenic substrates while leaving unaltered their functions toward other substrates. The method consists of grafting onto a molecular chaperone a peptide designed to bind specifically an epitope in the target substrate. We illustrate this strategy by describing Hsp70 variants with increased affinities for α-synuclein and Aβ42 but otherwise unaltered affinities for other substrates. These designed variants inhibit protein aggregation and disaggregate preformed fibrils significantly more effectively than wild-type Hsp70 indicating that the strategy presented here provides a possible route for tailoring rationally molecular chaperones for specific purposes.
Collapse
Affiliation(s)
- Francesco A Aprile
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | |
Collapse
|
60
|
Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
61
|
Lawand NB, Saadé NE, El-Agnaf OM, Safieh-Garabedian B. Targeting α-synuclein as a therapeutic strategy for Parkinson's disease. Expert Opin Ther Targets 2015; 19:1351-60. [PMID: 26135549 DOI: 10.1517/14728222.2015.1062877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION α-Synuclein, a neuronal protein, plays a central role in the pathophysiology of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder. Cases of PD have increased tremendously over the past decade necessitating the identification of new therapeutic targets to reduce patient morbidity and to improve PD patients' quality of life. AREAS COVERED The purpose of this article is to provide an update on the role of α-synuclein in fibrils formation and review its role as an effective immunotherapeutic target for PD. The rapidly expanding evidence for the contribution of α-synuclein to the pathogenesis of PD led to the development of antibodies against the C terminus of α-synuclein and other molecules involved in the inflammatory signaling pathways that were found to contribute significantly to initiation and progression of the disease. EXPERT OPINION The readers will obtain new insights on the mechanisms by which α-synuclein can trigger the development of PD and other related degenerative disorders along with the potential role of active and passive antibodies targeted against specific form of α-synuclein aggregates to clear neurotoxicity, stop the propagation of the prion-like behavior of these oligomers and reverse neuronal degeneration associated with PD.
Collapse
Affiliation(s)
- Nada B Lawand
- a 1 American University of Beirut, Department of Anatomy, Cell Biology and Physiology Sciences , Beirut, Lebanon
| | - Nayef E Saadé
- a 1 American University of Beirut, Department of Anatomy, Cell Biology and Physiology Sciences , Beirut, Lebanon
| | - Omar M El-Agnaf
- b 2 Hamad Ben Khalifa University, College of Science and Engineering, Education City, Qatar Foundation , Doha, Qatar
| | - Bared Safieh-Garabedian
- c 3 Qatar University, College of Medicine, Department of Biological and Environmental Sciences , Doha, Qatar
| |
Collapse
|
62
|
Sørensen CS, Runager K, Scavenius C, Jensen MM, Nielsen NS, Christiansen G, Petersen SV, Karring H, Sanggaard KW, Enghild JJ. Fibril Core of Transforming Growth Factor Beta-Induced Protein (TGFBIp) Facilitates Aggregation of Corneal TGFBIp. Biochemistry 2015; 54:2943-56. [PMID: 25910219 DOI: 10.1021/acs.biochem.5b00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutations in the transforming growth factor beta-induced (TGFBI) gene result in a group of hereditary diseases of the cornea that are collectively known as TGFBI corneal dystrophies. These mutations translate into amino acid substitutions mainly within the fourth fasciclin 1 domain (FAS1-4) of the transforming growth factor beta-induced protein (TGFBIp) and cause either amyloid or nonamyloid protein aggregates in the anterior and central parts of the cornea, depending on the mutation. The A546T substitution in TGFBIp causes lattice corneal dystrophy (LCD), which manifests as amyloid-type aggregates in the corneal stroma. We previously showed that the A546T substitution renders TGFBIp and the FAS1-4 domain thermodynamically less stable compared with the wild-type (WT) protein, and the mutant FAS1-4 is prone to amyloid formation in vitro. In the present study, we identified the core of A546T FAS1-4 amyloid fibrils. Significantly, we identified the Y571-R588 region of TGFBIp, which we previously found to be enriched in amyloid deposits in LCD patients. We further found that the Y571-R588 peptide seeded fibrillation of A546T FAS1-4, and, more importantly, we demonstrated that native TGFBIp aggregates in the presence of fibrils formed by the core peptide. Collectively, these data suggest an involvement of the Y571-R588 peptide in LCD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Gunna Christiansen
- ⊥Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - Steen V Petersen
- ⊥Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - Henrik Karring
- ∥Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
63
|
Murakami K. Conformation-specific antibodies to target amyloid β oligomers and their application to immunotherapy for Alzheimer's disease. Biosci Biotechnol Biochem 2015; 78:1293-305. [PMID: 25130729 DOI: 10.1080/09168451.2014.940275] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid β-protein (Aβ) oligomers, intermediates of Aβ aggregation, cause cognitive impairment and synaptotoxicity in the pathogenesis of Alzheimer's disease (AD). Immunotherapy using anti-Aβ antibody is one of the most promising approaches for AD treatment. However, most clinical trials using conventional sequence-specific antibodies have proceeded with difficulty. This is probably due to the unintended removal of the non-pathological monomer and fibrils of Aβ as well as the pathological oligomers by these antibodies that recognize Aβ sequence, which is not involved in synaptotoxicity. Several efforts have been made recently to develop conformation-specific antibodies that target the tertiary structure of Aβ oligomers. Here, we review the recent findings of Aβ oligomers and anti-Aβ antibodies including our own, and discuss their potential as therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Kazuma Murakami
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|
64
|
Breydo L, Morgan D, Uversky VN. Pseudocatalytic Antiaggregation Activity of Antibodies: Immunoglobulins can Influence α-Synuclein Aggregation at Substoichiometric Concentrations. Mol Neurobiol 2015; 53:1949-1958. [PMID: 25833100 DOI: 10.1007/s12035-015-9148-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
Protein aggregation is involved in a variety of diseases. Alteration of the aggregation pathway, either to produce less toxic structures or to increase aggregate clearance, is a promising therapeutic route. Both active and passive immunization has been used for this purpose. However, the mechanism of action of antibodies on protein aggregates is not completely clear especially given poor ability of antibodies to cross blood-brain barrier. Here, we have shown that antibodies can interfere with protein aggregation at substoichiometric concentrations (as low as 1:1000 antibody to protein ratio). This is an indication that antibodies interact with aggregation intermediates in chaperone-like manner altering the aggregation pathways at very low antibody levels. This observation supports earlier suggestions that antibodies can inhibit aggregation by interaction with low abundance aggregation intermediates.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Byrd Alzheimer Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Dave Morgan
- Byrd Alzheimer Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Byrd Alzheimer Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Kingdom of Saudi Arabia.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
65
|
Evans ML, Chorell E, Taylor JD, Åden J, Götheson A, Li F, Koch M, Sefer L, Matthews SJ, Wittung-Stafshede P, Almqvist F, Chapman MR. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 2015; 57:445-55. [PMID: 25620560 PMCID: PMC4320674 DOI: 10.1016/j.molcel.2014.12.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-β-sheet-rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aβ42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aβ42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids.
Collapse
Affiliation(s)
- Margery L Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Erik Chorell
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Jonathan D Taylor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jörgen Åden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Anna Götheson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fei Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Marion Koch
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Lea Sefer
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Steve J Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Fredrik Almqvist
- Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden; Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA; Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
66
|
Abstract
Amyloid fibrils are self-propagating entities that spread pathology in several devastating disorders including Alzheimer's disease (AD). In AD, amyloid-β (Aβ) peptides form extracellular plaques that contribute to cognitive decline. One potential therapeutic strategy is to develop inhibitors that prevent Aβ misfolding into proteotoxic conformers. Here, we design specific aromatic foldamers, synthetic polymers with an aromatic salicylamide (Sal) or 3-amino benzoic acid (Benz) backbone, short length (four repetitive units), basic arginine (Arg), lysine (Lys) or citrulline (Cit) side chains, and various N- and C-terminal groups that prevent spontaneous and seeded Aβ fibrillization. Ac-Sal-(Lys-Sal)3-CONH2 and Sal-(Lys-Sal)3-CONH2 selectively inhibited Aβ42 fibrillization, but were ineffective against Aβ43, an overlooked species that is highly neurotoxic and frequently deposited in AD brains. By contrast, (Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2 prevented spontaneous and seeded Aβ42 and Aβ43 fibrillization. Importantly, (Arg-Sal)3-(Cit-Sal)-CONH2 inhibited formation of toxic Aβ42 and Aβ43 oligomers and proteotoxicity. None of these foldamers inhibited Sup35 prionogenesis, but Sal-(Lys-Sal)3-CONH2 delayed aggregation of fused in sarcoma (FUS), an RNA-binding protein with a prion-like domain connected with amyotrophic lateral sclerosis and frontotemporal dementia. We establish that inhibitors of Aβ42 fibrillization do not necessarily inhibit Aβ43 fibrillization. Moreover, (Arg-Sal)3-(Cit-Sal)-CONH2 inhibits formation of toxic Aβ conformers and seeding activity, properties that could have therapeutic utility.
Collapse
|
67
|
Ganesan A, Debulpaep M, Wilkinson H, Van Durme J, De Baets G, Jonckheere W, Ramakers M, Ivarsson Y, Zimmermann P, Van Eldere J, Schymkowitz J, Rousseau F. Selectivity of Aggregation-Determining Interactions. J Mol Biol 2015; 427:236-47. [DOI: 10.1016/j.jmb.2014.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
|
68
|
The CamSol Method of Rational Design of Protein Mutants with Enhanced Solubility. J Mol Biol 2015; 427:478-90. [DOI: 10.1016/j.jmb.2014.09.026] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/19/2023]
|
69
|
Sgourakis N, Yau WM, Qiang W. Modeling an In-Register, Parallel “Iowa” Aβ Fibril Structure Using Solid-State NMR Data from Labeled Samples with Rosetta. Structure 2015; 23:216-227. [DOI: 10.1016/j.str.2014.10.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/07/2014] [Accepted: 10/31/2014] [Indexed: 12/23/2022]
|
70
|
Antibody Fragments Defining Biologically Relevant Conformations of Target Proteins. Antibodies (Basel) 2014. [DOI: 10.3390/antib3040289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
71
|
Qiang W, Akinlolu RD, Nam M, Shu N. Structural evolution and membrane interaction of the 40-residue β amyloid peptides: differences in the initial proximity between peptides and the membrane bilayer studied by solid-state nuclear magnetic resonance spectroscopy. Biochemistry 2014; 53:7503-14. [PMID: 25397729 DOI: 10.1021/bi501003n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interactions between the β amyloid (Aβ) peptides and cellular membranes have severe consequences such as neuronal cell disruption and therefore may play important roles in Alzheimer's disease. Understanding the structural basis behind such interactions, however, is hindered by the complexity of the Aβ-membrane systems. In particular, because the Aβ peptides are partially incorporated in the membrane bilayer after enzymatic cleavage, there are multiple possibilities in terms of the initial proximity between the peptides and membranes. Structural studies using in vitro model systems with either externally added or preincorporated Aβ in membrane bilayers resulted in distinct evolution pathways. Previous work has shown that the externally added Aβ formed long and mature filaments, while preincorporated Aβ generated short and curvy fibrils. In this study, we perform detailed characterizations on the structural evolution and membrane interaction for these two pathways, using a combination of solid-state nuclear magnetic resonance spectroscopy and other techniques. For the externally added Aβ, we determined the residue-specific structural evolution during the fibrillation process. While the entire fibrillation process for the externally added Aβ was slow, the preincorporated Aβ generated Aβ-lipid complexes rapidly. Specific interactions between the lipids and peptides were observed, suggesting the colocalization of lipids and peptides within the complex. Formation of such a complex induced molecular-level changes in the lipid bilayer, which may serve as a possible mechanism of membrane disruption.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York , Binghamton, New York 13902, United States
| | | | | | | |
Collapse
|
72
|
Babu E, Muthu Mareeswaran P, Sathish V, Singaravadivel S, Rajagopal S. Sensing and inhibition of amyloid-β based on the simple luminescent aptamer-ruthenium complex system. Talanta 2014; 134:348-353. [PMID: 25618678 DOI: 10.1016/j.talanta.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptide has been known to be pathologically associated with Alzheimer and dementia diseases. Amyloid-β fibrils serve as an important target for the drugs development and diagnosis of neurodegenerative diseases. Herein, we report a new [Ru(dmbpy)(dcbpy)dppz)] complex (dmbpy; 4,4'-dimethyl-2,2'-bipyridine, dcbpy; 4,4'-dicorboxy-2,2'-bipyridine, dppz; dipyridophenazine) intercalated aptamer based recognition of amyloid-β. Interestingly, aforementioned Ru(II) complex shows weak luminescence intensity in the aqueous medium but it shows strong luminescence intensity in the presence of RNA aptamer. Upon addition of amyloid-β monomers, the luminescence intensity of Ru(II) complex is reduced due to the strong interaction of aptamer with amyloid-β monomer/small oligomers. Furthermore, present study implies that our system has ability to inhibit the formation of amyloid-β fibrils, which is confirmed from the AFM morphological structures in the absence and presence of aptamer. This work may contribute the rapid diagnosis and inhibition of amyloid-β aggregation in the clinical applications.
Collapse
Affiliation(s)
- Eththilu Babu
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Chemistry, VV College of Engineering, Tisaiyanvilai, Tamil Nadu, India
| | - Paulpandian Muthu Mareeswaran
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Veerasamy Sathish
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Physical Science, Bannari Amman Institute of Technology, Sathiyamangalam, Tamil Nadu, India
| | - Subramanian Singaravadivel
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
73
|
Kim DY, Hussack G, Kandalaft H, Tanha J. Mutational approaches to improve the biophysical properties of human single-domain antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1983-2001. [DOI: 10.1016/j.bbapap.2014.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 01/06/2023]
|
74
|
Zhang Y, Sun Y, Huai Y, Zhang YJ. Functional Characteristics and Molecular Mechanism of a New scFv Antibody Against Aβ42 Oligomers and Immature Protofibrils. Mol Neurobiol 2014; 52:1269-1281. [DOI: 10.1007/s12035-014-8910-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/28/2014] [Indexed: 11/30/2022]
|
75
|
Haupt C, Fändrich M. Biotechnologically engineered protein binders for applications in amyloid diseases. Trends Biotechnol 2014; 32:513-20. [DOI: 10.1016/j.tibtech.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
|
76
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
77
|
Greiner ER, Kelly JW, Palhano FL. Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils. PLoS One 2014; 9:e105433. [PMID: 25144803 PMCID: PMC4140755 DOI: 10.1371/journal.pone.0105433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Amyloid fibrils are associated with many maladies, including Alzheimer's disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ(1-40) amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ(1-40) amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ(1-40) amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this protocol to the isolation of amyloids.
Collapse
Affiliation(s)
- Erin R. Greiner
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Fernando L. Palhano
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
78
|
Evans ML, Chapman MR. Curli biogenesis: order out of disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1551-8. [PMID: 24080089 PMCID: PMC4243835 DOI: 10.1016/j.bbamcr.2013.09.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Many bacteria assemble extracellular amyloid fibers on their cell surface. Secretion of proteins across membranes and the assembly of complex macromolecular structures must be highly coordinated to avoid the accumulation of potentially toxic intracellular protein aggregates. Extracellular amyloid fiber assembly poses an even greater threat to cellular health due to the highly aggregative nature of amyloids and the inherent toxicity of amyloid assembly intermediates. Therefore, temporal and spatial control of amyloid protein secretion is paramount. The biogenesis and assembly of the extracellular bacterial amyloid curli is an ideal system for studying how bacteria cope with the many challenges of controlled and ordered amyloid assembly. Here, we review the recent progress in the curli field that has made curli biogenesis one of the best-understood functional amyloid assembly pathways. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Margery L Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
79
|
Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv 2014; 11:1237-53. [PMID: 24809228 DOI: 10.1517/17425247.2014.917078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.
Collapse
Affiliation(s)
- Constanze Lamprecht
- University of Kiel, Institute of Materials Science Biocompatible Nanomaterials , Kaiserstr.2, 24143 Kiel , Germany
| | | | | |
Collapse
|
80
|
Sheynis T, Friediger A, Xue WF, Hellewell AL, Tipping KW, Hewitt EW, Radford SE, Jelinek R. Aggregation modulators interfere with membrane interactions of β2-microglobulin fibrils. Biophys J 2014; 105:745-55. [PMID: 23931322 DOI: 10.1016/j.bpj.2013.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/20/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022] Open
Abstract
Amyloid fibril accumulation is a pathological hallmark of several devastating disorders, including Alzheimer's disease, prion diseases, type II diabetes, and others. Although the molecular factors responsible for amyloid pathologies have not been deciphered, interactions of misfolded proteins with cell membranes appear to play important roles in these disorders. Despite increasing evidence for the involvement of membranes in amyloid-mediated cytotoxicity, the pursuit for therapeutic strategies has focused on preventing self-assembly of the proteins comprising the amyloid plaques. Here we present an investigation of the impact of fibrillation modulators upon membrane interactions of β2-microglobulin (β2m) fibrils. The experiments reveal that polyphenols (epigallocatechin gallate, bromophenol blue, and resveratrol) and glycosaminoglycans (heparin and heparin disaccharide) differentially affect membrane interactions of β2m fibrils measured by dye-release experiments, fluorescence anisotropy of labeled lipid, and confocal and cryo-electron microscopies. Interestingly, whereas epigallocatechin gallate and heparin prevent membrane damage as judged by these assays, the other compounds tested had little, or no, effect. The results suggest a new dimension to the biological impact of fibrillation modulators that involves interference with membrane interactions of amyloid species, adding to contemporary strategies for combating amyloid diseases that focus on disruption or remodeling of amyloid aggregates.
Collapse
Affiliation(s)
- Tania Sheynis
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Tissue-specific overexpression of the human systemic amyloid precursor transthyretin (TTR) ameliorates Alzheimer's disease (AD) phenotypes in APP23 mice. TTR-β-amyloid (Aβ) complexes have been isolated from APP23 and some human AD brains. We now show that substoichiometric concentrations of TTR tetramers suppress Aβ aggregation in vitro via an interaction between the thyroxine binding pocket of the TTR tetramer and Aβ residues 18-21 (nuclear magnetic resonance and epitope mapping). The K(D) is micromolar, and the stoichiometry is <1 for the interaction (isothermal titration calorimetry). Similar experiments show that engineered monomeric TTR, the best inhibitor of Aβ fibril formation in vitro, did not bind Aβ monomers in liquid phase, suggesting that inhibition of fibrillogenesis is mediated by TTR tetramer binding to Aβ monomer and both tetramer and monomer binding of Aβ oligomers. The thousand-fold greater concentration of tetramer relative to monomer in vivo makes it the likely suppressor of Aβ aggregation and disease in the APP23 mice.
Collapse
|
82
|
Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol 2013; 31:612-20. [DOI: 10.1016/j.tibtech.2013.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/30/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
|
83
|
Andersson EK, Bengtsson C, Evans ML, Chorell E, Sellstedt M, Lindgren AE, Hufnagel DA, Bhattacharya M, Tessier PM, Wittung-Stafshede P, Almqvist F, Chapman MR. Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. CHEMISTRY & BIOLOGY 2013; 20:1245-54. [PMID: 24035282 PMCID: PMC4243843 DOI: 10.1016/j.chembiol.2013.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
Enteric bacteria assemble functional amyloid fibers, curli, on their surfaces that share structural and biochemical properties with disease-associated amyloids. Here, we test rationally designed 2-pyridone compounds for their ability to alter amyloid formation of the major curli subunit CsgA. We identified several compounds that discourage CsgA amyloid formation and several compounds that accelerate CsgA amyloid formation. The ability of inhibitor compounds to stop growing CsgA fibers was compared to the same property of the CsgA chaperone, CsgE. CsgE blocked CsgA amyloid assembly and arrested polymerization when added to actively polymerizing fibers. Additionally, CsgE and the 2-pyridone inhibitors prevented biofilm formation by Escherichia coli at the air-liquid interface of a static culture. We demonstrate that curli amyloid assembly and curli-dependent biofilm formation can be modulated not only by protein chaperones, but also by "chemical chaperones."
Collapse
Affiliation(s)
- Emma K. Andersson
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Christoffer Bengtsson
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Margery L. Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Erik Chorell
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Magnus Sellstedt
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - David A. Hufnagel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Moumita Bhattacharya
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Fredrik Almqvist
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Matthew R. Chapman
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
84
|
Camilloni C, Vendruscolo M. A relationship between the aggregation rates of α-synuclein variants and the β-sheet populations in their monomeric forms. J Phys Chem B 2013; 117:10737-41. [PMID: 23941114 DOI: 10.1021/jp405614j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intrinsically disordered proteins constitute a significant part of the human proteome and carry out a wide range of different functions, including in particular signaling and regulation. Several of these proteins are vulnerable to aggregation, and their aberrant assemblies have been associated with a variety of neurodegenerative and systemic diseases. It remains unclear, however, the extent to which the conformational properties of intrinsically disordered proteins in their monomeric states influence the aggregation behavior of these molecules. Here we report a relationship between aggregation rates and secondary structure populations in the soluble monomeric states of a series of mutational variants of α-synuclein. Overall, we found a correlation of over 90% between the changes in β-sheet populations calculated from NMR chemical shift data and the changes in aggregation rates for eight human-to-mouse chimeric mutants. These results provide support to the idea of investigating therapeutic strategies based on the stabilization of the monomeric form of intrinsically disordered proteins through the alteration of their conformational properties.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
85
|
Choi I, Lee LP. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS NANO 2013; 7:6268-6277. [PMID: 23777418 DOI: 10.1021/nn402310c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the primary pathological hallmarks of Alzheimer's diseases (AD) is amyloid-β (Aβ) aggregation and its extracellular accumulation. However, current in vitro Aβ aggregation assays require time-consuming and labor-intensive steps, which delay the process of drug discovery and understanding the mechanism of Aβ induced neurotoxicity. Here, we propose a rapid detection method for studying Aβ aggregation and inhibition under an optimized acidic perturbation condition by dual functions of gold nanoplasmonic particles (GNPs): (1) catalytic activator and (2) optical reporter. Because of roles of GNPs as effective nucleation sites for fast-catalyzing Aβ aggregation and colorimetric optical reporters for tracking Aβ aggregation, we accomplished the fast aggregation assay in less than 1 min by the naked eyes. Our detection method is based on spontaneous clustering of unconjugated (unmodified) GNPs along with the aggregated Aβ network under an aggregation-promoting condition. As a proof-of-concept demonstration, we employed the acidic perturbation permitting rapid cooperative assemblies of GNPs and Aβ peptides via their surface charge modulation. Under the optimized acidic perturbation condition around pH 2 to 3, we characterized the concentration-dependent colorimetric responses for aggregation at physiologically relevant Aβ concentration levels (from 100 μM to 10 nM). We also demonstrated the GNP/acidic condition-based rapid inhibition assay of Aβ aggregation by using well-known binding reagents such as antibody and serum albumin. The proposed methodology can be a powerful alternative method for screening drugs for AD as well as studying molecular biophysics of protein aggregations, and further extended to explore other protein conformational diseases such as neurodegenerative disease.
Collapse
Affiliation(s)
- Inhee Choi
- Berkeley Sensor and Actuator Center, Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
86
|
Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. eLife 2013. [PMID: 23878726 DOI: 10.7554/elife.00857.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer's, Parkinson's, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer's disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind to Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers. DOI:http://dx.doi.org/10.7554/eLife.00857.001.
Collapse
Affiliation(s)
- Lin Jiang
- Departments of Chemistry and Biochemistry and Biological Chemistry , Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles , Los Angeles , United States
| | | | | | | | | | | | | |
Collapse
|
87
|
Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. eLife 2013; 2:e00857. [PMID: 23878726 PMCID: PMC3713518 DOI: 10.7554/elife.00857] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022] Open
Abstract
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind to Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers. DOI:http://dx.doi.org/10.7554/eLife.00857.001 Alzheimer’s disease is the most common form of dementia, estimated to affect roughly five million people in the United States, and its incidence is steadily increasing as the population ages. A pathological hallmark of Alzheimer’s disease is the presence in the brain of aggregates of two proteins: tangles of a protein called tau; and fibers and smaller units (oligomers) of a peptide called amyloid beta. Many attempts have been made to screen libraries of natural and synthetic compounds to identify substances that might prevent the aggregation and toxicity of amyloid. Such studies revealed that polyphenols found in green tea and in the spice turmeric can inhibit the formation of amyloid fibrils. Moreover, a number of dyes reduce the toxic effects of amyloid on cells, although significant side effects prevent these from being used as drugs. Structure-based drug design, in which the structure of a target protein is used to help identify compounds that will interact with it, has been used to generate therapeutic agents for a number of diseases. Here, Jiang et al. report the first application of this technique in the hunt for compounds that inhibit the cytotoxicity of amyloid beta. Using the known atomic structure of the protein in complex with a dye, Jiang et al. performed a computational screen of 18,000 compounds in search of those that are likely to bind effectively. The compounds that showed the strongest predicted binding were then tested for their ability to interfere with the aggregation of amyloid beta and to protect cells grown in culture from its toxic effects. Compounds that reduced toxicity did not reduce the abundance of protein aggregates, but they appear to increase the stability of fibrils. This is consistent with other evidence suggesting that small, soluble forms (oligomers) of amyloid beta that break free from the fibrils may be the toxic agent in Alzheimer’s disease, rather than the fibrils themselves. In addition to uncovering compounds with therapeutic potential in Alzheimer’s disease, this work presents a new approach for identifying proteins that bind to amyloid fibrils. Given that amyloid accumulation is a feature of many other diseases, including Parkinson’s disease, Huntington’s disease and type 2 diabetes, the approach could have broad therapeutic applications. DOI:http://dx.doi.org/10.7554/eLife.00857.002
Collapse
Affiliation(s)
- Lin Jiang
- Departments of Chemistry and Biochemistry and Biological Chemistry , Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles , Los Angeles , United States
| | | | | | | | | | | | | |
Collapse
|
88
|
Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. J Mol Biol 2013; 425:2397-411. [DOI: 10.1016/j.jmb.2013.01.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
|
89
|
Nisbet RM, Nigro J, Breheney K, Caine J, Hattarki MK, Nuttall SD. Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity. Protein Eng Des Sel 2013; 26:571-80. [PMID: 23766374 DOI: 10.1093/protein/gzt025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anti-amyloid-β immunotherapies are a promising therapeutic approach for the treatment and prevention of Alzheimer's disease (AD). Single chain antibody fragments (scFv) are an attractive alternative to whole antibodies due to their small size, single polypeptide format and inability to stimulate potentially undesirable Fc-mediated immune effector functions. We have generated the scFv derivative of anti-Aβ monoclonal antibody, 1E8, known to target residues 17-22 of Aβ. Here we show that the soluble 1E8 scFv binds to the central region of Aβ with an affinity of ~55 nM and significantly reduces fibril formation of Aβ(1-42). Furthermore, 1E8 scFv ameliorates Aβ(1-42)-mediated toxicity in the PC12 cell line and murine primary neuronal cultures. This ability to both target the central region of Aβ and prevent Aβ(1-42) neurotoxicity in vitro makes it a promising therapeutic antibody building block for further functionalization, toward the treatment of AD.
Collapse
Affiliation(s)
- R M Nisbet
- Division of Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
90
|
Deleersnijder A, Gerard M, Debyser Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 2013; 19:368-77. [DOI: 10.1016/j.molmed.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/21/2022]
|
91
|
Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 2013; 587:1106-18. [PMID: 23380070 DOI: 10.1016/j.febslet.2013.01.046] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Pancreatic islet amyloid is a characteristic feature of type 2 diabetes. The major protein component of islet amyloid is the polypeptide hormone known as islet amyloid polypeptide (IAPP, or amylin). IAPP is stored with insulin in the β-cell secretory granules and is released in response to the stimuli that lead to insulin secretion. IAPP is normally soluble and is natively unfolded in its monomeric state, but forms islet amyloid in type 2 diabetes. Islet amyloid is not the cause of type 2 diabetes, but it leads to β-cell dysfunction and cell death, and contributes to the failure of islet cell transplantation. The mechanism of IAPP amyloid formation is not understood and the mechanisms of cytotoxicity are not fully defined.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|