51
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
52
|
Gondhowiardjo SA, Jayalie VF, Apriantoni R, Barata AR, Senoaji F, Utami IGAAJW, Maubere F, Nuryadi E, Giselvania A. Tackling Resistance to Cancer Immunotherapy: What Do We Know? Molecules 2020; 25:molecules25184096. [PMID: 32911646 PMCID: PMC7570938 DOI: 10.3390/molecules25184096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer treatment has evolved tremendously in the last few decades. Immunotherapy has been considered to be the forth pillar in cancer treatment in addition to conventional surgery, radiotherapy, and chemotherapy. Though immunotherapy has resulted in impressive response, it is generally limited to a small subset of patients. Understanding the mechanisms of resistance toward cancer immunotherapy may shed new light to counter that resistance. In this review, we highlighted and summarized two major hurdles (recognition and attack) of cancer elimination by the immune system. The mechanisms of failure of some available immunotherapy strategies were also described. Moreover, the significance role of immune compartment for various established cancer treatments were also elucidated in this review. Then, the mechanisms of combinatorial treatment of various conventional cancer treatment with immunotherapy were discussed. Finally, a strategy to improve immune cancer killing by characterizing cancer immune landscape, then devising treatment based on that cancer immune landscape was put forward.
Collapse
Affiliation(s)
- Soehartati A. Gondhowiardjo
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Vito Filbert Jayalie
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Riyan Apriantoni
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Andreas Ronald Barata
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Fajar Senoaji
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - IGAA Jayanthi Wulan Utami
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Ferdinand Maubere
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Endang Nuryadi
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| | - Angela Giselvania
- Faculty of Medicine, Universitas Indonesia, Jakarta 16424, Indonesia; (S.A.G.); (V.F.J.); (R.A.); (A.R.B.); (F.S.); (I.J.W.U.); (F.M.); (E.N.); (A.G.)
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
53
|
Cell composition and expansion strategy can reduce the beneficial effect of AKT-inhibition on functionality of CD8 + T cells. Cancer Immunol Immunother 2020; 69:2259-2273. [PMID: 32504246 PMCID: PMC7568704 DOI: 10.1007/s00262-020-02612-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 12/29/2022]
Abstract
AKT-inhibition is a promising approach to improve T cell therapies; however, its effect on CD4+ T cells is insufficiently explored. Previously, we and others showed that AKT-inhibition during ex vivo CD8+ T cell expansion facilitates the generation of polyfunctional T cells with stem cell memory-like traits. However, most therapeutic T cell products are generated from lymphocytes, containing CD4+ T cells that can affect CD8+ T cells dependent on the Th-subset. Here, we investigated the effect of AKT-inhibition on CD4+ T cells, during separate as well as total T cell expansions. Interestingly, ex vivo AKT-inhibition preserved the early memory phenotype of CD4+ T cells based on higher CD62L, CXCR4 and CCR7 expression. However, in the presence of AKT-inhibition, Th-differentiation was skewed toward more Th2-associated at the expense of Th1-associated cells. Importantly, the favorable effect of AKT-inhibition on the functionality of CD8+ T cells drastically diminished in the presence of CD4+ T cells. Moreover, also the expansion method influenced the effect of AKT-inhibition on CD8+ T cells. These findings indicate that the effect of AKT-inhibition on CD8+ T cells is dependent on cell composition and expansion strategy, where presence of CD4+ T cells as well as polyclonal stimulation impede the favorable effect of AKT-inhibition.
Collapse
|
54
|
Hasan Y, Furtado L, Tergas A, Lee N, Brooks R, McCall A, Golden D, Jolly S, Fleming G, Morrow M, Kraynyak K, Sylvester A, Arif F, Levin M, Schwartz D, Boyer J, Skolnik J, Esser M, Kumar R, Bagarazzi M, Weichselbaum R, Spiotto M. A Phase 1 Trial Assessing the Safety and Tolerability of a Therapeutic DNA Vaccination Against HPV16 and HPV18 E6/E7 Oncogenes After Chemoradiation for Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 107:487-498. [PMID: 32151670 DOI: 10.1016/j.ijrobp.2020.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE This study assessed the safety and tolerability of therapeutic immunization against the human papillomavirus (HPV) viral oncoproteins E6 and E7 in patients with cervical cancer after chemoradiation. METHODS AND MATERIALS MEDI0457 (INO-3112) is a DNA-based vaccine targeting E6 and E7 of HPV-16/18 that is coinjected with an IL-12 plasmid followed by electroporation with the CELLECTRA 5P device. At 2 to 4 weeks after chemoradiation, patients with newly diagnosed stage IB1-IVA (cohort 1) or persistent/recurrent (cohort 2) cervical cancers were treated with 4 immunizations of MEDI0457 every 4 weeks. The primary endpoints were incidence of adverse events and injection site reactions. Immune responses against HPV antigens were measured by ELISpot for interferon-γ (IFNγ), enzyme-linked immunosorbent assay for antibody responses and multiplexed immunofluorescence for immune cells in cervical biopsy specimens. RESULTS Ten patients (cohort 1, n = 7; cohort 2, n = 3) with HPV16 (n = 7) or HPV18 (n = 3) cervical cancers received MEDI0457 after chemoradiation. Treatment-related adverse events were all grade 1, primarily related to the injection site. Eight of 10 patients had detectable cellular or humoral immune responses against HPV antigens after chemoradiation and vaccination: 6 of 10 patients generated anti-HPV antibody responses and 6 of 10 patients generated IFNγ-producing T cell responses. At the completion of chemoradiation and vaccination, cervical biopsy specimens had detectable CD8+ T cells and decreased PD-1+CD8+, PD-L1+CD8+, and PD-L1+CD68+ subpopulations. All patients cleared detectable HPV DNA in cervical biopsies by completion of chemoradiation and vaccination. CONCLUSIONS Adjuvant MEDI0457 is safe and well tolerated after chemoradiation for locally advanced or recurrent cervical cancers, supporting further investigation into combining tumor-specific vaccines with radiation therapy.
Collapse
Affiliation(s)
- Yasmin Hasan
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois.
| | - Larissa Furtado
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Ana Tergas
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York
| | - Nita Lee
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | - Rebecca Brooks
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | - Anne McCall
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | - Daniel Golden
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Gini Fleming
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | - Matthew Morrow
- Inovio Pharmaceuticals Inc, Plymouth Meeting, Pennsylvania
| | | | | | - Fauzia Arif
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | | | | | - Jean Boyer
- Inovio Pharmaceuticals Inc, Plymouth Meeting, Pennsylvania
| | | | | | | | - Mark Bagarazzi
- Inovio Pharmaceuticals Inc, Plymouth Meeting, Pennsylvania
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| | - Michael Spiotto
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago Illinois
| |
Collapse
|
55
|
Sharan B, Chiliveru S, Bagga J, Kohli S, Bharadwaj A, Vaid AK, Kumar C. Substantial tumor regression in prostate cancer patient with extensive skeletal metastases upon Immunotherapy (APCEDEN): A case report. Medicine (Baltimore) 2020; 99:e18889. [PMID: 32080073 PMCID: PMC7034657 DOI: 10.1097/md.0000000000018889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Prostate cancer along with colorectal and lung cancers accounts for 42% of cancer cases in men globally. It is the first cancer indication for which the use of active immunotherapy, Sipuleucel-T (Provenge) was granted by the FDA in 2010. This study presents a case of prostate carcinoma and the tumour remission observed after administration of a personalised Dendritic cell vaccine (APCEDEN). PATIENT CONCERNS A 58 years old Caucasian male diagnosed with prostate carcinoma with GLEASON score 8. The patient had previously been diagnosed with Renal Cell Carcinoma (RCC) in 1996 and had undergone nephrectomy of the right kidney. PET CT scan revealed multiple intensely PSMA avid lesions noted in both lobes of the prostate gland with SUVmax -28.3 and the prostate gland measuring 3.2 × 3.2 cm displaying maximum dimensions. DIAGNOSIS FNAC followed by PETCT confirmed CA Prostate and further supported by increased serum PSA level. INTERVENTIONS The patient underwent personalised Dendritic Cell Immunotherapy APCEDEN regimen of six doses biweekly, in a time frame of 3 months were given both via intravenous and intradermal route. Six months post completion of APCEDEN, the patient was administered 6 booster shots for 6 months. OUTCOMES Progressive remission of carcinoma was observed along with reduction in PSA and Testosterone levels. PET CT showed decline in PSMA avidity by 50% with SUVmax -14.0 and normal size and shape of prostate gland. LESSONS Prostate carcinoma is the second most common cancer in men with majority of them exhibiting locally advanced disease. Apparently 20% to 30% of them are categorized as relapsed cases after various therapeutic interventions. Modulating immune system is an emerging therapy termed as Immunotherapy and potentiates the killing cancer cells via immune activation. Interestingly, prostate cancer is slow growing and it provides the scope and time to mount an anti-tumor response which makes it an attractive target for immunotherapy. This case study demonstrates the efficacy of APCEDEN Immunotherapy regimen resulting in a significant disease remission benefiting the patient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashok K. Vaid
- Department of Medical Oncology and Hematology, Medanta - The Medicity, Gurgaon, Haryana, India
| | | |
Collapse
|
56
|
Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends Cancer 2020; 6:236-246. [PMID: 32101726 DOI: 10.1016/j.trecan.2019.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/01/2023]
Abstract
Peritoneal metastasis (PM) occurs in approximately one in four colorectal cancer (CRC) patients. The pathophysiology of colorectal PM remains poorly characterized. Also, the efficacy of current treatment modalities, including surgery and intraperitoneal (IP) delivery of chemotherapy, is limited. Increasingly, therefore, efforts are being developed to unravel the PM cascade and at understanding the PM-associated tumor microenvironment (TME) and peritoneal ecosystem as potential therapeutic targets. Here, we review recent insights in the structure and components of the TME in colorectal PM, and discuss how these may translate into novel therapeutic approaches aimed at re-engineering the metastasis-promoting activity of the stroma.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium; Department of GI Surgery, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Vignesh Narasimhan
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander G Heriot
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory for Experimental Cancer Research, Ghent University, Ghent, Belgium
| |
Collapse
|
57
|
Mizukami Y, Kanemaru H, Nakamura K, Hashigo S, Kajihara I, Miyashita A, Aoi J, Fukushima S, Honda Y, Ihn H. Successful treatment of occult pancreatic melanoma using BRAF/MEK inhibitors. J Dermatol 2019; 47:e126-e127. [PMID: 31872454 DOI: 10.1111/1346-8138.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yukari Mizukami
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayo Nakamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Syunpei Hashigo
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yumi Honda
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
58
|
Abstract
Resistance to cancer therapy remains a major challenge in clinical oncology. Although the initial treatment phase is often successful, eventual resistance, characterized by tumour relapse or spread, is discouraging. The majority of studies devoted to investigating the basis of resistance have focused on tumour-related changes that contribute to therapy resistance and tumour aggressiveness. However, over the last decade, the diverse roles of various host cells in promoting therapy resistance have become more appreciated. A growing body of evidence demonstrates that cancer therapy can induce host-mediated local and systemic responses, many of which shift the delicate balance within the tumour microenvironment, ultimately facilitating or supporting tumour progression. In this Review, recent advances in understanding how the host response to different cancer therapies may promote therapy resistance are discussed, with a focus on therapy-induced immunological, angiogenic and metastatic effects. Also summarized is the potential of evaluating the host response to cancer therapy in an era of precision medicine in oncology.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
59
|
Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-β Signaling To Enhance The Efficacy Of Immune Checkpoint Inhibitor. Onco Targets Ther 2019; 12:9527-9538. [PMID: 31807028 PMCID: PMC6857659 DOI: 10.2147/ott.s224013] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
During malignant transformation, a growing body of mutations accumulate in cancer cells which not only drive cancer progression but also endow cancer cells with high immunogenicity. However, because one or multiple steps in cancer-immunity cycle are impaired, anti-cancer immune response is too weak to effectively clear cancer cells. Therefore, how to restore robust immune response to malignant cells is a hot research topic in cancer therapeutics field. In the last decade, based on the deeper understanding of cancer immunity, great signs of progress have been made in cancer immunotherapies especially immune checkpoint inhibitors (ICIs). ICIs could block negative immune co-stimulatory pathways and reactivate tumor-infiltrating lymphocytes (TILs) from exhausted status. ICIs exhibit potent anti-cancer effect and have been approved for the treatment of numerous cancer types. Parallel with durable and effective tumor control, the actual response rate of ICIs is unsatisfactory. Although a subset of patients benefit from ICIs treatment, a large proportion of patients show primary or acquired resistance. Previously intensive studies indicated that the efficacy of ICIs was determined by a series of factors including tumor mutation burden, programmed death ligand-1 (PD-L1) expression, and TILs status. Recently, it was reported that transforming growth factor-beta (TGF-β) signaling pathway participated in cancer immune escape and ICI resistance. Concurrent TGF-β blockade might be a feasible strategy to enhance the efficacy of immunotherapy and relieve ICI resistance. In this mini-review, we summarized the latest understanding of TGF-β signaling pathway and cancer immunity. Besides, we highlighted the synergistic effect of TGF-β blockade and ICIs.
Collapse
Affiliation(s)
- Xianguang Bai
- Medical School, Pingdingshan University, Pingdingshan, Henan, People's Republic of China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
60
|
Phuengkham H, Song C, Lim YT. A Designer Scaffold with Immune Nanoconverters for Reverting Immunosuppression and Enhancing Immune Checkpoint Blockade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903242. [PMID: 31490604 DOI: 10.1002/adma.201903242] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/19/2019] [Indexed: 05/07/2023]
Abstract
Current cancer immunotherapy based on immune checkpoint blockade (ICB) still suffers from low response rate and systemic toxicity. To overcome the limitation, a novel therapeutic platform that can revert nonimmunogenic tumors into immunogenic phenotype is highly required. Herein, a designer scaffold loaded with both immune nanoconverters encapsulated with resiquimod (iNCVs (R848)) and doxorubicin, which provides the polarization of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) into tumoricidal antigen-presenting cells (APCs), rather than depleting them, as well as in situ vaccination that can be generated in vivo without the need to previously analyze and sequence tumor antigens to favor neoantigen-specific T cell responses is suggested. Local and sustained release of iNCVs (R848) and doxorubicin from the designer scaffold not only reduces the frequency of immunosuppressive cells in tumors but also increases systemic antitumor immune response, while minimizing systemic toxicity. Reshaping the tumor microenivronment (TME) using the designer-scaffold-induced synergistic antitumor immunity with ICB effects and long-term central and effector memory T cell responses, results in the prevention of postsurgical tumor recurrence and metastasis. The spatiotemporal modulation of TMEs through designer scaffolds is expected to be a strategy to overcome the limitations and improve the therapeutic efficacy of current immunotherapies with minimized systemic toxicity.
Collapse
Affiliation(s)
- Hathaichanok Phuengkham
- Department of Nano Engineering, SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Chanyoung Song
- Department of Nano Engineering, SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- Department of Nano Engineering, SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
61
|
Abstract
The 2018 Nobel Prize in Physiology or Medicine was awarded to pioneers in the field of cancer immunotherapy, as the utility of leveraging a patient's coordinated and adaptive immune system to fight the patient's unique tumour has now been validated robustly in the clinic. Still, the proportion of patients who respond to immunotherapy remains modest (~15% objective response rate across indications), as tumours have multiple means of immune evasion. The immune system is spatiotemporally controlled, so therapies that influence the immune system should be spatiotemporally controlled as well, in order to maximize the therapeutic index. Nanoparticles and biomaterials enable one to program the location, pharmacokinetics and co-delivery of immunomodulatory compounds, eliciting responses that cannot be achieved upon administration of such compounds in solution. The convergence of cancer immunotherapy, nanotechnology, bioengineering and drug delivery is opportune, as each of these fields has matured independently to the point that it can now be used to complement the others substantively and rationally, rather than modestly and empirically. As a result, unmet needs increasingly can be addressed with deductive intention. This Review explores how nanotechnology and related approaches are being applied to augmenting both endogenous leukocytes and adoptively transferred ones by informing specificity, influencing localization and improving function.
Collapse
|
62
|
Song C, Phuengkham H, Kim YS, Dinh VV, Lee I, Shin IW, Shin HS, Jin SM, Um SH, Lee H, Hong KS, Jin SM, Lee E, Kang TH, Park YM, Lim YT. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nat Commun 2019; 10:3745. [PMID: 31431623 PMCID: PMC6702226 DOI: 10.1038/s41467-019-11730-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
The low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity. When iGel is applied as a local postsurgical treatment, both systemic antitumor immunity and a memory T cell response are generated, and the recurrence and metastasis of tumors to lungs and other organs are significantly inhibited. Reshaping of the TME using iGel also reverts non-responding groups to checkpoint blockade therapies into responding groups. The iGel is expected as an immunotherapeutic platform that can reshape immunosuppressive TMEs and synergize cancer immunotherapy with checkpoint therapies, with minimized systemic toxicity. The limited efficacy of current immunotherapy suggests low antigen-specific T cells and immunosuppressive factors in tumor microenvironment (TME). Here, the authors develop a syringeable immunomodulatory multi-domain nanogel that can reprogram the TME and induce enhanced cancer immunotherapy.
Collapse
|
63
|
Phuengkham H, Ren L, Shin IW, Lim YT. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803322. [PMID: 30773696 DOI: 10.1002/adma.201803322] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Cancer immunotherapies that harness the body's immune system to combat tumors have received extensive attention and become mainstream strategies for treating cancer. Despite promising results, some problems remain, such as the limited patient response rate and the emergence of severe immune-related adverse effects. For most patients, the therapeutic efficacy of cancer immunotherapy is mainly limited by the immunosuppressive tumor microenvironment (TME). To overcome such obstacles in the TME, the immunomodulation of immunosuppressive factors and therapeutic immune cells (e.g., T cells and antigen-presenting cells) should be carefully designed and evaluated. Nanoengineered synthetic immune niches have emerged as highly customizable platforms with a potent capability for reprogramming the immunosuppressive TME. Here, recent developments in nano-biomaterials that are rationally designed to modulate the immunosuppressive TME in a spatiotemporal manner for enhanced cancer immunotherapy which are rationally designed to modulate the immunosuppressive TME in a spatiotemporal manner for enhanced cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Hathaichanok Phuengkham
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Long Ren
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Il Woo Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
64
|
Predina JD, Runge J, Newton A, Mison M, Xia L, Corbett C, Shin M, Sulyok LF, Durham A, Nie S, Singhal S, Holt D. Evaluation of Aminolevulinic Acid-Derived Tumor Fluorescence Yields Disparate Results in Murine and Spontaneous Large Animal Models of Lung Cancer. Sci Rep 2019; 9:7629. [PMID: 31113971 PMCID: PMC6529469 DOI: 10.1038/s41598-019-40334-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Fluorescence guided surgery is an emerging technology that may improve accuracy of pulmonary resection for non-small cell lung cancer (NSCLC). Herein we explore optical imaging for NSCLC surgery using the well-studied protoporphyrin IX (PPIX)/5-aminiolevulinic acid (5-ALA) system. More specifically, we evaluate fluorescent patterns observed when using (1) commonly utilized in vitro and murine NSCLC models and with (2) spontaneous canine NSCLCs, which closely mimic human disease. Using flow cytometry and fluorescent microscopy, we confirmed that NSCLC models fluoresce after exposure to 5-ALA in vitro. High levels of fluorescence were similarly observed in murine tumors within 2 hours of systemic 5-ALA delivery. When evaluating this approach in spontaneous canine NSCLC, tumor fluorescence was observed in 6 of 7 canines. Tumor fluorescence, however, was heterogenous owing to intratumoral variations in cellularity and necrosis. Margin and lymph node detection was inaccurate. These data demonstrate the importance of incorporating reliable cancer models into preclinical evaluations of optical agents. Utilization of spontaneous large animal models of cancer may further provide an important intermediate in the path to human translation of optical contrast agents.
Collapse
Affiliation(s)
- Jarrod D Predina
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Jeffrey Runge
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| | - Andrew Newton
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Michael Mison
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| | - Leilei Xia
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Christopher Corbett
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Michael Shin
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Lydia Frenzel Sulyok
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amy Durham
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| | - Shuming Nie
- Departments of Biomedical Engineering and Chemistry, Emory University, Atlanta, Georgia
| | - Sunil Singhal
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - David Holt
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| |
Collapse
|
65
|
Singel KL, Emmons TR, Khan ANMNH, Mayor PC, Shen S, Wong JT, Morrell K, Eng KH, Mark J, Bankert RB, Matsuzaki J, Koya RC, Blom AM, McLeish KR, Qu J, Ram S, Moysich KB, Abrams SI, Odunsi K, Zsiros E, Segal BH. Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight 2019; 4:122311. [PMID: 30730851 PMCID: PMC6483507 DOI: 10.1172/jci.insight.122311] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/25/2019] [Indexed: 12/25/2022] Open
Abstract
Epithelial ovarian cancer (EOC) often presents with metastases and ascites. Granulocytic myeloid-derived suppressor cells are an immature population that impairs antitumor immunity. Since suppressive granulocytes in the ascites of patients with newly diagnosed EOC were morphologically mature, we hypothesized that PMN were rendered suppressive in the tumor microenvironment (TME). Circulating PMN from patients were not suppressive but acquired a suppressor phenotype (defined as ≥1 log10 reduction of anti-CD3/CD28-stimulated T cell proliferation) after ascites supernatant exposure. Ascites supernatants (20 of 31 supernatants) recapitulated the suppressor phenotype in PMN from healthy donors. T cell proliferation was restored with ascites removal and restimulation. PMN suppressors also inhibited T cell activation and cytokine production. PMN suppressors completely suppressed proliferation in naive, central memory, and effector memory T cells and in engineered tumor antigen-specific cytotoxic T lymphocytes, while antigen-specific cell lysis was unaffected. Inhibition of complement C3 activation and PMN effector functions, including CR3 signaling, protein synthesis, and vesicular trafficking, abrogated the PMN suppressor phenotype. Moreover, malignant effusions from patients with various metastatic cancers also induced the C3-dependent PMN suppressor phenotype. These results point to PMN impairing T cell expansion and activation in the TME and the potential for complement inhibition to abrogate this barrier to antitumor immunity.
Collapse
Affiliation(s)
| | | | | | - Paul C. Mayor
- Department of Surgery, Division of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Shichen Shen
- New York State Center of Excellence Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Kayla Morrell
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kevin H. Eng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jaron Mark
- Department of Surgery, Division of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard B. Bankert
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard C. Koya
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jun Qu
- New York State Center of Excellence Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sanjay Ram
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | - Kunle Odunsi
- Department of Surgery, Division of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Surgery, Division of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Brahm H. Segal
- Department of Immunology
- Department of Internal Medicine, and
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
66
|
Muraoka D, Seo N, Hayashi T, Tahara Y, Fujii K, Tawara I, Miyahara Y, Okamori K, Yagita H, Imoto S, Yamaguchi R, Komura M, Miyano S, Goto M, Sawada SI, Asai A, Ikeda H, Akiyoshi K, Harada N, Shiku H. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest 2019; 129:1278-1294. [PMID: 30628894 DOI: 10.1172/jci97642] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors and adoptive transfer of gene-engineered T cells have emerged as novel therapeutic modalities for hard-to-treat solid tumors; however, many patients are refractory to these immunotherapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. By comparing the tumor microenvironment of checkpoint inhibition-sensitive and -resistant murine solid tumors, we observed that the resistant tumors had low immunogenicity. We identified antigen presentation by CD11b+F4/80+ tumor-associated macrophages (TAMs) as a key factor correlated with immune resistance. In the resistant tumors, TAMs remained inactive and did not exert antigen-presenting activity. Targeted delivery of a long peptide antigen to TAMs by using a nano-sized hydrogel (nanogel) in the presence of a TLR agonist activated TAMs, induced their antigen-presenting activity, and thereby transformed the resistant tumors into tumors sensitive to adaptive immune responses such as adoptive transfer of tumor-specific T cell receptor-engineered T cells. These results indicate that the status and function of TAMs have a significant impact on tumor immune sensitivity and that manipulation of TAM functions would be an effective approach for improving the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naohiro Seo
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan.,ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Tae Hayashi
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshiro Tahara
- ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Kyoto University Graduate School of Engineering, Kyoto, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Keisuke Fujii
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Kana Okamori
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Data Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Komura
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Sawada
- ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Kyoto University Graduate School of Engineering, Kyoto, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Kyoto University Graduate School of Engineering, Kyoto, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan.,ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo, Japan.,United Immunity Co., Ltd., Mie, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan.,ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
67
|
Zhu SK, Xu T, Wang R. Prospects and challenges of immunotherapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:6-12. [DOI: 10.11569/wcjd.v27.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a highly malignant digestive system tumor with an extremely poor prognosis. It has been reported that pancreatic cancer has now surpassed breast cancer as the third leading cause of cancer death in the United States. Due to its low early diagnosis rate, most patients have lost the chance of surgery at the time of diagnosis. However, various treatment strategies (like radiotherapy, chemotherapy, targeted therapy, etc.) have not been able to significantly improve their survival rate. A large body of evidence suggests that an important cause of high lethality in pancreatic cancer is the immune privilege of tumors driven by factors such as immunosuppressive microenvironment, low T cell infiltration, and low gene mutation load. In recent years, tumor immunotherapy has become a hot spot in the field of oncology, and significant progress has been made in the treatment of pancreatic cancer. At present, various new immunotherapies such as immunological checkpoint blockers, adoptive cell therapy, and tumor vaccine have entered the clinical or preclinical stage, and all of them have hope to become a new treatment strategy to improve the treatment of patients with pancreatic cancer. Here, we briefly summarize the recent advances in immunotherapy for pancreatic cancer that is being researched and promising in recent years, as well as the challenges and prospects, with an aim to open up new horizons for the development of new and effective immunotherapy for pancreatic tumors.
Collapse
Affiliation(s)
- Shi-Kai Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Tian Xu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
68
|
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM, Rueda BR. Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol 2018; 107:92-103. [PMID: 30572025 DOI: 10.1016/j.biocel.2018.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca D Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Celeste M DiGloria
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
69
|
A curative treatment strategy using tumor debulking surgery combined with immune checkpoint inhibitors for advanced pediatric solid tumors: An in vivo study using a murine model of osteosarcoma. J Pediatr Surg 2018; 53:2460-2464. [PMID: 30266483 DOI: 10.1016/j.jpedsurg.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/25/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND/PURPOSE This study aimed to assess the significance of tumor debulking surgery by using immune checkpoint inhibitors for advanced pediatric solid tumors in a murine model of advanced osteosarcoma. METHODS In C3H mice, 5 × 106 LM8 (osteosarcoma cell line with a high metastatic potential in the lungs originating from the C3H mouse) cells were transplanted subcutaneously. Thereafter, the mice were divided into 4 groups as follows: the control group received no intervention (CG, n = 5), the surgery group underwent subcutaneous tumor resection (tumor debulking surgery) 11 days after transplantation (SG, n = 10), the immunotherapy group received a cocktail consisting of 200 μg each of three antibodies (anti-Tim-3, anti-PD-L1, and anti-OX-86) intraperitoneally on posttransplantation days 11, 14, 18, and 21 (IG, n = 10), and the combination therapy group, tumor debulking surgery on day 11 and the cocktail intraperitoneally on days 11, 14, 18, and 21 (COMBG, n = 10). Survival curves were plotted by using the Kaplan-Meier method and compared with those plotted using the log-rank test. Next, the lungs of mice in the 4 groups were pathologically evaluated. RESULTS The COMBG showed significantly longer survival than the other three groups (P ≤ 0.002), whereas the SG and IG revealed no difference in survival rate compared to CG. Pathological evaluations revealed no lung metastasis 16 weeks after tumor transplantation in the survivors of COMBG. CONCLUSIONS The results of this study suggest that tumor debulking surgery combined with immune checkpoint inhibitors could be a curative treatment for advanced pediatric solid tumors.
Collapse
|
70
|
Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Control Release 2018; 285:56-66. [DOI: 10.1016/j.jconrel.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
71
|
Cancer-Associated Fibroblasts Affect Intratumoral CD8+ and FoxP3+ T Cells Via IL6 in the Tumor Microenvironment. Clin Cancer Res 2018; 24:4820-4833. [DOI: 10.1158/1078-0432.ccr-18-0205] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|
72
|
Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018; 4:418-428. [PMID: 29860986 PMCID: PMC6028935 DOI: 10.1016/j.trecan.2018.04.001] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is the third-leading cause of cancer mortality in the USA, recently surpassing breast cancer. A key component of pancreatic cancer's lethality is its acquired immune privilege, which is driven by an immunosuppressive microenvironment, poor T cell infiltration, and a low mutational burden. Although immunotherapies such as checkpoint blockade or engineered T cells have yet to demonstrate efficacy, a growing body of evidence suggests that orthogonal combinations of these and other strategies could unlock immunotherapy in pancreatic cancer. In this Review article, we discuss promising immunotherapies currently under investigation in pancreatic cancer and provide a roadmap for the development of prevention vaccines for this and other cancers.
Collapse
Affiliation(s)
- Alexander H Morrison
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Katelyn T Byrne
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Robert H Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
73
|
Alieva M, van Rheenen J, Broekman MLD. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin Exp Metastasis 2018; 35:319-331. [PMID: 29728948 PMCID: PMC6063335 DOI: 10.1007/s10585-018-9896-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Surgical procedures such as tumor resection and biopsy are still the gold standard for diagnosis and (determination of) treatment of solid tumors, and are prognostically beneficial for patients. However, growing evidence suggests that even a minor surgical trauma can influence several (patho) physiological processes that might promote postoperative metastatic spread and tumor recurrence. Local effects include tumor seeding and a wound healing response that can promote tumor cell migration, proliferation, differentiation, extracellular matrix remodeling, angiogenesis and extravasation. In addition, local and systemic immunosuppression impairs antitumor immunity and contributes to tumor cell survival. Surgical manipulation of the tumor can result in cancer cell release into the circulation, thus increasing the chance of tumor cell dissemination. To prevent these undesired effects of surgical interventions, therapeutic strategies targeting immune response exacerbation or alteration have been proposed. This review summarizes the current literature regarding these local, systemic and secondary site effects of surgical interventions on tumor progression and dissemination, and discusses studies that aimed to identify potential therapeutic approaches to prevent these effects in order to further increase the clinical benefit from surgical procedures.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marike L D Broekman
- Department of Neurology & Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
74
|
Correale P, Botta C, Staropoli N, Nardone V, Pastina P, Ulivieri C, Gandolfo C, Baldari TC, Lazzi S, Ciliberto D, Giannicola R, Fioravanti A, Giordano A, Zappavigna S, Caraglia M, Tassone P, Pirtoli L, Cusi MG, Tagliaferri P. Systemic inflammatory status predict the outcome of k-RAS WT metastatic colorectal cancer patients receiving the thymidylate synthase poly-epitope-peptide anticancer vaccine. Oncotarget 2018; 9:20539-20554. [PMID: 29755670 PMCID: PMC5945541 DOI: 10.18632/oncotarget.24993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
TSPP is an anticancer poly-epitope peptide vaccine to thymidylate synthase, recently investigated in the multi-arm phase Ib TSPP/VAC1 trial. TSPP vaccination induced immune-biological effects and showed antitumor activity in metastatic colorectal cancer (mCRC) patients and other malignancies. Progression-free and overall survival of 41 mCRC patients enrolled in the study correlated with baseline levels of CEA, immune-inflammatory markers (neutrophil/lymphocyte ratio, CRP, ESR, LDH, ENA), IL-4 and with post-treatment change in p-ANCA and CD56dimCD16brightNKs (p < 0.04). A subset of 19 patients with activating k-ras mutations showed a different immune-inflammatory response to TSPP as compared to patients with k-ras/wt and a worse outcome in term of PFS (p = 0.048). In patients with k-ras/mut, inflammatory markers lost their predictive value and their survival directly correlated with the baseline levels of IL17/A over the median value (p = 0.01). These results provide strong hints for the design of further clinical trials aimed to test TSPP vaccination in mCRC patients.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Medical Oncology, Grand Metropolitan Hospital Bianchi Melacrino Morelli, Reggio-Calabria, Italy
| | - Cirino Botta
- Medical Oncology Unit, AUO Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy
| | - Valerio Nardone
- Unit of Radiotherapy, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | - Pierpaolo Pastina
- Unit of Radiotherapy, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | | | - Claudia Gandolfo
- Microbiology and Virology Unit, Department of Medical Biotechnology, Siena University, Siena, Italy
| | | | - Stefano Lazzi
- Unit of Pathology, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | - Domenico Ciliberto
- Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy
| | - Rocco Giannicola
- Unit of Medical Oncology, Grand Metropolitan Hospital Bianchi Melacrino Morelli, Reggio-Calabria, Italy
| | - Antonella Fioravanti
- Unit of Rheumatology, Department of Clinical Medicine and Immunologic Sciences, University of Siena, Siena, Italy
| | - Antonio Giordano
- Department of Biotechnology, Temple University, Sbarro Foundation, Philadelphia, Pennsylvania, USA
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Michele Caraglia
- Department of Biotechnology, Temple University, Sbarro Foundation, Philadelphia, Pennsylvania, USA.,Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit, AUO Mater Domini, Magna Graecia University, Catanzaro, Italy.,Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy.,Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Luigi Pirtoli
- Unit of Radiotherapy, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | - Maria Grazia Cusi
- Microbiology and Virology Unit, Department of Medical Biotechnology, Siena University, Siena, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy
| |
Collapse
|
75
|
de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 2018; 9:20908-20927. [PMID: 29755698 PMCID: PMC5945509 DOI: 10.18632/oncotarget.24556] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
The progression of cancer is a result of not only the growth of the malignant cells but also the behavior of other components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are key components of the TME that influence tumor growth and disease progression. TAMs can either inhibit or support tumor growth depending on their polarization to classically-activated macrophages (M1s) or alternatively-activated macrophages (M2s), respectively. Epigenetic regulation plays a significant role in determining this polarization and manipulating the epigenetic regulation in macrophages would provide a means for selectively targeting M2s thereby eliminating tumor-supporting TAMs while sparing tumor-inhibiting M1 TAMs. Many pharmacologic modulators of epigenetic enzymes are currently used clinically and could be repurposed for treating tumors with high TAM infiltrate. While much research involving epigenetic enzymes and their modulators has been performed in M1s, significantly less is known about the epigenetic regulation of M2s. This review highlights the field’s current knowledge of key epigenetic enzymes and their pharmacologic modulators known to influence macrophage polarization.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
76
|
Zhang J, Wolfgang CL, Zheng L. Precision Immuno-Oncology: Prospects of Individualized Immunotherapy for Pancreatic Cancer. Cancers (Basel) 2018; 10:E39. [PMID: 29385739 PMCID: PMC5836071 DOI: 10.3390/cancers10020039] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, most commonly referring to pancreatic ductal adenocarcinoma (PDAC), remains one of the most deadly diseases, with very few effective therapies available. Emerging as a new modality of modern cancer treatments, immunotherapy has shown promises for various cancer types. Over the past decades, the potential of immunotherapy in eliciting clinical benefits in pancreatic cancer have also been extensively explored. It has been demonstrated in preclinical studies and early phase clinical trials that cancer vaccines were effective in eliciting anti-tumor immune response, but few have led to a significant improvement in survival. Despite the fact that immunotherapy with checkpoint blockade (e.g., anti-cytotoxic T-lymphocyte antigen 4 [CTLA-4] and anti-programmed cell death 1 [PD-1]/PD-L1 antibodies) has shown remarkable and durable responses in various cancer types, the application of checkpoint inhibitors in pancreatic cancer has been disappointing so far. It may, in part, due to the unique tumor microenvironment (TME) of pancreatic cancer, such as existence of excessive stromal matrix and hypovascularity, creating a TME of strong inhibitory signaling circuits and tremendous physical barriers for immune agent infiltration. This informs on the need for combination therapy approaches to engender a potent immune response that can translate to clinical benefits. On the other hand, lack of effective and validated biomarkers to stratify subgroup of patients who can benefit from immunotherapy poses further challenges for the realization of precision immune-oncology. Future studies addressing issues such as TME modulation, biomarker identification and therapeutic combination are warranted. In this review, advances in immunotherapy for pancreatic cancer were discussed and opportunities as well as challenges for personalized immune-oncology were addressed.
Collapse
Affiliation(s)
- Jiajia Zhang
- Departments of Oncology and Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, MD 21287, USA.
- Pancreatic Cancer PMCoE Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Christopher L Wolfgang
- Departments of Oncology and Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, MD 21287, USA.
- Pancreatic Cancer PMCoE Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Lei Zheng
- Departments of Oncology and Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, MD 21287, USA.
- Pancreatic Cancer PMCoE Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
77
|
Verma V, Kim Y, Lee MC, Lee JT, Cho S, Park IK, Min JJ, Lee JJ, Lee SE, Rhee JH. Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression. Oncotarget 2018; 7:39894-39906. [PMID: 27223090 PMCID: PMC5129979 DOI: 10.18632/oncotarget.9529] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/25/2016] [Indexed: 12/26/2022] Open
Abstract
Dendritic cell (DC) based anti-cancer immunotherapy is well tolerated in patients with advanced cancers. However, the clinical responses seen after adoptive DC therapy have been suboptimal. Several factors including scarce DC numbers in tumors and immunosuppressive tumor microenvironments contribute to the inefficacy of DCs as cellular vaccines. Hence DC based vaccines can benefit from novel methods of cell delivery that would prevent the direct exposure of immune cells to suppressive tumor microenvironments. Here we evaluated the ability of DCs harbored in biocompatible scaffolds (referred to as biomatrix entrapped DCs; beDCs) in activating specific anti-tumor immune responses against primary and post-surgery secondary tumors. Using a preclinical cervical cancer and a melanoma model in mice, we show that single treatment of primary and post-surgery secondary tumors using beDCs resulted in significant tumor growth retardation while multiple inoculations were required to achieve a significant anti-tumor effect when DCs were given in free form. Additionally, we found that, compared to the tumor specific E6/E7 peptide vaccine, total tumor lysate induced higher expression of CD80 and CD40 on DCs that induced increased levels of IFNγ production upon interaction with host lymphocytes. Remarkably, a strong immunocyte infiltration into the host-implanted DC-scaffold was observed. Importantly, the host-implanted beDCs induced the anti-tumor immune responses in the absence of any stromal cell support, and the biomatrix structure was eventually absorbed into the surrounding host tissue. Collectively, these data indicate that the scaffold-based DC delivery may provide an efficient and safe way of delivering cell-based vaccines for treatment of primary and post-surgery secondary tumors.
Collapse
Affiliation(s)
- Vivek Verma
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.,Present address: GRU Cancer Center, GRU, Augusta, GA, USA
| | - Young Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Tae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Sunghoon Cho
- School of Mechanical Systems Engineering, Chonnam National University, Gwangju, South Korea
| | - In-Kyu Park
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, South Korea
| | - Jung Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Je Jung Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
78
|
Lee JYK, Thawani JP, Pierce J, Zeh R, Martinez-Lage M, Chanin M, Venegas O, Nims S, Learned K, Keating J, Singhal S. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery 2017; 79:856-871. [PMID: 27741220 DOI: 10.1227/neu.0000000000001450] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. OBJECTIVE To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. METHODS Fifteen patients were identified and administered a Food and Drug Administration-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) before surgical resection. An NIR camera was utilized to localize the tumor before resection and to visualize surgical margins following resection. Neuropathology and magnetic resonance imaging data were used to assess the accuracy and precision of NIR fluorescence in identifying tumor tissue. RESULTS NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low-grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12 of 15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with signal-to-background ratio (P = .03). Nonenhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). CONCLUSION With the use of Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. ABBREVIATIONS 5-ALA, 5-aminolevulinic acidEPR, enhanced permeability and retentionFDA, Food and Drug AdministrationGBM, glioblastomaICG, indocyanine greenNIR, near-infraredNPV, negative predictive valuePPV, positive predictive valueROC, receiver operating characteristicROI, region of interestSBR, signal-to-background ratioWHO, World Health Organization.
Collapse
Affiliation(s)
- John Y K Lee
- *Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; ‡Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; §Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; ¶Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lee JYK, Pierce JT, Zeh R, Cho SS, Salinas R, Nie S, Singhal S. Intraoperative Near-Infrared Optical Contrast Can Localize Brain Metastases. World Neurosurg 2017; 106:120-130. [PMID: 28669877 PMCID: PMC11073792 DOI: 10.1016/j.wneu.2017.06.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Approximately 100,000 brain metastases are diagnosed annually in the United States. Our laboratory has pioneered a novel technique, second window indocyanine green (SWIG), which allows for real-time intraoperative visualization of brain metastasis through normal brain parenchyma and intact dura. METHODS Thirteen patients with intraparenchymal brain metastases were administered indocyanine green (ICG) at 5 mg/kg the day before surgery. A near-infrared (NIR)- capable camera was used intraoperatively to identify the tumor and to inspect surgical margins. Neuropathology was used to assess the accuracy and precision of the fluorescent dye for identifying tumor. RESULTS ICG was infused at 24.7 ± 3.45 hours before visualization. All 13 metastases fluoresced with an average signal-to-background ratio (SBR) of 6.62. The SBR with the dura intact was 67.2% of the mean SBR once the dura was opened. The NIR signal could be visualized through normal brain parenchyma up to 7 mm. For the 39 total specimens, the mean SBR for tumor specimens (n = 28) was 6.9, whereas the SBR for nontumor specimens (n = 11) was 3.7. The sensitivity, specificity, positive predictive value, and negative predictive value of NIR imaging for tumor was 96.4%, 27.3%, 77.1%, and 75.0%. DISCUSSION SWIG relies on the passive accumulation of dye in abnormal tumor tissue via the enhanced permeability and retention effect. It provides strong NIR optical contrast, which can be used to localize tumors before dural opening. The use of SWIG for margin assessment remains limited by its lack of specificity (high false-positive rate); however, ongoing improvements in imaging parameters show great potential to reduce false-positive results.
Collapse
Affiliation(s)
- John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - John T Pierce
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Zeh
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steve S Cho
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Salinas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuming Nie
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
80
|
Pastina P, Nardone V, Croci S, Battaglia G, Vanni F, Bellan C, Barbarino M, Ricci V, Costantini S, Capone F, Botta C, Zarone MR, Misso G, Boccellino M, Caraglia M, Giordano A, Paladini P, Tassone P, Tagliaferri P, Cusi MG, Pirtoli L, Correale P. Anti-cancer activity of dose-fractioned mPE +/- bevacizumab regimen is paralleled by immune-modulation in advanced squamous NSLC patients. J Thorac Dis 2017; 9:3123-3131. [PMID: 29221287 DOI: 10.21037/jtd.2017.08.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Results from the BEVA2007 trial, suggest that the metronomic chemotherapy regimen with dose-fractioned cisplatin and oral etoposide (mPE) +/- bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), shows anti-angiogenic and immunological effects and is a safe and active treatment for metastatic non-small cell lung cancer (mNSCLC) patients. We carried out a retrospective analysis aimed to evaluate the antitumor effects of this treatment in a subset of patients with squamous histology. Methods Retrospective analysis was carried out in a subset of 31 patients with squamous histology enrolled in the study between September 2007 and September 2015. All of the patients received chemotherapy with cisplatin (30 mg/sqm, days 1-3q21) and oral etoposide (50 mg, days 1-15q21) (mPE) and 14 of them also received bevacizumab 5 mg/kg on the day 3q21 (mPEBev regimen). Results This treatment showed a disease control rate of 71% with a mean progression free survival (PFS) and overall survival (OS) of 13.6 and 17 months respectively. After 4 treatment courses, 6 patients showing a remarkable tumor shrinkage, underwent to radical surgery, attaining a significant advantage in term of survival (P=0.048). Kaplan-Meier and log-rank test identified the longest survival in patients presenting low baseline levels in neutrophil-to-lymphocyte ratio (NLR) (P=0.05), interleukin (IL) 17A (P=0.036), regulatory-T-cells (Tregs) (P=0.020), and activated CD83+ dendritic cells (DCs) (P=0.03). Conclusions These results suggest that the mPE +/- bevacizumab regimen is feasible and should be tested in comparative trials in advanced squamous-NSCLC (sqNSCLC). Moreover, its immune-biological effects strongly suggest the investigation in sequential combinations with immune check-point inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Pastina
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Valerio Nardone
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Stefania Croci
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Giuseppe Battaglia
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Francesca Vanni
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Cristiana Bellan
- Pathology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Marcella Barbarino
- Pathology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Veronica Ricci
- Radiology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Francesca Capone
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Pathology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Piero Paladini
- Unit of Thoracic Surgery, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Maria Grazia Cusi
- Microbiology and Virology Unit, Department of Medical Biotechnology, Siena University, Siena, Italy
| | - Luigi Pirtoli
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Pierpaolo Correale
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| |
Collapse
|
81
|
Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, You L, Zheng L, Zhang T, Zhao Y. PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett 2017; 407:57-65. [PMID: 28826722 DOI: 10.1016/j.canlet.2017.08.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/17/2017] [Accepted: 08/05/2017] [Indexed: 12/16/2022]
Abstract
Therapy that targets programmed death 1 or programmed death 1 ligand 1 (PD-1/PD-L1), which are known as immune checkpoints, has been recently rapidly developing as oncotherapy for various carcinomas. However, this therapy has a poor effect on the treatment of pancreatic cancer with PD-1/PD-L1 blockade monotherapy. In this review, the development and limitations of anti-PD-1/PD-L1 monotherapy in pancreatic cancer are discussed. We then consider the underlying mechanism of anti-PD-1/PD-L1 monotherapy failure, combination strategies overcoming resistance to anti-PD-1/PD-L1 immunotherapy and the prospect of targeting PD-1/PD-L1 for the immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guangbing Xiong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xujun Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
82
|
Alieva M, Margarido AS, Wieles T, Abels ER, Colak B, Boquetale C, Jan Noordmans H, Snijders TJ, Broekman ML, van Rheenen J. Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Sci Rep 2017; 7:7529. [PMID: 28790339 PMCID: PMC5548904 DOI: 10.1038/s41598-017-07660-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023] Open
Abstract
Although biopsies and tumor resection are prognostically beneficial for glioblastomas (GBM), potential negative effects have also been suggested. Here, using retrospective study of patients and intravital imaging of mice, we identify some of these negative aspects, including stimulation of proliferation and migration of non-resected tumor cells, and provide a strategy to prevent these adverse effects. By repeated high-resolution intravital microscopy, we show that biopsy-like injury in GBM induces migration and proliferation of tumor cells through chemokine (C-C motif) ligand 2 (CCL-2)-dependent recruitment of macrophages. Blocking macrophage recruitment or administrating dexamethasone, a commonly used glucocorticoid to prevent brain edema in GBM patients, suppressed the observed inflammatory response and subsequent tumor growth upon biopsy both in mice and in multifocal GBM patients. Taken together, our study suggests that inhibiting CCL-2-dependent recruitment of macrophages may further increase the clinical benefits from surgical and biopsy procedures.
Collapse
Affiliation(s)
- Maria Alieva
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Andreia S Margarido
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Tamara Wieles
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Erik R Abels
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
| | - Burcin Colak
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Carla Boquetale
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Herke Jan Noordmans
- Medical Technology and Clinical Physics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Tom J Snijders
- Department of Neurology & Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marike L Broekman
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA.,Department of Neurology & Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
83
|
Rassy EE, Kourie HR, Rizkallah J, Karak FE, Hanna C, Chelala DN, Ghosn M. Immune checkpoint inhibitors renal side effects and management. Immunotherapy 2017; 8:1417-1425. [PMID: 28000536 DOI: 10.2217/imt-2016-0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The choice of immunotherapy in the treatment of cancer has improved the prognosis of many patients affected by various malignancies. The high expectations foreseen with immunotherapy have led to fast approvals despite the incomplete understanding of the toxicity profiles in the different organs, including the kidneys. The high prevalence of chronic kidney disease in cancer patients complicates the issue further and requires a better knowledge of the renal safety profile to ensure an optimal safe treatment. This review summarizes the present knowledge of renal adverse events secondary to immune checkpoint inhibitors and discusses their pathophysiology, clinical presentation and adequate management. We also advocate the need for a multidisciplinary approach in patients with immune-related toxic adverse events.
Collapse
Affiliation(s)
- Elie El Rassy
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Hampig R Kourie
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon.,Department of Oncology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jamale Rizkallah
- Department of Nephrology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Fadi El Karak
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Colette Hanna
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Dania N Chelala
- Department of Nephrology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Marwan Ghosn
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| |
Collapse
|
84
|
Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia. J Neurooncol 2017; 133:447-454. [DOI: 10.1007/s11060-017-2471-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
85
|
Ghosn M, El Rassy E, Kourie HR. Immunotherapies in sarcoma: Updates and future perspectives. World J Clin Oncol 2017; 8:145-150. [PMID: 28439495 PMCID: PMC5385435 DOI: 10.5306/wjco.v8.i2.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are malignant tumors that are characterized by a wide diversity of subtypes with various cytogenetic profiles. Despite major treatment breakthroughs, standard treatment modalities combining chemotherapy, radiotherapy, and surgery failed to improve overall survival. Therefore, high expectations are foreseen with immunotherapy upon its maturation and better understanding of its mechanism of action. This paper presents a targeted review of the published data and ongoing clinical trials in immunotherapies of sarcomas, mainly adoptive cell therapies, cancer vaccines and immune checkpoint inhibitors.
Collapse
|
86
|
Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol Hematol 2017; 113:292-303. [PMID: 28427519 DOI: 10.1016/j.critrevonc.2017.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common malignant neoplasm in men worldwide and the fifth cause of cancer-related death. Although multiple new agents have been approved for metastatic castration resistant prostate cancer over the last decade, it is still an incurable disease. New strategies to improve cancer control are needed and agents targeting the immune system have shown encouraging results in many tumor types. Despite being attractive for immunotherapies due to the expression of various tumor associated antigens, the microenvironment in prostate cancer is relatively immunosuppressive and may be responsible for the failures of various agents targeting the immune system in this disease. To date, sipuleucel-T is the only immunotherapy that has shown significant clinical efficacy in this setting, although the high cost and potential trial flaws have precluded its widespread incorporation into clinical practice. Issues with patient selection and trial design may have contributed to the multiple failures of immunotherapy in prostate cancer and provides an opportunity to tailor future studies to evaluate these agents more accurately. We have reviewed all the completed immune therapy trials in prostate cancer and highlight important considerations for the next generation of clinical trials.
Collapse
Affiliation(s)
- Manuel Caitano Maia
- Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), Av. Dr Arnaldo, 251, Cerqueira César, CEP 01246-000, São Paulo, Brazil.
| | - Aaron R Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, 610 University Ave, Toronto, ON, Canada; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir#3172, Toronto, ON, Canada
| |
Collapse
|
87
|
Keating JJ, Nims S, Venegas O, Jiang J, Holt D, Kucharczuk JC, Deshpande C, Singhal S. Intraoperative imaging identifies thymoma margins following neoadjuvant chemotherapy. Oncotarget 2016; 7:3059-67. [PMID: 26689990 PMCID: PMC4823090 DOI: 10.18632/oncotarget.6578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
Near infrared (NIR) molecular imaging is useful to identify tumor margins during surgery; however, the value of this technology has not been evaluated for tumors that have been pre-treated with chemotherapy. We hypothesized that NIR molecular imaging could locate mediastinal tumor margins in a murine model after neoadjuvant chemotherapy. Flank thymomas were established on mice. Two separate experiments were performed for tumor margin detection. The first experiment compared (i) surgery and (ii) surgery + NIR imaging. The second experiment compared (iii) preoperative chemotherapy + surgery, and (iv) preoperative chemotherapy + surgery + NIR imaging. NIR imaging occurred following systemic injection of indocyanine green. Margins were assessed for residual tumor cells by pathology. NIR imaging was superior at detecting retained tumor cells during surgery compared to standard techniques (surgery alone vs. surgery + NIR imaging, 20% vs. 80%, respectively). Following chemotherapy, the sensitivity of NIR imaging of tumor margins was not significantly altered. The mean in vivo tumor-to-background fluorescence ratio was similar in the treatment-naïve and chemotherapy groups ((p = 0.899): 3.79 ± 0.69 (IQR 3.29 - 4.25) vs. 3.79 ± 0.52 (IQR 3.40 - 4.03)). We conclude that chemotherapy does not affect tumor fluorescence or identification of retained cancer cells at margins.
Collapse
Affiliation(s)
- Jane J Keating
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Nims
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ollin Venegas
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jack Jiang
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - David Holt
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - John C Kucharczuk
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Charuhas Deshpande
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
88
|
Zhang Y, Cao Y, Sun X, Feng Y, Du Y, Liu F, Yu C, Jin F. Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int Immunopharmacol 2016; 42:100-107. [PMID: 27912145 DOI: 10.1016/j.intimp.2016.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
CQ is an anti-malaria drug, which has been used for years. However, there are published articles about its activity in anti-cancers. The aim of this approach was to look at possibility and related mechanisms of anti-breast cancer (mouse breast cancer cell line 4T1) by CQ alone. The studies of anti 4T1 in vitro and in vivo by CQ were performed. The growth of 4T1 in vitro and in vivo, survival of mice post treatment with CQ, changes of immune parameters and microenvironment in mice were evaluated. Our results demonstrate that CQ could markedly inhibit growth of 4T1 in vitro through inducing apoptosis of cells, inhibiting secretion of TGF-β and prolong the mice survival in vivo through boosting immune system by upregulating CD8+ T cell, and through down-regulating tumor associated macrophages (TAM), myeloid derived suppressing cells (MDSC) and Tregs, in microenvironment of mice bearing tumor. This provides a new mode of action for CQ and it is therefore concluded that CQ could be with potential in breast cancer therapy.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiaodan Sun
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yonghui Feng
- Department of Medical Examination Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yunting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Chunyun Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
89
|
Ratel D, van der Sanden B, Wion D. Glioma resection and tumor recurrence: back to Semmelweis. Neuro Oncol 2016; 18:1688-1689. [PMID: 27765836 DOI: 10.1093/neuonc/now201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- David Ratel
- Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA-LETI 17 rue des Martyrs, 38054 Grenoble cedex, France (D.R.); INSERM U1205, bâtiment modulaire 40-23, CEA 17 rue des Martyrs, 38054 Grenoble cedex, France (B.v.d.S., D.W.)
| | - Boudewijn van der Sanden
- Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA-LETI 17 rue des Martyrs, 38054 Grenoble cedex, France (D.R.); INSERM U1205, bâtiment modulaire 40-23, CEA 17 rue des Martyrs, 38054 Grenoble cedex, France (B.v.d.S., D.W.)
| | - Didier Wion
- Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA-LETI 17 rue des Martyrs, 38054 Grenoble cedex, France (D.R.); INSERM U1205, bâtiment modulaire 40-23, CEA 17 rue des Martyrs, 38054 Grenoble cedex, France (B.v.d.S., D.W.).
| |
Collapse
|
90
|
Jonuleit H, Bopp T, Becker C. Treg cells as potential cellular targets for functionalized nanoparticles in cancer therapy. Nanomedicine (Lond) 2016; 11:2699-2709. [PMID: 27654070 DOI: 10.2217/nnm-2016-0197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Treg cell-mediated immune suppression appears to represent a significant barrier to effective anticancer immune responses and their inactivation or removal is viewed as a potential therapeutic approach. Although suitable tools for selective Treg cell manipulation in man are missing, their number and function can be altered by a number of drugs and biologicals and by reprogramming tumor-infiltrating antigen presenting cells. Nanoparticles offer exceptional new options in drug and gene delivery by prolonging the circulation time of their cargo, protecting it from degradation and promoting its local accumulation in cells and tissues. In tumor therapy, the use of nanoparticles is expected to overcome limitations in drug delivery and provide novel means for cell-specific functional alteration. In this perspective, we summarize strategies suitable for interference with Treg-mediated suppression, discuss the potential use of nanoparticles for this purpose and identify additional, unexplored opportunities.
Collapse
Affiliation(s)
- Helmut Jonuleit
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
91
|
Li TJ, Jiang YM, Hu YF, Huang L, Yu J, Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, Zhang Q, Li GX. Interleukin-17-Producing Neutrophils Link Inflammatory Stimuli to Disease Progression by Promoting Angiogenesis in Gastric Cancer. Clin Cancer Res 2016; 23:1575-1585. [PMID: 27620275 DOI: 10.1158/1078-0432.ccr-16-0617] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
Purpose: Elevated levels of neutrophils have been associated with poor survival in various cancers, but direct evidence supporting a role for neutrophils in the immunopathogenesis of human cancers is lacking.Experimental Design: A total of 573 patients with gastric cancer were enrolled in this study. Immunohistochemistry and real-time PCR were performed to analyze the distribution and clinical relevance of neutrophils in different microanatomic regions. The regulation and function of neutrophils were assessed both in vitro and in vivoResults: Increased neutrophil counts in the peripheral blood were associated with poor prognosis in gastric cancer patients. In gastric cancer tissues, neutrophils were enriched predominantly in the invasive margin, and neutrophil levels were a powerful predictor of poor survival in patients with gastric cancer. IL17+ neutrophils constitute a large portion of IL17-producing cells in human gastric cancer. Proinflammatory IL17 is a critical mediator of the recruitment of neutrophils into the invasive margin by CXC chemokines. Moreover, neutrophils at the invasive margin were a major source of matrix metalloproteinase-9, a secreted protein that stimulates proangiogenic activity in gastric cancer cells. Accordingly, high levels of infiltrated neutrophils at the invasive margin were positively correlated with angiogenesis progression in patients with gastric cancer.Conclusions: These data provide direct evidence supporting the pivotal role of neutrophils in gastric cancer progression and reveal a novel immune escape mechanism involving fine-tuned collaborative action between cancer cells and immune cells in the distinct tumor microenvironment. Clin Cancer Res; 23(6); 1575-85. ©2016 AACR.
Collapse
Affiliation(s)
- Tuan-Jie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yu-Ming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Feng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Huang
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Ying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Jun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting-Yu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China. .,Department of Hepatic Surgery, The 3 Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China. .,Cell-gene Therapy Translational Medicine Research Center, The 3 Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo-Xin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
92
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
93
|
Singel KL, Segal BH. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev 2016; 273:329-43. [PMID: 27558344 PMCID: PMC5477672 DOI: 10.1111/imr.12459] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the first responders to infection and injury and are critical for antimicrobial host defense. Through the generation of reactive oxidants, activation of granular constituents and neutrophil extracellular traps, neutrophils target microbes and prevent their dissemination. While these pathways are beneficial in the context of trauma and infection, their off-target effects in the context of tumor are variable. Tumor-derived factors have been shown to reprogram the marrow, skewing toward the expansion of myelopoiesis. This can result in stimulation of both neutrophilic leukocytosis and the release of immature granulocytic populations that accumulate in circulation and in the tumor microenvironment. While activated neutrophils have been shown to kill tumor cells, there is growing evidence for neutrophil activation driving tumor progression and metastasis through a number of pathways, including stimulation of thrombosis and angiogenesis, stromal remodeling, and impairment of T cell-dependent anti-tumor immunity. There is also growing appreciation of neutrophil heterogeneity in cancer, with distinct neutrophil populations promoting cancer control or progression. In addition to the effects of tumor on neutrophil responses, anti-neoplastic treatment, including surgery, chemotherapy, and growth factors, can influence neutrophil responses. Future directions for research are expected to result in more mechanistic knowledge of neutrophil biology in the tumor microenvironment that may be exploited as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kelly L. Singel
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brahm H. Segal
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
94
|
Huang XY, Huang ZL, Xu B, Chen Z, Re TJ, Zheng Q, Tang ZY, Huang XY. Elevated MTSS1 expression associated with metastasis and poor prognosis of residual hepatitis B-related hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:85. [PMID: 27230279 PMCID: PMC4881066 DOI: 10.1186/s13046-016-0361-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023]
Abstract
Background Hepatectomy generally offers the best chance of long-term survival for patients with hepatocellular carcinoma (HCC). Many studies have shown that hepatectomy accelerates tumor metastasis, but the mechanism remains unclear. Methods An orthotopic nude mice model with palliative HCC hepatectomy was performed in this study. Metastasis-related genes in tumor following resection were screened; HCC invasion, metastasis, and some molecular alterations were examined in vivo and in vitro. Clinical significance of key gene mRNA expression was also analyzed. Results Metastasis suppressor 1 (MTSS1) located in the central position of gene function net of residual HCC. MTSS1 was up-regulated in residual tumor after palliative resection. In hepatitis B-related HCC patients undergone palliative hepatectomy, those with higher MTSS1 mRNA expression accompanied by activation of matrix metalloproteinase 2 (MMP2) in residual HCC, had earlier residual HCC detection after hepatectomy and poorer survival when compared to those with lower MTSS1. In different cell lines, the levels of MTSS1 mRNA increased in parallel with metastatic potential. MTSS1 down regulation via siRNA decreased MMP2 activity, reduced invasive potentials of HCC by 28.9 % in vitro, and averted the deteriorated lung metastatic extent in vivo. Conclusions The poor prognosis of hepatitis B-related HCC patients following palliative hepatectomy associates with elevated MTSS1 mRNA expression; therefore, MTSS1 may provide a new research field for HCC diagnosis and treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0361-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, Peoples Republic of China.
| | - Zi-Li Huang
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, Peoples Republic of China
| | - Bin Xu
- Department of General Surgery, The Tenth People's Hospital of Tongji University, Shanghai, 200072, Peoples Republic of China
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Thomas Joseph Re
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02446, USA
| | - Qi Zheng
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, Peoples Republic of China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, Peoples Republic of China
| | - Xin-Yu Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, Peoples Republic of China.
| |
Collapse
|
95
|
Keating J, Tchou J, Okusanya O, Fisher C, Batiste R, Jiang J, Kennedy G, Nie S, Singhal S. Identification of breast cancer margins using intraoperative near-infrared imaging. J Surg Oncol 2016; 113:508-14. [PMID: 26843131 DOI: 10.1002/jso.24167] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/27/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Current methods of intraoperative breast cancer margin assessment are labor intensive, not fully reliable, and time consuming; therefore novel strategies are necessary. We hypothesized that near infrared (NIR) intraoperative molecular imaging using systemic indocyanine green (ICG) would be helpful in discerning tumor margins. METHODS A mammary cancer cell line, 4T1, was used to establish tumors in mouse flanks (n = 60). Tumors were excised 24 hr after intravenous ICG. Assessment of residual tumor in the wound bed was performed using a combination of NIR imaging and traditional method (by visual inspection and palpation) versus traditional method alone. Next we performed a clinical trial to evaluate the role of NIR imaging after systemic ICG for the margin assessment of 12 patients undergoing breast-conserving surgery. RESULTS Traditional margin assessment identified 30% of positive margins while NIR imaging identified 90% of positive margins. In our clinical trial, all tumors were detected by NIR imaging and there was fluorescent evidence of residual tumor in the tumor bed in 6 of the 12 patients. None of these patients had positive margins on pathology. CONCLUSIONS Systemic ICG reliably accumulates in breast cancers in murine models as well as human breast cancer. While NIR imaging is helpful for detection of retained tumor margins in our animal model, intraoperative imaging for precise margin detection will need further refinement before clinical value can be obtained. J. Surg. Oncol. 2016;113:508-514. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jane Keating
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Julia Tchou
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Olugbenga Okusanya
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Carla Fisher
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Rebecca Batiste
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Jack Jiang
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Gregory Kennedy
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| | - Shuming Nie
- Departments of Biomedical Engineering and Chemistry, Emory University, 1364 Clifton Road, Atlanta, Georgia
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania
| |
Collapse
|
96
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
97
|
Domingues P, González-Tablas M, Otero Á, Pascual D, Miranda D, Ruiz L, Sousa P, Ciudad J, Gonçalves JM, Lopes MC, Orfao A, Tabernero MD. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 2016. [PMID: 26216710 DOI: 10.1016/j.bbi.2015.07.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.
Collapse
Affiliation(s)
- Patrícia Domingues
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María González-Tablas
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Álvaro Otero
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Pascual
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - David Miranda
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Laura Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Juana Ciudad
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Celeste Lopes
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain; Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la salud de Castilla y León (IECSCYL-IBSAL) and Research Unit of the University Hospital of Salamanca, Salamanca, Spain.
| |
Collapse
|
98
|
Cellular immunotherapy as maintenance therapy prolongs the survival of the patients with small cell lung cancer in extensive stage. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2016.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
99
|
Khan ANH, Kolomeyevskaya N, Singel KL, Grimm MJ, Moysich KB, Daudi S, Grzankowski KS, Lele S, Ylagan L, Webster GA, Abrams SI, Odunsi K, Segal BH. Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer. Oncotarget 2016; 6:11310-26. [PMID: 25888637 PMCID: PMC4484458 DOI: 10.18632/oncotarget.3597] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/20/2015] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is typically diagnosed at advanced stages, and is associated with a high relapse rate. Patients in remission are ideal candidates for immunotherapy aimed at cure or prolonging disease-free periods. However, immunosuppressive pathways in the tumor microenvironment are obstacles to durable anti-tumor immunity. In a metastatic syngeneic mouse model of EOC, immunosuppressive macrophages and myeloid-derived suppressor cells (MDSCs) accumulate in the local tumor environment. In addition, resident peritoneal macrophages from non-tumor-bearing mice were highly immunosuppressive, abrogating stimulated T cell proliferation in a cell contact-dependent manner. Immunization with microparticles containing TLR9 and NOD-2 ligands (MIS416) significantly prolonged survival in tumor-bearing mice. The strategy of MIS416 immunization followed by anti-CD11b administration further delayed tumor progression, thereby establishing the proof of principle that myeloid depletion can enhance vaccine efficacy. In patients with advanced EOC, ascites analysis showed substantial heterogeneity in the relative proportions of myeloid subsets and their immunosuppressive properties. Together, these findings point to immunosuppressive myeloid cells in the EOC microenvironment as targets to enhance vaccination. Further studies of myeloid cell accumulation and functional phenotypes in the EOC microenvironment may identify patients who are likely to benefit from vaccination combined with approaches that deplete tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Anm Nazmul H Khan
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Nonna Kolomeyevskaya
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kelly L Singel
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Melissa J Grimm
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sayeema Daudi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lourdes Ylagan
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brahm H Segal
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Medicine, University at Buffalo School of Medicine, Buffalo, NY, USA
| |
Collapse
|
100
|
Predina JD, Keating J, Patel N, Nims S, Singhal S. Clinical implications of positive margins following non-small cell lung cancer surgery. J Surg Oncol 2015; 113:264-9. [PMID: 26719121 DOI: 10.1002/jso.24130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/30/2015] [Indexed: 11/06/2022]
Abstract
Positive margins following pulmonary resection of non-small cell lung cancer (NSCLC) occur in approximately 5-15% of patients undergoing a curative procedure. The presence of positive margins negatively impacts long-term outcomes by setting the stage for local and potentially distant disease recurrence. Despite major clinical ramifications, there are very few dedicated reports that examine the implications of positive margins following surgery for NSCLC. Furthermore, published series are typically retrospective studies from single institutions. In this review we analyze published data with special consideration of four pertinent questions: (i) what are the long term outcomes of a positive margin following pulmonary resection?, (ii) is intraoperative margin assessment by frozen section reliable?, (iii) what is the optimal distance of the tumor margin to the surgical margin?, and (iv) should adjuvant chemotherapy and/or radiation therapy be used in the setting of a positive surgical margin?
Collapse
Affiliation(s)
- Jarrod D Predina
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jane Keating
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Neil Patel
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Nims
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|