51
|
Chung JH, Larsen AR, Chen E, Bunz F. A PTCH1 homolog transcriptionally activated by p53 suppresses Hedgehog signaling. J Biol Chem 2014; 289:33020-31. [PMID: 25296753 DOI: 10.1074/jbc.m114.597203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals.
Collapse
Affiliation(s)
- Jon H Chung
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| | - Andrew R Larsen
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| | - Evan Chen
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| | - Fred Bunz
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| |
Collapse
|
52
|
Liu J, Zhang C, Wang XL, Ly P, Belyi V, Xu-Monette ZY, Young KH, Hu W, Feng Z. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis. Cell Death Differ 2014; 21:1792-804. [PMID: 25146927 DOI: 10.1038/cdd.2014.121] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 01/07/2023] Open
Abstract
Tumor suppressor p53 has a key role in maintaining genomic stability and preventing tumorigenesis through its regulation of cellular stress responses, including apoptosis, cell cycle arrest and senescence. To ensure its proper levels and functions in cells, p53 is tightly regulated mainly through post-translational modifications, such as ubiquitination. Here, we identified E3 ubiquitin ligase TRIM32 as a novel p53 target gene and negative regulator to regulate p53-mediated stress responses. In response to stress, such as DNA damage, p53 binds to the p53 responsive element in the promoter of the TRIM32 gene and transcriptionally induces the expression of TRIM32 in cells. In turn, TRIM32 interacts with p53 and promotes p53 degradation through ubiquitination. Thus, TRIM32 negatively regulates p53-mediated apoptosis, cell cycle arrest and senescence in response to stress. TRIM32 is frequently overexpressed in different types of human tumors. TRIM32 overexpression promotes cell oncogenic transformation and tumorigenesis in mice in a largely p53-dependent manner. Taken together, our results demonstrated that as a novel p53 target and a novel negative regulator for p53, TRIM32 has an important role in regulation of p53 and p53-mediated cellular stress responses. Furthermore, our results also revealed that impairing p53 function is a novel mechanism for TRIM32 in tumorigenesis.
Collapse
Affiliation(s)
- Ju Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - C Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - X L Wang
- 1] Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA [2] Department of Breast Surgery, Qilu Hospital, Shandong University, Ji'nan, China
| | - P Ly
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - V Belyi
- Center for Systems Biology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Z Y Xu-Monette
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K H Young
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Z Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
53
|
The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene 2014; 34:1799-810. [DOI: 10.1038/onc.2014.119] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
|
54
|
|
55
|
Wang F, He L, Huangyang P, Liang J, Si W, Yan R, Han X, Liu S, Gui B, Li W, Miao D, Jing C, Liu Z, Pei F, Sun L, Shang Y. JMJD6 promotes colon carcinogenesis through negative regulation of p53 by hydroxylation. PLoS Biol 2014; 12:e1001819. [PMID: 24667498 PMCID: PMC3965384 DOI: 10.1371/journal.pbio.1001819] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
p53 hydroxylation by JMJD6 represents a novel post-translational modification for p53. JMJD6-mediated hydroxylation regulates p53's transcriptional activity and the p53-dependent control of colon cancer. Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate– and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention. JMJD6 belongs to the Jumonji C domain-containing family of proteins. The majority of this family are histone demethylases implicated in chromatin-associated events, but there have also been some reports of lysyl hydroxylase activity for JMJD6. Here we report a new posttranslational modification for the tumor suppressor protein p53 that is mediated by JMJD6. Via a physical associations with p53, JMJD6 catalyzes the hydroxylation of p53, thereby repressing its transcriptional activity. Depletion of JMJD6 promotes cell apoptosis, arrests cells in the G1 phase, sensitizes cells to DNA damaging agent-induced cell death, and represses p53-dependent colon cell proliferation and tumorigenesis. Significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Peiwei Huangyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Bin Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Di Miao
- Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Jing
- State Key Laboratory of Molecular Oncology, The Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, The Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fei Pei
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- * E-mail: (L.S.); (Y.S.)
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
- * E-mail: (L.S.); (Y.S.)
| |
Collapse
|
56
|
Pan LZ, Ahn DG, Sharif T, Clements D, Gujar SA, Lee PWK. The NAD+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) is a p53 downstream target. Cell Cycle 2014; 13:1041-8. [PMID: 24552824 DOI: 10.4161/cc.28128] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NAD(+) metabolism plays key roles not only in energy production but also in diverse cellular physiology. Aberrant NAD(+) metabolism is considered a hallmark of cancer. Recently, the tumor suppressor p53, a major player in cancer signaling pathways, has been implicated as an important regulator of cellular metabolism. This notion led us to examine whether p53 can regulate NAD(+) biosynthesis in the cell. Our search resulted in the identification of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2), a NAD(+) synthetase, as a novel downstream target gene of p53. We show that NMNAT-2 expression is induced upon DNA damage in a p53-dependent manner. Two putative p53 binding sites were identified within the human NMNAT-2 gene, and both were found to be functional in a p53-dependent manner. Furthermore, knockdown of NMNAT-2 significantly reduces cellular NAD(+) levels and protects cells from p53-dependent cell death upon DNA damage, suggesting an important functional role of NMNAT-2 in p53-mediated signaling. Our demonstration that p53 modulates cellular NAD(+) synthesis is congruent with p53's emerging role as a key regulator of metabolism and related cell fate.
Collapse
Affiliation(s)
- Lu-Zhe Pan
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Dae-Gyun Ahn
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Tanveer Sharif
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Derek Clements
- Department of Pathology; Dalhousie University; Halifax, Nova Scotia, Canada
| | - Shashi A Gujar
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada; Strategy & Organizational Performance; IWK Health Centre; Halifax, Nova Scotia, Canada
| | - Patrick W K Lee
- Department of Microbiology and Immunology; Dalhousie University; Halifax, Nova Scotia, Canada; Department of Pathology; Dalhousie University; Halifax, Nova Scotia, Canada
| |
Collapse
|
57
|
Idogawa M, Ohashi T, Sasaki Y, Maruyama R, Kashima L, Suzuki H, Tokino T. Identification and analysis of large intergenic non-coding RNAs regulated by p53 family members through a genome-wide analysis of p53-binding sites. Hum Mol Genet 2014; 23:2847-57. [PMID: 24403050 DOI: 10.1093/hmg/ddt673] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
p53 is one of the most important known tumor suppressor genes, and it is inactivated in approximately half of human cancers. p53 family members execute various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. Therefore, the direct transcriptional targets of the p53 family must be explored to elucidate the functional mechanisms of family members. To identify the direct transcriptional targets of p53 family members, we performed chromatin immunoprecipitation together with next-generation sequencing (ChIP-seq) and searched for p53-binding motifs across the entire human genome. Among the identified ChIP-seq peaks, approximately half were located in an intergenic region. Therefore, we assumed large intergenic non-coding RNAs (lincRNAs) to be major targets of the p53 family. Recent reports have revealed that lincRNAs play an important role in various biological and pathological processes, such as development, differentiation, stemness and carcinogenesis. Through a combination of ChIP-seq and in silico analyses, we found 23 lincRNAs that are upregulated by the p53 family. Additionally, knockdown of specific lincRNAs modulated p53-induced apoptosis and promoted the transcription of a gene cluster. Our results suggest that p53 family members, and lincRNAs constitute a complex transcriptional network involved in various biological functions and tumor suppression.
Collapse
Affiliation(s)
- Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine and
| | | | | | | | | | | | | |
Collapse
|
58
|
Schlereth K, Heyl C, Krampitz AM, Mernberger M, Finkernagel F, Scharfe M, Jarek M, Leich E, Rosenwald A, Stiewe T. Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor suppressor functions. PLoS Genet 2013; 9:e1003726. [PMID: 23966881 PMCID: PMC3744428 DOI: 10.1371/journal.pgen.1003726] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
p53 protects us from cancer by transcriptionally regulating tumor suppressive programs designed to either prevent the development or clonal expansion of malignant cells. How p53 selects target genes in the genome in a context- and tissue-specific manner remains largely obscure. There is growing evidence that the ability of p53 to bind DNA in a cooperative manner prominently influences target gene selection with activation of the apoptosis program being completely dependent on DNA binding cooperativity. Here, we used ChIP-seq to comprehensively profile the cistrome of p53 mutants with reduced or increased cooperativity. The analysis highlighted a particular relevance of cooperativity for extending the p53 cistrome to non-canonical binding sequences characterized by deletions, spacer insertions and base mismatches. Furthermore, it revealed a striking functional separation of the cistrome on the basis of cooperativity; with low cooperativity genes being significantly enriched for cell cycle and high cooperativity genes for apoptotic functions. Importantly, expression of high but not low cooperativity genes was correlated with superior survival in breast cancer patients. Interestingly, in contrast to most p53-activated genes, p53-repressed genes did not commonly contain p53 binding elements. Nevertheless, both the degree of gene activation and repression were cooperativity-dependent, suggesting that p53-mediated gene repression is largely indirect and mediated by cooperativity-dependently transactivated gene products such as CDKN1A, E2F7 and non-coding RNAs. Since both activation of apoptosis genes with non-canonical response elements and repression of pro-survival genes are crucial for p53's apoptotic activity, the cistrome analysis comprehensively explains why p53-induced apoptosis, but not cell cycle arrest, strongly depends on the intermolecular cooperation of p53 molecules as a possible safeguard mechanism protecting from accidental cell killing. The tumor suppressor gene p53 counteracts tumor growth by activating genes that prevent cell proliferation or induce cell death. How p53 selects genes in the genome to direct cell fate specifically into one or the other direction remains unclear. We show that the ability of p53 molecules to interact and thereby cooperate, influences which genes in the genome p53 is regulating. In the absence of cooperation, p53 only binds and regulates a limited ‘default’ set of genes that is proficient to stop cell proliferation but insufficient to induce cell death. Cooperation increases p53's DNA binding and enables context-dependent activation of apoptosis genes and repression of pro-survival genes which together triggers cell death. As the concerted effort of p53 molecules is needed, the threshold for cell killing is raised possibly to protect us from accidental cell loss. Thus, by shaping the genomic binding pattern, p53 cooperation fine-tunes the gene activity pattern to steer cell fate into the most appropriate, context-dependent direction. The genome-wide binding patterns of cooperating and non-cooperating p53 proteins generated in this study provide a comprehensive list of p53 binding sites as a resource for the scientific community to further explore mechanisms of tumor suppression by p53.
Collapse
Affiliation(s)
| | - Charlotte Heyl
- Molecular Oncology, Philipps-University, Marburg, Germany
| | | | | | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research, Philipps-University, Marburg, Germany
| | - Maren Scharfe
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Thorsten Stiewe
- Molecular Oncology, Philipps-University, Marburg, Germany
- * E-mail:
| |
Collapse
|
59
|
Godoy P, Mello S, Magalhães D, Donaires F, Nicolucci P, Donadi E, Passos G, Sakamoto-Hojo E. Ionizing radiation-induced gene expression changes in TP53 proficient and deficient glioblastoma cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:46-55. [DOI: 10.1016/j.mrgentox.2013.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
|
60
|
Raimondi I, Ciribilli Y, Monti P, Bisio A, Pollegioni L, Fronza G, Inga A, Campomenosi P. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. PLoS One 2013; 8:e69152. [PMID: 23861960 PMCID: PMC3704516 DOI: 10.1371/journal.pone.0069152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH) enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen) catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs), among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG) under normal and pathological (tumor) conditions.
Collapse
Affiliation(s)
- Ivan Raimondi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Trento, Italy
| | - Paola Monti
- Department of Diagnosis, Pathology and Treatment of High Technological Complexity, IRCCS Azienda Ospedaliera Universitaria San Martino – IST - Istituto Nazionale Per La Ricerca Sul Cancro, Genova, Italy
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Trento, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and Università degli Studi dell'Insubria, Varese, Italy
| | - Gilberto Fronza
- Department of Diagnosis, Pathology and Treatment of High Technological Complexity, IRCCS Azienda Ospedaliera Universitaria San Martino – IST - Istituto Nazionale Per La Ricerca Sul Cancro, Genova, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Trento, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and Università degli Studi dell'Insubria, Varese, Italy
- * E-mail:
| |
Collapse
|
61
|
Long JS, Crighton D, O'Prey J, Mackay G, Zheng L, Palmer TM, Gottlieb E, Ryan KM. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. Mol Cell 2013; 50:394-406. [PMID: 23603120 DOI: 10.1016/j.molcel.2013.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/06/2013] [Accepted: 03/14/2013] [Indexed: 01/26/2023]
Abstract
Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change.
Collapse
Affiliation(s)
- Jaclyn S Long
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kurinna S, Stratton SA, Coban Z, Schumacher JM, Grompe M, Duncan AW, Barton MC. p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology 2013; 57:2004-13. [PMID: 23300120 PMCID: PMC3632650 DOI: 10.1002/hep.26233] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Functions of p53 during mitosis reportedly include prevention of polyploidy and transmission of aberrant chromosomes. However, whether p53 plays these roles during genomic surveillance in vivo and, if so, whether this is done via direct or indirect means remain unknown. The ability of normal, mature hepatocytes to respond to stimuli, reenter the cell cycle, and regenerate liver mass offers an ideal setting to assess mitosis in vivo. In quiescent liver, normally high ploidy levels in adult mice increased with loss of p53. Following partial hepatectomy, p53(-/-) hepatocytes exhibited early entry into the cell cycle and prolonged proliferation with an increased number of polyploid mitoses. Ploidy levels increased during regeneration of both wild-type (WT) and p53(-/-) hepatocytes, but only WT hepatocytes were able to dynamically resolve ploidy levels and return to normal by the end of regeneration. We identified multiple cell cycle and mitotic regulators, including Foxm1, Aurka, Lats2, Plk2, and Plk4, as directly regulated by chromatin interactions of p53 in vivo. Over a time course of regeneration, direct and indirect regulation of expression by p53 is mediated in a gene-specific manner. CONCLUSION Our results show that p53 plays a role in mitotic fidelity and ploidy resolution in hepatocytes of normal and regenerative liver.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Sabrina A. Stratton
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Zeynep Coban
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Jill M. Schumacher
- Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX,Department of Genetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Andrew W. Duncan
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239 USA,Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| |
Collapse
|
63
|
Abstract
Chromatin immunoprecipitation assay (ChIP) has been frequently used to determine whether a transcriptional regulator can bind to a specific DNA element in the chromatin content of cells. Here, we describe a detailed protocol for this assay with hands-on tips based on our own experience in working on the transcriptional regulator and tumor suppressor p53.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
64
|
The p53/microRNA Network in Cancer: Experimental and Bioinformatics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:77-101. [DOI: 10.1007/978-94-007-5590-1_5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
65
|
Abstract
The TP53 gene, first described in 1979, was identified as a tumor suppressor gene in 1989, when it became clear that its product, the p53 nuclear phosphoprotein, was frequently inactivated in many different forms of cancers. Nicknamed "guardian of the genome", TP53 occupies a central node in stress response networks. The p53 protein has a key role as transcription factor in limiting oncogenesis through several growth suppressive functions, such as initiating apoptosis, senescence, or cell cycle arrest. The p53 protein is directly inactivated in about 50% of all tumors as a result of somatic gene mutations or deletions, and over 80% of tumors demonstrate dysfunctional p53 signaling. Beyond the undeniable importance of p53 as a tumor suppressor, an increasing number of new functions for p53 have been reported, including its ability to regulate energy metabolism, to control autophagy, and to participate in various aspects of differentiation and development. Recently, studies on genetic variations in TP53 among different populations have led to the notion that the p53 protein might play an important role in regulating fertility. This review summarizes current knowledge on the basic functions of different genes of the TP53 family and TP53 pathway with respect to fertility. We also provide original analyses based on genomic and genotype databases, providing further insights into the possible roles of the TP53 pathway in human reproduction.
Collapse
Affiliation(s)
- Diego d'Avila Paskulin
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. ; Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
66
|
Abstract
p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.
Collapse
|
67
|
Shi D, Gu W. Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity. Genes Cancer 2012; 3:240-8. [PMID: 23150757 DOI: 10.1177/1947601912455199] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MDM2 oncogenic protein is the principal cellular antagonist of the p53 tumor suppresser gene. p53 activity needs exquisite control to elicit appropriate responses to differential cellular stress conditions. p53 becomes stabilized and active upon various types of stresses. However, too much p53 is not beneficial to cells and causes lethality. At the steady state, p53 activity needs to be leashed for cell survival. Early studies suggested that the MDM2 oncoprotein negatively regulates p53 activity through the induction of p53 protein degradation. MDM2 serves as an E3 ubiquitin ligase of p53; it catalyzes polyubiquitination and subsequently induces proteasome degradation to downregulate p53 protein level. However, the mechanism by which MDM2 represses p53 is not a single mode. Emerging evidence reveals another cellular location of MDM2-p53 interaction. MDM2 is recruited to chromatin, specifically the p53 responsive promoter regions, in a p53 dependent manner. MDM2 is proposed to directly inhibit p53 transactivity at chromatin. This article provides an overview of the mechanism by which p53 is repressed by MDM2 in both ubiquitination dependent and ubiquitination independent pathways.
Collapse
Affiliation(s)
- Dingding Shi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
68
|
Altered binding site selection of p53 transcription cassettes by hepatitis B virus X protein. Mol Cell Biol 2012; 33:485-97. [PMID: 23149944 DOI: 10.1128/mcb.01189-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The key cellular regulator p53 is a common target of viral oncoproteins. However, the mechanism by which p53 transcription regulation is modulated by hepatitis B virus X protein (HBx), a transcription cofactor implicated in hepatitis B virus-associated hepatocellular carcinoma (HCC), is poorly understood. By integrating p53 chromatin immunoprecipitation (ChIP)-on-chip and expression profiling of an HBx-expressing cell culture system, we report that HBx alters p53 binding site selectivity in the regulatory regions of genes, and this is associated with their aberrant expression. Using an HBx-deregulated gene, p53AIP1, as a model, we show that HBx aberrantly increases p53AIP1 expression by conferring p53 selectivity for a more conserved binding site in its regulatory region. We further demonstrate that HBx-deregulated increased p53AIP1 expression is relevant in HCC livers and define a functional role for p53AIP1 in mediating HBx-induced apoptosis in vitro. Significantly, we provide evidence that specific p53-associated transcription cofactors and coregulators are differentially recruited in the presence of HBx, effecting a PCAF-mediated "p53 Lys320 acetylation switch" that results in altered binding site selection of distinct p53 transcription cassettes. The findings here clarify the role of HBx in modulating p53 transcription regulation and provide a novel mechanistic insight into this deregulation.
Collapse
|
69
|
Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N, Rotter V. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis 2012; 34:190-8. [PMID: 23054612 DOI: 10.1093/carcin/bgs318] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are abundantly expressed in the human liver where they hydroxylate organic substrates. In a microarray screen performed in human liver cells, we found a group of eleven P450 genes whose expression was induced by p53 (CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP4F2, CYP4F3, CYP4F11, CYP4F12, CYP19A1, CYP21A2 and CYP24A1). The mode of regulation of four representative genes (CYP3A4, CYP3A7, CYP4F2 and CYP4F3) was further characterized. The genes were induced in a p53-dependent manner in HepG2 and Huh6 cells (both are cancer-derived human liver cells) and in primary liver cells isolated from human donors. Furthermore, p53 was found to bind to p53-responsive elements in the genes' DNA-regulatory regions and to enhance their transcription in a reporter gene assay. Importantly, when p53 was activated following the administration of either of three different anticancer chemotherapeutic agents (cisplatin, etoposide or doxorubicin), it was able to induce CYP3A genes, which are the main factors in systemic clearance of these agents. Finally, the p53-dependent induction of P450 genes following either Nutlin or chemotherapy treatment led to enhanced P450 enzymatic activity. Thus, in addition to the well-established role of p53 at the tumor site, our data unravels a novel function of hepatic p53 in inducing P450 enzymes and position p53 as a major factor in the hepatic response to xenobiotic and metabolic signals. Importantly, this study reveals a novel pathway for the induction of CYP3As by their substrates through p53, warranting the need for careful consideration when designing systemically administered chemotherapeutic regimens.
Collapse
Affiliation(s)
- Ido Goldstein
- The Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, 76100 Israel.
| | | | | | | | | | | | | |
Collapse
|
70
|
Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 2012; 31:1-19. [PMID: 22138778 DOI: 10.1007/s10555-011-9325-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- H Antony
- Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
71
|
Jennings P, Limonciel A, Felice L, Leonard MO. An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 2012; 87:49-72. [DOI: 10.1007/s00204-012-0919-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 12/30/2022]
|
72
|
Xuan C, Wang Q, Han X, Duan Y, Li L, Shi L, Wang Y, Shan L, Yao Z, Shang Y. RBB, a novel transcription repressor, represses the transcription of HDM2 oncogene. Oncogene 2012; 32:3711-21. [PMID: 22926524 DOI: 10.1038/onc.2012.386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/04/2023]
Abstract
The p53 tumor suppressor is important in many aspects of cell biology. Tight regulation of p53 is thus imperative for maintaining cell homeostasis and preventing tumorigenesis. The stabilization and activity of p53 is primarily regulated by MDM2, which is encoded for by HDM2. However, how the expression and activity of MDM2 is regulated remains largely unknown. Here, we report a novel BTB and BEN domains-containing protein, RBB. We demonstrated that RBB is a novel transcriptional repressor binding specific DNA motif via a homodimer and interacting with the nucleosome remodeling and deacetylase (NuRD) complex. Genome wide transcription target analysis by ChIP sequencing revealed that RBB represses the transcription of a series of functionally important genes including HDM2. We showed that RBB recruits the NuRD complex to the internal promoter of HDM2 and inhibits the expression of MDM2 protein, leading to subsequent stabilization of tumor suppressor p53. Significantly, we showed that RBB suppresses cell proliferation and sensitizes cells to DNA damage-induced apoptosis. Our data indicate that RBB is a novel transcriptional repressor and an important regulator of p53 pathway.
Collapse
Affiliation(s)
- C Xuan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ 2012; 19:1992-2002. [PMID: 22790872 PMCID: PMC3504713 DOI: 10.1038/cdd.2012.89] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor-suppressor p53 can induce various biological responses. Yet, it is not clear whether it is p53 in vivo promoter selectivity that triggers different transcription programs leading to different outcomes. Our analysis of genome-wide chromatin occupancy by p53 using chromatin immunoprecipitation (ChIP)-seq revealed ‘p53 default program', that is, the pattern of major p53-bound sites that is similar upon p53 activation by nutlin3a, reactivation of p53 and induction of tumor cell apoptosis (RITA) or 5-fluorouracil in breast cancer cells, despite different biological outcomes. Parallel analysis of gene expression allowed identification of 280 novel p53 target genes, including p53-repressed AURKA. We identified Sp1 as one of the p53 modulators, which confer specificity to p53-mediated transcriptional response upon RITA. Further, we found that STAT3 antagonizes p53-mediated repression of a subset of genes, including AURKA.
Collapse
|
74
|
Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, Li R, Martinez LA. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 2012; 26:830-45. [PMID: 22508727 DOI: 10.1101/gad.181685.111] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mutant p53 (mtp53) promotes chemotherapy resistance through multiple mechanisms, including disabling proapoptotic proteins and regulating gene expression. Comparison of genome wide analysis of mtp53 binding revealed that the ETS-binding site motif (EBS) is prevalent within predicted mtp53-binding sites. We demonstrate that mtp53 regulates gene expression through EBS in promoters and that ETS2 mediates the interaction with this motif. Importantly, we identified TDP2, a 5'-tyrosyl DNA phosphodiesterase involved in the repair of DNA damage caused by etoposide, as a transcriptional target of mtp53. We demonstrate that suppression of TDP2 sensitizes mtp53-expressing cells to etoposide and that mtp53 and TDP2 are frequently overexpressed in human lung cancer; thus, our analysis identifies a potentially "druggable" component of mtp53's gain-of-function activity.
Collapse
Affiliation(s)
- Phi M Do
- Department of Biochemistry, University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Kim SJ, Park YJ, Oh YJ. Proteomic analysis reveals a protective role for DJ-1 during 6-hydroxydopamine-induced cell death. Biochem Biophys Res Commun 2012; 422:8-14. [DOI: 10.1016/j.bbrc.2012.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/30/2022]
|
76
|
Sappino AP, Buser R, Seguin Q, Fernet M, Lesne L, Gumy-Pause F, Reith W, Favaudon V, Mandriota SJ. The CEACAM1 tumor suppressor is an ATM and p53-regulated gene required for the induction of cellular senescence by DNA damage. Oncogenesis 2012; 1:e7. [PMID: 23552604 PMCID: PMC3412640 DOI: 10.1038/oncsis.2012.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The p53 tumor-suppressor protein has a key role in the induction of cellular senescence, an important barrier to cancer development. However, very little is known about the physiological mediators of cellular senescence induced by p53. CEACAM1 is an immunoglobulin superfamily member whose expression is frequently lost in human tumors and exhibits tumor-suppressor features in several experimental systems, including Ceacam1 knockout mice. There is currently little understanding of the pathways and mechanisms by which CEACAM1 exerts its tumor-suppressor function. Here we report that CEACAM1 is strongly upregulated during the cellular response to DNA double-strand breaks (DSBs) starting from the lowest doses of DSB inducers used, and that upregulation is mediated by the ataxia telangiectasia mutated (ATM)/p53 pathway. Stable silencing of CEACAM1 showed that CEACAM1 is required for p53-mediated cellular senescence, but not initial cell growth arrest, in response to DNA damage. These findings identify CEACAM1 as a key component of the ATM/p53-mediated cellular response to DNA damage, and as a tumor suppressor mediating cellular senescence downstream of p53.
Collapse
Affiliation(s)
- A-P Sappino
- Clinique des Grangettes, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Goldstein I, Ezra O, Rivlin N, Molchadsky A, Madar S, Goldfinger N, Rotter V. p53, a novel regulator of lipid metabolism pathways. J Hepatol 2012; 56:656-62. [PMID: 22037227 DOI: 10.1016/j.jhep.2011.08.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/03/2011] [Accepted: 08/09/2011] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS In this study we aimed at characterizing the regulation of hepatic metabolic pathways by the p53 transcription factor. METHODS Analysis of gene expression following alteration of p53 status in several human- and mouse-derived cells using microarray analysis, quantitative real-time PCR, chromatin immunoprecipitation, and reporter gene assays. A functional assay was performed to determine lipid transfer activity. RESULTS We identified a novel role for the p53 protein in regulating lipid and lipoprotein metabolism, a process not yet conceived as related to p53, which is known mainly for its tumor suppressive functions. We revealed a group of 341 genes whose expression was induced by p53 in the liver-derived cell line HepG2. Twenty of these genes encode proteins involved in many aspects of lipid homeostasis. The mode of regulation of three representative genes (Pltp, Abca12, and Cel) was further characterized. In addition to HepG2, the genes were induced following activation of p53 in human primary hepatic cells isolated from liver donors. p53-dependent regulation of these genes was evident in other cell types namely Hep3B cells, mouse hepatocytes, and fibroblasts. Furthermore, p53 was found to bind to the genes' promoters in designated p53 responsive elements and thereby increase transcription. Importantly, p53 augmented the activity of secreted PLTP, which plays a major role in lipoprotein biology and atherosclerosis pathology. CONCLUSIONS These findings expose another facet of p53 functions unrelated to tumor suppression and render it a novel regulator of hepatic lipid metabolism and consequently of systemic lipid homeostasis and atherosclerosis development.
Collapse
Affiliation(s)
- Ido Goldstein
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | | | |
Collapse
|
78
|
Gogna R, Madan E, Kuppusamy P, Pati U. Reactive oxygen species-mediated p53 core-domain modifications determine apoptotic or necrotic death in cancer cells. Antioxid Redox Signal 2012; 16:400-12. [PMID: 22145567 DOI: 10.1089/ars.2011.4103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS p53 is known to induce apoptotic and necrotic cell death in response to stress, although the mechanism of these pathways is unknown. The aim of this study was to determine the molecular mechanism that determines p53's decision to select the apoptotic or necrotic mode of cell death. RESULTS Gold nanoparticles (Au-NPs) induced both apoptosis and necrosis in cancer cells in a p53-dependent manner. In cells undergoing apoptosis and necrosis, differential patterns of reactive oxygen species (ROS) generation were observed that leads to the activation of two different sets of p53-interacting kinases and acetylases. The differential activation of cellular kinases and acetylases caused dissimilar patterns of p53 phosphorylation and acetylation. In apoptotic cells, p53 was post-translationally modified in the core-domain, whereas in necrotic cells, it was modified at both N- and C-terminii, thus displaying differential DNA-binding activity. Au-NP10 and Au-NP80 activated fifty apoptotic and fifty nine necrotic p53-downstream genes, respectively. Both Au-NP10 and Au-NP80 showed HCT (p53+/+) tumor regression in mice xenografts. INNOVATION This study established for the first time that, in cancer cells, Au-NP-mediated apoptosis and necrosis are controlled by differential activation of p53 and its downstream genes. Further, both Au-NP10 and Au-NP80 were shown to regress HCT (p53+/+) tumors via apoptotic and necrotic pathways, respectively. CONCLUSION Au-NP-mediated p53 activation at both transcription and proteome level, through ROS-mediated p53 post-translational modification pattern, is responsible for tumor regression, which may further find wider application of nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Rajan Gogna
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
79
|
|
80
|
Botcheva K, McCorkle SR, McCombie WR, Dunn JJ, Anderson CW. Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 2011; 10:4237-49. [PMID: 22127205 DOI: 10.4161/cc.10.24.18383] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.
Collapse
|
81
|
Barsotti AM, Beckerman R, Laptenko O, Huppi K, Caplen NJ, Prives C. p53-Dependent induction of PVT1 and miR-1204. J Biol Chem 2011; 287:2509-19. [PMID: 22110125 DOI: 10.1074/jbc.m111.322875] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
p53 is a tumor suppressor protein that acts as a transcription factor to regulate (either positively or negatively) a plethora of downstream target genes. Although its ability to induce protein coding genes is well documented, recent studies have implicated p53 in the regulation of non-coding RNAs, including both microRNAs (e.g. miR-34a) and long non-coding RNAs (e.g. lincRNA-p21). We have identified the non-protein coding locus PVT1 as a p53-inducible target gene. PVT1, a very large (>300 kb) locus located downstream of c-myc on chromosome 8q24, produces a wide variety of spliced non-coding RNAs as well as a cluster of six annotated microRNAs: miR-1204, miR-1205, miR-1206, miR-1207-5p, miR-1207-3p, and miR-1208. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and luciferase assays reveal that p53 binds and activates a canonical response element within the vicinity of miR-1204. Consistently, we demonstrate the p53-dependent induction of endogenous PVT1 transcripts and consequent up-regulation of mature miR-1204. Finally, we have shown that ectopic expression of miR-1204 leads to increased p53 levels and causes cell death in a partially p53-dependent manner.
Collapse
Affiliation(s)
- Anthony M Barsotti
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
82
|
Xu H, Lu A, Sharp FR. Regional genome transcriptional response of adult mouse brain to hypoxia. BMC Genomics 2011; 12:499. [PMID: 21988864 PMCID: PMC3218040 DOI: 10.1186/1471-2164-12-499] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 10/11/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain. RESULT Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O(2)) and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF), the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54%) had at least one hepatic nuclear receptor 4A (HNF4A) binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia. CONCLUSION Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.
Collapse
Affiliation(s)
- Huichun Xu
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Bethesda, MD 20892-5635, USA.
| | | | | |
Collapse
|
83
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
84
|
Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 2011; 108:16259-64. [PMID: 21930938 DOI: 10.1073/pnas.1113884108] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regulation of energy metabolism is a novel function of p53 in tumor suppression. Parkin (PARK2), a Parkinson disease-associated gene, is a potential tumor suppressor whose expression is frequently diminished in tumors. Here Parkin was identified as a p53 target gene that is an important mediator of p53's function in regulating energy metabolism. The human and mouse Parkin genes contain functional p53 responsive elements, and p53 increases the transcription of Parkin in both humans and mice. Parkin contributes to the function of p53 in glucose metabolism; Parkin deficiency activates glycolysis and reduces mitochondrial respiration, leading to the Warburg effect. Restoration of Parkin expression reverses the Warburg effect in cells. Thus, Parkin deficiency is a novel mechanism for the Warburg effect in tumors. Parkin also contributes to the function of p53 in antioxidant defense. Furthermore, Parkin deficiency sensitizes mice to γ-irradiation-induced tumorigenesis, which provides further direct evidence to support a role of Parkin in tumor suppression. Our results suggest that as a novel component in the p53 pathway, Parkin contributes to the functions of p53 in regulating energy metabolism, especially the Warburg effect, and antioxidant defense, and thus the function of p53 in tumor suppression.
Collapse
|
85
|
Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 2011; 15:1679-90. [PMID: 20712410 PMCID: PMC3151419 DOI: 10.1089/ars.2010.3530] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tumor suppressor p53 protects organisms from most types of cancer through multiple mechanisms. The p53 gene encodes a stress-activated transcriptional factor that transcriptionally regulates a large set of genes with versatile functions. These p53-activated genes mitigate consequences of stress regulating cell viability, growth, proliferation, repair, and metabolism. Recently, we described a novel antioxidant function of p53, which is important for its tumor suppressor activity. Among the many antioxidant genes activated by p53, Sestrins (Sesns) are critical for suppression of reactive oxygen species (ROS) and protection from oxidative stress, transformation, and genomic instability. Sestrins can regulate ROS through their direct effect on antioxidant peroxiredoxin proteins and through the AMP-activated protein kinase-target of rapamycin signaling pathway. The AMP-activated protein kinase-target of rapamycin axis is critical for regulation of metabolism and autophagy, two processes associated with ROS production, and deregulation of this pathway increases vulnerability of the organism to stress, aging, and age-related diseases, including cancer. Recently, we have shown that inactivation of Sestrin in fly causes accumulation of age-associated damage. Hence, Sestrins can link p53 with aging and age-related diseases.
Collapse
Affiliation(s)
- Andrei V Budanov
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
86
|
Zawacka-Pankau J, Grinkevich VV, Hünten S, Nikulenkov F, Gluch A, Li H, Enge M, Kel A, Selivanova G. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 2011; 286:41600-41615. [PMID: 21862591 DOI: 10.1074/jbc.m111.240812] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Unique sensitivity of tumor cells to the inhibition of glycolysis is a good target for anticancer therapy. Here, we demonstrate that the pharmacologically activated tumor suppressor p53 mediates the inhibition of glycolytic enzymes in cancer cells in vitro and in vivo. We showed that p53 binds to the promoters of metabolic genes and represses their expression, including glucose transporters SLC2A12 (GLUT12) and SLC2A1 (GLUT1). Furthermore, p53-mediated repression of transcription factors c-Myc and HIF1α, key drivers of ATP-generating pathways in tumors, contributed to ATP production block. Inhibition of c-Myc by p53 mediated the ablation of several glycolytic genes in normoxia, whereas in hypoxia down-regulation of HIF1α contributed to this effect. We identified Sp1 as a transcription cofactor cooperating with p53 in the ablation of metabolic genes. Using different approaches, we demonstrated that glycolysis block contributes to the robust induction of apoptosis by p53 in cancer cells. Taken together, our data suggest that tumor-specific reinstatement of p53 function targets the "Achilles heel" of cancer cells (i.e. their dependence on glycolysis), which could contribute to the tumor-selective killing of cancer cells by pharmacologically activated p53.
Collapse
Affiliation(s)
- Joanna Zawacka-Pankau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden; Department of Biotechnology, Division of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | - Vera V Grinkevich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden
| | - Sabine Hünten
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden
| | - Fedor Nikulenkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden
| | | | - Hai Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden
| | - Martin Enge
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden
| | - Alexander Kel
- geneXplain GmbH, Am Exer 10b, D-38302 Wolfenbuettel, Germany
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobelsväg 16, Stockholm, SE 171 77, Sweden.
| |
Collapse
|
87
|
Kerschgens J, Renaud S, Schütz F, Grasso L, Egener-Kuhn T, Delaloye JF, Lehr HA, Vogel H, Mermod N. Protein-binding microarray analysis of tumor suppressor AP2α target gene specificity. PLoS One 2011; 6:e22895. [PMID: 21876733 PMCID: PMC3158074 DOI: 10.1371/journal.pone.0022895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/08/2011] [Indexed: 12/22/2022] Open
Abstract
Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays.
Collapse
Affiliation(s)
- Jan Kerschgens
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Li Q, Fan X, Liang T, Li SR. An MCMC algorithm for detecting short adjacent repeats shared by multiple sequences. Bioinformatics 2011; 27:1772-9. [DOI: 10.1093/bioinformatics/btr287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
89
|
Kurzhals RL, Titen SWA, Xie HB, Golic KG. Chk2 and p53 are haploinsufficient with dependent and independent functions to eliminate cells after telomere loss. PLoS Genet 2011; 7:e1002103. [PMID: 21655087 PMCID: PMC3107200 DOI: 10.1371/journal.pgen.1002103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/08/2011] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues.
Collapse
Affiliation(s)
- Rebeccah L. Kurzhals
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Simon W. A. Titen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Heng B. Xie
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kent G. Golic
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
90
|
Mao P, Hever MP, Niemaszyk LM, Haghkerdar JM, Yanco EG, Desai D, Beyrouthy MJ, Kerley-Hamilton JS, Freemantle SJ, Spinella MJ. Serine/threonine kinase 17A is a novel p53 target gene and modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells. J Biol Chem 2011; 286:19381-91. [PMID: 21489989 DOI: 10.1074/jbc.m111.218040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testicular cancer is highly curable with cisplatin-based therapy, and testicular cancer-derived human embryonal carcinoma (EC) cells undergo a p53-dominant transcriptional response to cisplatin. In this study, we have discovered that a poorly characterized member of the death-associated protein family of serine/threonine kinases, STK17A (also called DRAK1), is a novel p53 target gene. Cisplatin-mediated induction of STK17A in the EC cell line NT2/D1 was prevented with p53 siRNA. Furthermore, STK17A was induced with cisplatin in HCT116 and MCF10A cells but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element that binds endogenous p53 in a cisplatin-dependent manner was identified 5 kb upstream of the first coding exon of STK17A. STK17A is not present in the mouse genome, but the closely related gene STK17B is induced with cisplatin in mouse NIH3T3 cells, although this induction is p53-independent. Interestingly, in human cells containing both STK17A and STK17B, only STK17A is induced with cisplatin. Knockdown of STK17A conferred resistance to cisplatin-induced growth suppression and apoptotic cell death in EC cells. This was associated with the up-regulation of detoxifying and antioxidant genes, including metallothioneins MT1H, MT1M, and MT1X that have previously been implicated in cisplatin resistance. In addition, knockdown of STK17A resulted in decreased cellular reactive oxygen species, whereas STK17A overexpression increased reactive oxygen species. In summary, we have identified STK17A as a novel direct target of p53 and a modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells.
Collapse
Affiliation(s)
- Pingping Mao
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Croft DR, Crighton D, Samuel MS, Lourenco FC, Munro J, Wood J, Bensaad K, Vousden KH, Sansom OJ, Ryan KM, Olson MF. p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Res 2011; 21:666-82. [PMID: 21079653 PMCID: PMC3145139 DOI: 10.1038/cr.2010.154] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/20/2010] [Accepted: 09/26/2010] [Indexed: 12/28/2022] Open
Abstract
The central arbiter of cell fate in response to DNA damage is p53, which regulates the expression of genes involved in cell cycle arrest, survival and apoptosis. Although many responses initiated by DNA damage have been characterized, the role of actin cytoskeleton regulators is largely unknown. We now show that RhoC and LIM kinase 2 (LIMK2) are direct p53 target genes induced by genotoxic agents. Although RhoC and LIMK2 have well-established roles in actin cytoskeleton regulation, our results indicate that activation of LIMK2 also has a pro-survival function following DNA damage. LIMK inhibition by siRNA-mediated knockdown or selective pharmacological blockade sensitized cells to radio- or chemotherapy, such that treatments that were sub-lethal when administered singly resulted in cell death when combined with LIMK inhibition. Our findings suggest that combining LIMK inhibitors with genotoxic therapies could be more efficacious than single-agent administration, and highlight a novel connection between actin cytoskeleton regulators and DNA damage-induced cell survival mechanisms.
Collapse
Affiliation(s)
- Daniel R Croft
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Diane Crighton
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Current address: Cancer Research Technology, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Michael S Samuel
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Filipe C Lourenco
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - June Munro
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jenifer Wood
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karim Bensaad
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Current address: Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Kevin M Ryan
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Michael F Olson
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
92
|
Repression of Puma by scratch2 is required for neuronal survival during embryonic development. Cell Death Differ 2011; 18:1196-207. [PMID: 21252910 DOI: 10.1038/cdd.2010.190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although Snail factors promote cell survival in development and cancer, the tumor-suppressor p53 promotes apoptosis in response to stress. p53 and Snail2 act antagonistically to regulate p53 upregulated modulator of apoptosis (Puma) and cell death in hematopoietic progenitors following DNA damage. Here, we show that this relationship is conserved in the developing nervous system in which Snail genes are excluded from vertebrate neurons and they are substituted by Scratch, a related but independent neural-specific factor. The transcription of scratch2 is induced directly by p53 after DNA damage to repress puma, thereby antagonizing p53-mediated apoptosis. In addition, we show that scratch2 is required for newly differentiated neurons to survive by maintaining Puma levels low during normal embryonic development in the absence of damage. scratch2 knockdown in zebrafish embryos leads to neuronal death through the activation of the intrinsic and extrinsic apoptotic pathways. To compensate for neuronal loss, the proliferation of neuronal precursors increases in scratch2-deficient embryos, reminiscent of the activation of progenitor/stem cell proliferation after damage-induced apoptosis. Our data indicate that the regulatory loop linking p53/Puma with Scratch is active in the vertebrate nervous system, not only controlling cell death in response to damage but also during normal embryonic development.
Collapse
|
93
|
Cui F, Sirotin MV, Zhurkin VB. Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 2011; 6:2. [PMID: 21208455 PMCID: PMC3032802 DOI: 10.1186/1745-6150-6-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/06/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs) reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs) remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. RESULTS We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. CONCLUSIONS The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu transcription, which, in turn, influences expression of the host genes.
Collapse
Affiliation(s)
- Feng Cui
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michael V Sirotin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
94
|
Beno I, Rosenthal K, Levitine M, Shaulov L, Haran TE. Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res 2010; 39:1919-32. [PMID: 21071400 PMCID: PMC3061056 DOI: 10.1093/nar/gkq1044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The prime mechanism by which p53 acts as a tumor suppressor is as a transcription factor regulating the expression of diverse downstream genes. The DNA-binding domain of p53 (p53DBD) interacts with defined DNA sites and is the main target for mutations in human primary tumors. Here, we show that the CWWG motif, found in the center of each consensus p53 half-site, is a key player in p53/DNA interactions. Gel-mobility-shift assays provide a unique opportunity to directly observe the various oligomeric complexes formed between p53DBD and its target sites. We demonstrate that p53DBD binds to p53 consensus sites containing CATG with relatively low cooperativity, as both dimers and tetramers, and with even lower cooperativity to such sites containing spacer sequences. p53DBD binds to sites containing CAAG and CTAG with measurable affinity only when imbedded in two contiguous p53 half-sites and only as tetramers (with very high cooperativity). There are three orders-of-magnitude difference in the cooperativity of interaction between sites differing in their non-contacted step, and further two orders-of-magnitude difference as a function of spacer sequences. By experimentally measuring the global structural properties of these sites, by cyclization kinetics of DNA minicircles, we correlate these differences with the torsional flexibility of the binding sites.
Collapse
Affiliation(s)
- Itai Beno
- Department of Biology, Technion, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
95
|
Stegh AH, Brennan C, Mahoney JA, Forloney KL, Jenq HT, Luciano JP, Protopopov A, Chin L, Depinho RA. Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Genes Dev 2010; 24:2194-204. [PMID: 20837658 DOI: 10.1101/gad.1924710] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by intense apoptosis resistance and extensive necrosis. Bcl2L12 (for Bcl2-like 12) is a cytoplasmic and nuclear protein that is overexpressed in primary GBM and functions to inhibit post-mitochondrial apoptosis signaling. Here, we show that nuclear Bcl2L12 physically and functionally interacts with the p53 tumor suppressor, as evidenced by the capacity of Bcl2L12 to (1) enable bypass of replicative senescence without concomitant loss of p53 or p19 (Arf), (2) inhibit p53-dependent DNA damage-induced apoptosis, (3) impede the capacity of p53 to bind some of its target gene promoters, and (4) attenuate endogenous p53-directed transcriptomic changes following genotoxic stress. Correspondingly, The Cancer Genome Atlas profile and tissue protein analyses of human GBM specimens show significantly lower Bcl2L12 expression in the setting of genetic p53 pathway inactivation. Thus, Bcl2L12 is a multifunctional protein that contributes to intense therapeutic resistance of GBM through its ability to operate on two key nodes of cytoplasmic and nuclear signaling cascades.
Collapse
Affiliation(s)
- Alexander H Stegh
- Belfer Institute for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kurinna S, Stratton SA, Tsai WW, Akdemir KC, Gu W, Singh P, Goode T, Darlington GJ, Barton MC. Direct activation of forkhead box O3 by tumor suppressors p53 and p73 is disrupted during liver regeneration in mice. Hepatology 2010; 52:1023-32. [PMID: 20564353 PMCID: PMC3741038 DOI: 10.1002/hep.23746] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED The p53 family of proteins regulates the expression of target genes that promote cell cycle arrest and apoptosis, which may be linked to cellular growth control as well as tumor suppression. Within the p53 family, p53 and the transactivating p73 isoform (TA-p73) have hepatic-specific functions in development and tumor suppression. Here, we determined TA-p73 interactions with chromatin in the adult mouse liver and found forkhead box O3 (Foxo3) to be one of 158 gene targets. Global profiling of hepatic gene expression in the regenerating liver versus the quiescent liver revealed specific, functional categories of genes regulated over the time of regeneration. Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative cellular proliferation. p53 and TA-p73 bind a Foxo3 p53 response element (p53RE) and maintain active expression in the quiescent liver. During regeneration of the liver, the binding of p53 and TA-p73, the recruitment of acetyltransferase p300, and the active chromatin structure of Foxo3 are disrupted along with a loss of Foxo3 expression. In agreement with the loss of Foxo3 transcriptional activation, a decrease in histone activation marks (dimethylated histone H3 at lysine 4, acetylated histone H3 at lysine 14, and acetylated H4) at the Foxo3 p53RE was detected after partial hepatectomy in mice. These parameters of Foxo3 regulation are reestablished with the completion of liver growth and regeneration and support a temporary suspension of p53 and TA-p73 regulatory functions in normal cells during tissue regeneration. p53-dependent and TA-p73-dependent activation of Foxo3 was also observed in mouse embryonic fibroblasts and in mouse hepatoma cells overexpressing p53, TA-p73alpha, and TA-p73beta isoforms. CONCLUSION p53 and p73 directly bind and activate the expression of the Foxo3 gene in the adult mouse liver and murine cell lines. p53, TA-p73, and p300 binding and Foxo3 expression decrease during liver regeneration, and this suggests a critical growth control mechanism mediated by these transcription factors in vivo.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX,Department of Biochemistry and Molecular Biology, Center for Stem Cell and Developmental Biology
| | - Sabrina A. Stratton
- Department of Biochemistry and Molecular Biology, Center for Stem Cell and Developmental Biology
| | - Wen-Wei Tsai
- Department of Biochemistry and Molecular Biology, Center for Stem Cell and Developmental Biology
| | - Kadir C. Akdemir
- Department of Biostatistics and Bioinformatics, UT MD Anderson Cancer Center, Houston, TX
| | | | - Pallavi Singh
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Triona Goode
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | | | - Michelle Craig Barton
- Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX,Department of Biochemistry and Molecular Biology, Center for Stem Cell and Developmental Biology
| |
Collapse
|
97
|
Heterochromatin silencing of p53 target genes by a small viral protein. Nature 2010; 466:1076-81. [PMID: 20740008 PMCID: PMC2929938 DOI: 10.1038/nature09307] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/23/2010] [Indexed: 01/26/2023]
Abstract
The transcription factor p53 (also known as TP53) guards against tumour and virus replication and is inactivated in almost all cancers. p53-activated transcription of target genes is thought to be synonymous with the stabilization of p53 in response to oncogenes and DNA damage. During adenovirus replication, the degradation of p53 by E1B-55k is considered essential for p53 inactivation, and is the basis for p53-selective viral cancer therapies. Here we reveal a dominant epigenetic mechanism that silences p53-activated transcription, irrespective of p53 phosphorylation and stabilization. We show that another adenoviral protein, E4-ORF3, inactivates p53 independently of E1B-55k by forming a nuclear structure that induces de novo H3K9me3 heterochromatin formation at p53 target promoters, preventing p53-DNA binding. This suppressive nuclear web is highly selective in silencing p53 promoters and operates in the backdrop of global transcriptional changes that drive oncogenic replication. These findings are important for understanding how high levels of wild-type p53 might also be inactivated in cancer as well as the mechanisms that induce aberrant epigenetic silencing of tumour-suppressor loci. Our study changes the longstanding definition of how p53 is inactivated in adenovirus infection and provides key insights that could enable the development of true p53-selective oncolytic viral therapies.
Collapse
|
98
|
Zhang L, Yan L, Zhang Y, Wu NH, Shen YF. Role of acetylated p53 in regulating the expression of map2 in retinoic acid-induced P19 cells. ACTA ACUST UNITED AC 2010; 25:71-5. [PMID: 20598227 DOI: 10.1016/s1001-9294(10)60025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2 (MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid (RA). METHODS Neuronal differentiation of P19 cells was initiated with 4-day RA treatment. Immunofluorescence, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells. Real-time PCR-based chromatin immunoprecipitation assay (ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter. RESULTS The expression of MAP2 was markedly increased in RA-induced P19 cells. The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment, compared with the cells without RA treatment (control). p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity. p300/CBP associated factor (PCAF) was found induced in RA-treated cells and enriched in the nucleus, which might contribute to the acetylation of p53 in the regulation of map2 gene. CONCLUSIONS Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells. PCAF is possibly involved in this process by mediating the acetylation of p53.
Collapse
Affiliation(s)
- Li Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
99
|
Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ. YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res 2010; 70:3566-75. [PMID: 20388804 DOI: 10.1158/0008-5472.can-09-3219] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular senescence, the limited ability of cultured normal cells to divide, can result from cellular damage triggered through oncogene activation (premature senescence) or the loss of telomeres following successive rounds of DNA replication (replicative senescence). Although both processes require a functional p53 signaling pathway, relevant downstream p53 targets have been difficult to identify. Discovery of senescence activators is important because induction of tumor cell senescence may represent a therapeutic approach for the treatment of cancer. In microarray studies in which p53 was reactivated in MCF7 cells, we discovered that Yippee-like-3 (YPEL3), a member of a recently discovered family of putative zinc finger motif coding genes consisting of YPEL1-5, is a p53-regulated gene. YPEL3 expression induced by DNA damage leads to p53 recruitment to a cis-acting DNA response element located near the human YPEL3 promoter. Physiologic induction of YPEL3 results in a substantial decrease in cell viability associated with an increase in cellular senescence. Through the use of RNAi and H-ras induction of cellular senescence, we show that YPEL3 activates cellular senescence downstream of p53. Consistent with its growth suppressive activity, YPEL3 gene expression is repressed in ovarian tumor samples. One mechanism of YPEL3 downregulation in ovarian tumor cell lines seems to be hypermethylation of a CpG island upstream of the YPEL3 promoter. We believe these findings point to YPEL3 being a novel tumor suppressor, which upon induction triggers a permanent growth arrest in human tumor and normal cells.
Collapse
Affiliation(s)
- Kevin D Kelley
- Biochemistry & Molecular Biology Department, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
100
|
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 2010; 107:7455-60. [PMID: 20378837 DOI: 10.1073/pnas.1001006107] [Citation(s) in RCA: 635] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas cell cycle arrest, apoptosis, and senescence are traditionally thought of as the major functions of the tumor suppressor p53, recent studies revealed two unique functions for this protein: p53 regulates cellular energy metabolism and antioxidant defense mechanisms. Here, we identify glutaminase 2 (GLS2) as a previously uncharacterized p53 target gene to mediate these two functions of the p53 protein. GLS2 encodes a mitochondrial glutaminase catalyzing the hydrolysis of glutamine to glutamate. p53 increases the GLS2 expression under both nonstressed and stressed conditions. GLS2 regulates cellular energy metabolism by increasing production of glutamate and alpha-ketoglutarate, which in turn results in enhanced mitochondrial respiration and ATP generation. Furthermore, GLS2 regulates antioxidant defense function in cells by increasing reduced glutathione (GSH) levels and decreasing ROS levels, which in turn protects cells from oxidative stress (e.g., H(2)O(2))-induced apoptosis. Consistent with these functions of GLS2, the activation of p53 increases the levels of glutamate and alpha-ketoglutarate, mitochondrial respiration rate, and GSH levels and decreases reactive oxygen species (ROS) levels in cells. Furthermore, GLS2 expression is lost or greatly decreased in hepatocellular carcinomas and the overexpression of GLS2 greatly reduced tumor cell colony formation. These results demonstrated that as a unique p53 target gene, GLS2 is a mediator of p53's role in energy metabolism and antioxidant defense, which can contribute to its role in tumor suppression.
Collapse
|