51
|
Abstract
Abstract
Transition metals such as zinc, copper and iron play vital roles in maintaining physiological functions and homeostasis of living systems. Molecular imaging, including two-photon imaging (TPI), bioluminescence imaging (BLI) and photoacoustic imaging (PAI), could act as non-invasive toolkits for capturing dynamic events in living cells, tissues and whole animals. Herein, we review the recent progress in the development of molecular probes for essential transition metals and their biological applications. We emphasize the contributions of metallostasis to health and disease, and discuss the future research directions about how to harness the great potential of metal sensors.
Graphic Abstract
Collapse
|
52
|
Cobine PA, Moore SA, Leary SC. Getting out what you put in: Copper in mitochondria and its impacts on human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118867. [PMID: 32979421 DOI: 10.1016/j.bbamcr.2020.118867] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
Collapse
Affiliation(s)
- Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
53
|
Lee S, Chung CYS, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020; 142:14993-15003. [PMID: 32815370 PMCID: PMC7877313 DOI: 10.1021/jacs.0c05727] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
54
|
Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener 2020; 9:10. [PMID: 32266063 PMCID: PMC7119290 DOI: 10.1186/s40035-020-00189-z] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background The homeostasis of metal ions, such as iron, copper, zinc and calcium, in the brain is crucial for maintaining normal physiological functions. Studies have shown that imbalance of these metal ions in the brain is closely related to the onset and progression of Alzheimer's disease (AD), the most common neurodegenerative disorder in the elderly. Main body Erroneous deposition/distribution of the metal ions in different brain regions induces oxidative stress. The metal ions imbalance and oxidative stress together or independently promote amyloid-β (Aβ) overproduction by activating β- or γ-secretases and inhibiting α-secretase, it also causes tau hyperphosphorylation by activating protein kinases, such as glycogen synthase kinase-3β (GSK-3β), cyclin-dependent protein kinase-5 (CDK5), mitogen-activated protein kinases (MAPKs), etc., and inhibiting protein phosphatase 2A (PP2A). The metal ions imbalances can also directly or indirectly disrupt organelles, causing endoplasmic reticulum (ER) stress; mitochondrial and autophagic dysfunctions, which can cause or aggravate Aβ and tau aggregation/accumulation, and impair synaptic functions. Even worse, the metal ions imbalance-induced alterations can reversely exacerbate metal ions misdistribution and deposition. The vicious cycles between metal ions imbalances and Aβ/tau abnormalities will eventually lead to a chronic neurodegeneration and cognitive deficits, such as seen in AD patients. Conclusion The metal ions imbalance induces Aβ and tau pathologies by directly or indirectly affecting multiple cellular/subcellular pathways, and the disrupted homeostasis can reversely aggravate the abnormalities of metal ions transportation/deposition. Therefore, adjusting metal balance by supplementing or chelating the metal ions may be potential in ameliorating AD pathologies, which provides new research directions for AD treatment.
Collapse
Affiliation(s)
- Lu Wang
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Ya-Ling Yin
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Zi Liu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Peng Shen
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Yan-Ge Zheng
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Rui Lan
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Cheng-Biao Lu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Jian-Zhi Wang
- 2Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
55
|
Smaga LP, Pino NW, Ibarra GE, Krishnamurthy V, Chan J. A Photoactivatable Formaldehyde Donor with Fluorescence Monitoring Reveals Threshold To Arrest Cell Migration. J Am Chem Soc 2020; 142:680-684. [PMID: 31898899 DOI: 10.1021/jacs.9b11899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlled light-mediated delivery of biological analytes can enable the investigation of highly reactivity molecules within living systems. As many biological effects are concentration dependent, it is critical to determine the location, time, and quantity of analyte donation. In this work, we have developed the first photoactivatable donor for formaldehyde (FA). Our optimized photoactivatable donor, photoFAD-3, is equipped with a fluorescence readout that enables monitoring of FA release with a concomitant 139-fold fluorescence enhancement. Tuning of photostability and cellular retention enabled quantification of intracellular FA release through cell lysate calibration. Application of photoFAD-3 uncovered the concentration range necessary for arresting wound healing in live cells. This marks the first report where a photoactivatable donor for any analyte has been used to quantify intracellular release.
Collapse
Affiliation(s)
- Lukas P Smaga
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Nicholas W Pino
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Gabriela E Ibarra
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Vishnu Krishnamurthy
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
56
|
Bhattacharjee A, Ghosh S, Chatterji A, Chakraborty K. Neuron-glia: understanding cellular copper homeostasis, its cross-talk and their contribution towards neurodegenerative diseases. Metallomics 2020; 12:1897-1911. [PMID: 33295934 DOI: 10.1039/d0mt00168f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the years, the mechanism of copper homeostasis in various organ systems has gained importance. This is owing to the involvement of copper in a wide range of genetic disorders, most of them involving neurological symptoms. This highlights the importance of copper and its tight regulation in a complex organ system like the brain. It demands understanding the mechanism of copper acquisition and delivery to various cell types overcoming the limitation imposed by the blood brain barrier. The present review aims to investigate the existing work to understand the mechanism and complexity of cellular copper homeostasis in the two major cell types of the CNS - the neurons and the astrocytes. It investigates the mechanism of copper uptake, incorporation and export by these cell types. Furthermore, it brings forth the common as well as the exclusive aspects of neuronal and glial copper homeostasis including the studies from copper-based sensors. Glia act as a mediator of copper supply between the endothelium and the neurons. They possess all the qualifications of acting as a 'copper-sponge' for supply to the neurons. The neurons, on the other hand, require copper for various essential functions like incorporation as a cofactor for enzymes, synaptogenesis, axonal extension, inhibition of postsynaptic excitotoxicity, etc. Lastly, we also aim to understand the neuronal and glial pathology in various copper homeostasis disorders. The etiology of glial pathology and its contribution towards neuronal pathology and vice versa underlies the complexity of the neuropathology associated with the copper metabolism disorders.
Collapse
Affiliation(s)
- Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal 700135, India.
| | | | | | | |
Collapse
|
57
|
Poronik YM, Vygranenko KV, Gryko D, Gryko DT. Rhodols - synthesis, photophysical properties and applications as fluorescent probes. Chem Soc Rev 2019; 48:5242-5265. [PMID: 31549709 DOI: 10.1039/c9cs00166b] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formal replacement of one dialkylamino group in rhodamines with a hydroxyl group transforms them into rhodols. This apparently minor difference is not as small as one may think; rhodamines belong to the cyanine family whereas rhodols belong to merocyanines. Discovered in the late 19th century, rhodols have only very recently begun to gain momentum in the field of advanced fluorescence imaging. This is in part due to the increased understanding of their photophysical properties, and new methods of synthesis. Rationalization of how the nature and arrangement of polar substituents around the core affect the photophysical properties of rhodols is now possible. The emergence of so-called π-expanded and heteroatom-modified rhodols has also allowed their fluorescence to be bathochromically shifted into regions applicable for biological imaging. This review serves to outline applicable synthetic strategies for the synthesis of rhodols, and to highlight important structure-property relationships. In the first part of this Review, various synthetic methods leading to rhodols are presented, followed by structural considerations and an overview of photophysical properties. The second part of this review is entirely devoted to the applications of rhodols as fluorescent reporters in biological imaging.
Collapse
Affiliation(s)
- Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
58
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
59
|
WANG X, LI P, ZHANG W, TANG B. Recent Advances in Fluorescence Imaging of Bioactive Molecules in Neurons and in Vivo. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
60
|
Das S, Carmona A, Khatua K, Porcaro F, Somogyi A, Ortega R, Datta A. Manganese Mapping Using a Fluorescent Mn 2+ Sensor and Nanosynchrotron X-ray Fluorescence Reveals the Role of the Golgi Apparatus as a Manganese Storage Site. Inorg Chem 2019; 58:13724-13732. [PMID: 31503472 DOI: 10.1021/acs.inorgchem.9b01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Elucidating dynamics in transition-metal distribution and localization under physiological and pathophysiological conditions is central to our understanding of metal-ion regulation. In this Forum Article, we focus on manganese and specifically recent developments that point to the relevance of the Golgi apparatus in manganese detoxification when this essential metal ion is overaccumulated because of either environmental exposure or mutations in manganese efflux transporters. In order to further evaluate the role of the Golgi apparatus as a manganese-ion storage compartment under subcytotoxic manganese levels, we use a combination of confocal microscopy using a sensitive "turn-on" fluorescent manganese sensor, M1, and nanosynchrotron X-ray fluorescence imaging to show that manganese ions are stored in the Golgi apparatus under micromolar manganese exposure concentrations. Our results, along with previous reports on manganese accumulation, now indicate a central role of the Golgi apparatus in manganese storage and trafficking under subcytotoxic manganese levels and hint toward a possible role of the Golgi apparatus in manganese storage even under physiological conditions.
Collapse
Affiliation(s)
- Sayani Das
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Asuncion Carmona
- Chemical Imaging and Speciation , CENBG, University of Bordeaux, UMR 5797 , 33175 Gradignan , France.,CNRS, IN2P3, CENBG, UMR 5797 , 33175 Gradignan , France
| | - Kaustav Khatua
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Francesco Porcaro
- Chemical Imaging and Speciation , CENBG, University of Bordeaux, UMR 5797 , 33175 Gradignan , France.,CNRS, IN2P3, CENBG, UMR 5797 , 33175 Gradignan , France
| | - Andrea Somogyi
- Nanoscopium Synchrotron SOLEIL Saint-Aubin , 91192 Gif-sur-Yvette Cedex , France
| | - Richard Ortega
- Chemical Imaging and Speciation , CENBG, University of Bordeaux, UMR 5797 , 33175 Gradignan , France.,CNRS, IN2P3, CENBG, UMR 5797 , 33175 Gradignan , France
| | - Ankona Datta
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road , Colaba, Mumbai 400005 , India
| |
Collapse
|
61
|
Calvo JS, Lopez VM, Meloni G. Non-coordinative metal selectivity bias in human metallothioneins metal-thiolate clusters. Metallomics 2019; 10:1777-1791. [PMID: 30420986 DOI: 10.1039/c8mt00264a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian metallothioneins (MT-1 through MT-4) are a class of metal binding proteins containing two metal-thiolate clusters formed through the preferential coordination of d10 metals, Cu(i) and Zn(ii), by 20 conserved cysteine residues located in two protein domains. MT metalation (homometallic or heterometallic Zn(ii)/Cu(i) species) appears to be isoform specific and controlling zinc and copper concentrations to perform specific and distinct biological functions. Structural and functional relationships, and in vivo metalation studies, identified evolutionary features defining the metal-selectivity nature for MTs. Metallothionein-3 (MT-3) has been shown to possess the most pronounced Cu-thionein character forming Cu(i)-containing species more favorably than metallothionein-2 (MT-2), which possesses the strongest Zn-thionein character. In this work, we identify isoform-specific determinants which control metal binding selectivity bias in different MTs isoforms. By studying the reactivity of Zn7MT-2, Zn7MT-3 and Zn7MT-3 mutants towards Cu(ii) to form Cu(i)4Zn4MTs, we have identified isoform-specific key non-coordinating residues governing folding/outer sphere control of metal selectivity bias in MTs metal clusters. By mutating selected residues and motifs in MT-3 to the corresponding MT-2 amino acids, we dissected key roles in modulating cluster dynamic and metal exchange rates, in increasing the Cu(i)-affinity in MT-3 N-terminal β-domain and/or modulating the higher stability of the Zn(ii)-thiolate cluster in MT-2 β-domain. We thus engineered MT-3 variants in which the copper-thionein character is converted into a zinc-thionein. These results provide new insights into the molecular determinants governing metal selectivity in metal-thiolate clusters.
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | | | | |
Collapse
|
62
|
Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc Natl Acad Sci U S A 2019; 116:18285-18294. [PMID: 31451653 DOI: 10.1073/pnas.1904610116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.
Collapse
|
63
|
Dutter BF, Ender A, Sulikowski GA, Weaver CD. Rhodol-based thallium sensors for cellular imaging of potassium channel activity. Org Biomol Chem 2019; 16:5575-5579. [PMID: 30051127 DOI: 10.1039/c8ob01098f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thallium (Tl+) flux assays enable imaging of potassium (K+) channel activity in cells and tissues by exploiting the permeability of K+ channels to Tl+ coupled with a fluorescent Tl+ sensitive dye. Common Tl+ sensing dyes utilize fluorescein as the fluorophore though fluorescein exhibits certain undesirable properties in these assays including short excitation wavelengths and pH sensitivity. To overcome these drawbacks, the replacement of fluorescein with rhodols was investigated. A library of 13 rhodol-based Tl+ sensors was synthesized and their properties and performance in Tl+ flux assays evaluated. The dimethyl rhodol Tl+ sensor emerged as the best of the series and performed comparably to fluorescein-based sensors while demonstrating greater pH tolerance in the physiological range and excitation and emission spectra 30 nm red-shifted from fluorescein.
Collapse
Affiliation(s)
- Brendan F Dutter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
64
|
Hettie KS, Klockow JL, Glass TE, Chin FT. Near-Infrared Fluorescent Rosol Dye Tailored toward Lymphatic Mapping Applications. Anal Chem 2019; 91:3110-3117. [PMID: 30669835 PMCID: PMC6516061 DOI: 10.1021/acs.analchem.8b05709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An optical molecular imaging contrast agent that is tailored toward lymphatic mapping techniques implementing near-infrared (NIR) fluorescence image-guided navigation in the planning and surgical treatment of cancers would significantly aid in enabling the real-time visualization of the potential metastatic tumor-draining lymph node(s) for their needed surgical biopsy and/or removal, thereby ensuring unmissed disease to prevent recurrence and improve patient survival rates. Here, the development of the first NIR fluorescent rosol dye (THQ-Rosol) tailored to overcome the limitations arising from the suboptimal properties of the generic molecular fluorescent dyes commonly used for such applications is described. In developing THQ-Rosol, we prepared a progressive series of torsionally restrictive N-substituted non-NIR fluorescent rosol dyes based on density functional theory (DFT) calculations, wherein we discerned high correlations amongst their calculated energetics, modeled N-C3' torsion angles, and evaluated properties. We leveraged these strong relationships to rationally design THQ-Rosol, wherein DFT calculations inspired an innovative approach and synthetic strategy to afford an uncharged xanthene core-based scaffold/molecular platform with an aptly elevated p Ka value alongside NIR fluorescence emission (ca.700-900 nm). THQ-Rosol exhibited 710 nm NIR fluorescence emission, a 160 nm Stokes shift, robust photostability, and an aptly elevated p Ka value (5.85) for affording pH-insensitivity and optimal contrast upon designed use. We demonstrated the efficacy of THQ-Rosol for lymphatic mapping with in vitro and in vivo studies, wherein it revealed timely tumor drainage and afforded definitive lymph node visualization upon its administration and accumulation. THQ-Rosol serves as a proof-of-concept for the effective tailoring of an uncharged xanthene core-based scaffold/molecular platform toward a specific imaging application using rational design.
Collapse
Affiliation(s)
- Kenneth S. Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305
| | - Jessica L. Klockow
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy E. Glass
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Frederick T. Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
65
|
Das S, Khatua K, Rakshit A, Carmona A, Sarkar A, Bakthavatsalam S, Ortega R, Datta A. Emerging chemical tools and techniques for tracking biological manganese. Dalton Trans 2019; 48:7047-7061. [DOI: 10.1039/c9dt00508k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This frontier article discusses chemical tools and techniques for tracking and imaging Mn ions in biology.
Collapse
Affiliation(s)
- Sayani Das
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Kaustav Khatua
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Ananya Rakshit
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Asuncion Carmona
- Chemical Imaging and Speciation
- CENBG
- University of Bordeaux
- UMR 5797
- 33175 Gradignan
| | - Anindita Sarkar
- Department of Biological Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | | - Richard Ortega
- Chemical Imaging and Speciation
- CENBG
- University of Bordeaux
- UMR 5797
- 33175 Gradignan
| | - Ankona Datta
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| |
Collapse
|
66
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
67
|
Barca A, Ippati S, Urso E, Vetrugno C, Storelli C, Maffia M, Romano A, Verri T. Carnosine modulates the Sp1-Slc31a1/Ctr1 copper-sensing system and influences copper homeostasis in murine CNS-derived cells. Am J Physiol Cell Physiol 2018; 316:C235-C245. [PMID: 30485136 DOI: 10.1152/ajpcell.00106.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carnosine (CAR) is an endogenous dipeptide physiologically present in excitable tissues, such as central nervous system (CNS) and muscle. CAR is acknowledged as a substrate involved in many homeostatic pathways and mechanisms and, due to its biochemical properties, as a molecule intertwined with the homeostasis of heavy metals such as copper (Cu). In CNS, Cu excess and dysregulation imply oxidative stress, free-radical production, and functional impairment leading to neurodegeneration. Here, we report that CAR intercepts the regulatory routes of Cu homeostasis in nervous cells and tissues. Specifically, in a murine neuron-derived cell model, i.e., the B104 neuroblastoma cells, extracellular CAR exposure up to 24 h influenced intracellular Cu entry and affected (downregulated) the key Cu-sensing system, consisting of the gene coding for the Slc31a1 transmembrane Cu importer (alias Ctr1), and the gene coding for the Cu-responsive transcription factor Sp1 ( Sp1). Also, CAR exposure upregulated CAR biosynthesis ( Carns1), extracellular degradation ( Cndp1), and transport ( Slc15a4, alias Pht1) genes and elicited CAR intracellular accumulation, contributing to the outline of functional association between CAR and Cu within the cell. Interestingly, the same gene modulation scheme acting in vitro operates in vivo in brains of mice undergoing dietary administration of CAR in drinking water for 2 wk. Overall, our findings describe for the first time a regulatory interaction between CAR and Cu pathways in CNS and indicate CAR as a novel active molecule within the network of ligands and chaperones that physiologically regulate Cu homeostasis.
Collapse
Affiliation(s)
- Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| | - Stefania Ippati
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| | - Emanuela Urso
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| | - Carla Vetrugno
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| | - Carlo Storelli
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| | - Michele Maffia
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| | - Alessandro Romano
- Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, San Raffaele Scientific Institute , Milan , Italy
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento , Lecce , Italy
| |
Collapse
|
68
|
Su TA, Shihadih DS, Cao W, Detomasi TC, Heffern MC, Jia S, Stahl A, Chang CJ. A Modular Ionophore Platform for Liver-Directed Copper Supplementation in Cells and Animals. J Am Chem Soc 2018; 140:13764-13774. [PMID: 30351140 PMCID: PMC6465169 DOI: 10.1021/jacs.8b08014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper deficiency is implicated in a variety of genetic, neurological, cardiovascular, and metabolic diseases. Current approaches for addressing copper deficiency rely on generic copper supplementation, which can potentially lead to detrimental off-target metal accumulation in unwanted tissues and subsequently trigger oxidative stress and damage cascades. Here we present a new modular platform for delivering metal ions in a tissue-specific manner and demonstrate liver-targeted copper supplementation as a proof of concept of this strategy. Specifically, we designed and synthesized an N-acetylgalactosamine-functionalized ionophore, Gal-Cu(gtsm), to serve as a copper-carrying "Trojan Horse" that targets liver-localized asialoglycoprotein receptors (ASGPRs) and releases copper only after being taken up by cells, where the reducing intracellular environment triggers copper release from the ionophore. We utilized a combination of bioluminescence imaging and inductively coupled plasma mass spectrometry assays to establish ASGPR-dependent copper accumulation with this reagent in both liver cell culture and mouse models with minimal toxicity. The modular nature of our synthetic approach presages that this platform can be expanded to deliver a broader range of metals to specific cells, tissues, and organs in a more directed manner to treat metal deficiency in disease.
Collapse
Affiliation(s)
- Timothy A. Su
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Diyala S. Shihadih
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Wendy Cao
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Tyler C. Detomasi
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Marie C. Heffern
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Andreas Stahl
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
69
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
70
|
Sensi SL, Granzotto A, Siotto M, Squitti R. Copper and Zinc Dysregulation in Alzheimer's Disease. Trends Pharmacol Sci 2018; 39:1049-1063. [PMID: 30352697 DOI: 10.1016/j.tips.2018.10.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia. Despite a wealth of knowledge on the molecular mechanisms involved in AD, current treatments have mainly focused on targeting amyloid β (Aβ) production, but have failed to show significant effects and efficacy. Therefore, a critical reconsideration of the multifactorial nature of the disease is needed. AD is a complex multifactorial disorder in which, along with Aβ and tau, the convergence of polygenic, epigenetic, environmental, vascular, and metabolic factors increases the global susceptibility to the disease and shapes its course. One of the cofactors converging on AD is the dysregulation of brain metals. In this review, we focus on the role of AD-related neurodegeneration and cognitive decline triggered by the imbalance of two endogenous metals: copper and zinc.
Collapse
Affiliation(s)
- Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine, CeSI-MeT, Chieti, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy; Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California, Irvine, Irvine, USA.
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine, CeSI-MeT, Chieti, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | | | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
71
|
Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem 2018; 293:20085-20098. [PMID: 30341172 DOI: 10.1074/jbc.ra118.004889] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
The copper (Cu) transporters ATPase copper-transporting alpha (ATP7A) and ATPase copper-transporting beta (ATP7B) are essential for the normal function of the mammalian central nervous system. Inactivation of ATP7A or ATP7B causes the severe neurological disorders, Menkes disease and Wilson disease, respectively. In both diseases, Cu imbalance is associated with abnormal levels of the catecholamine-type neurotransmitters dopamine and norepinephrine. Dopamine is converted to norepinephrine by dopamine-β-hydroxylase (DBH), which acquires its essential Cu cofactor from ATP7A. However, the role of ATP7B in catecholamine homeostasis is unclear. Here, using immunostaining of mouse brain sections and cultured cells, we show that DBH-containing neurons express both ATP7A and ATP7B. The two transporters are located in distinct cellular compartments and oppositely regulate the export of soluble DBH from cultured neuronal cells under resting conditions. Down-regulation of ATP7A, overexpression of ATP7B, and pharmacological Cu depletion increased DBH retention in cells. In contrast, ATP7B inactivation elevated extracellular DBH. Proteolytic processing and the specific activity of exported DBH were not affected by changes in ATP7B levels. These results establish distinct regulatory roles for ATP7A and ATP7B in neuronal cells and explain, in part, the lack of functional compensation between these two transporters in human disorders of Cu imbalance.
Collapse
Affiliation(s)
- Katharina Schmidt
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Thomas Schaffer
- the Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Samuel Jayakanthan
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bilal Bari
- the Department of Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Abigael Muchenditsi
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,.
| |
Collapse
|
72
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
73
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
74
|
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15:490-503. [PMID: 29413961 PMCID: PMC5881419 DOI: 10.1016/j.redox.2018.01.008] [Citation(s) in RCA: 736] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.
Collapse
Affiliation(s)
- James Nathan Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK.
| | - Maria Luisa Fiorello
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK
| | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK
| |
Collapse
|
75
|
Senovilla M, Castro-Rodríguez R, Abreu I, Escudero V, Kryvoruchko I, Udvardi MK, Imperial J, González-Guerrero M. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2018; 218:696-709. [PMID: 29349810 DOI: 10.1111/nph.14992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Igor Kryvoruchko
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano, 115 bis, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
76
|
Ackerman CM, Weber PK, Xiao T, Thai B, Kuo TJ, Zhang E, Pett-Ridge J, Chang CJ. Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping within photoreceptor megamitochondria in a zebrafish model of Menkes disease. Metallomics 2018; 10:474-485. [PMID: 29507920 DOI: 10.1039/c7mt00349h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for eukaryotic life, and animals must acquire this nutrient through the diet and distribute it to cells and organelles for proper function of biological targets. Indeed, mutations in the central copper exporter ATP7A contribute to a spectrum of diseases, including Menkes disease, with symptoms ranging from neurodegeneration to lax connective tissue. As such, a better understanding of the fundamental impacts of ATP7A mutations on in vivo copper distributions is of relevance to those affected by these diseases. Here we combine metal imaging and optical imaging techniques at a variety of spatial resolutions to identify tissues and structures with altered copper levels in the Calamitygw71 zebrafish model of Menkes disease. Rapid profiling of tissue slices with LA-ICP-MS identified reduced copper levels in the brain, neuroretina, and liver of Menkes fish compared to control specimens. High resolution nanoSIMS imaging of the neuroretina, combined with electron and confocal microscopies, identified the megamitochondria of photoreceptors as loci of copper accumulation in wildtype fish, with lower levels of megamitochondrial copper observed in Calamitygw71 zebrafish. Interestingly, this localized copper decrease does not result in impaired photoreceptor development or altered megamitochondrial morphology, suggesting the prioritization of copper at sufficient levels for maintaining essential mitochondrial functions. Together, these data establish the Calamitygw71 zebrafish as an optically transparent in vivo model for the study of neural copper misregulation, illuminate a role for the ATP7A copper exporter in trafficking copper to the neuroretina, and highlight the utility of combining multiple imaging techniques for studying metals in whole organism settings with spatial resolution.
Collapse
Affiliation(s)
- Cheri M Ackerman
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Peter K Weber
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, California, USA. and Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Bao Thai
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Tiffani J Kuo
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Emily Zhang
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Jennifer Pett-Ridge
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California, USA. and Howard Hughes Medical Institute, University of California, Berkeley, California, USA and Department of Molecular and Cellular Biology, University of California, Berkeley, California, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
77
|
Goswami A, Pramanik S, Schmittel M. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network. Chem Commun (Camb) 2018; 54:3955-3958. [DOI: 10.1039/c8cc01496e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an example of advanced molecular cybernetics eight components work together through chemical signaling reversibly setting up multifunctional nanomachinery.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Susnata Pramanik
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
78
|
Au-Yeung HY, Chan CY, Tong KY, Yu ZH. Copper-based reactions in analyte-responsive fluorescent probes for biological applications. J Inorg Biochem 2017; 177:300-312. [DOI: 10.1016/j.jinorgbio.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
|
79
|
Abstract
All known eukaryotes require copper for their development and survival. The essentiality of copper reflects its widespread use as a co-factor in conserved enzymes that catalyze biochemical reactions critical to energy production, free radical detoxification, collagen deposition, neurotransmitter biosynthesis and iron homeostasis. However, the prioritized use of copper poses an organism with a considerable challenge because, in its unbound form, copper can potentiate free radical production and displace iron-sulphur clusters to disrupt protein function. Protective mechanisms therefore evolved to mitigate this challenge and tightly regulate the acquisition, trafficking and storage of copper such that the metal ion is rarely found in its free form in the cell. Findings by a number of groups over the last ten years emphasize that this regulatory framework forms the foundation of a system that is capable of monitoring copper status and reprioritizing copper usage at both the cellular and systemic levels of organization. While the identification of relevant molecular mechanisms and signaling pathways has proven to be difficult and remains a barrier to our full understanding of the regulation of copper homeostasis, mounting evidence points to the mitochondrion as a pivotal hub in this regard in both healthy and diseased states. Here, we review our current understanding of copper handling pathways contained within the organelle and consider plausible mechanisms that may serve to functionally couple their activity to that of other cellular copper handling machinery to maintain copper homeostasis.
Collapse
Affiliation(s)
- Zakery N. Baker
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| |
Collapse
|
80
|
Abstract
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
Collapse
Affiliation(s)
| | - Christopher J Chang
- Departments of Chemistry, Berkeley, California 94720-1460; Molecular and Cell Biology, Berkeley, California 94720-1460; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720-1460; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
81
|
Grzybowski M, Taki M, Yamaguchi S. Selective Conversion of P=O-Bridged Rhodamines into P=O-Rhodols: Solvatochromic Near-Infrared Fluorophores. Chemistry 2017; 23:13028-13032. [PMID: 28748577 DOI: 10.1002/chem.201703456] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/28/2022]
Abstract
The substitution of an oxygen atom in rhodols with a phosphine oxide (P=O) moiety affords P=O-bridged rhodols as a new type of near-infrared (NIR) fluorophore. This compound class can be readily accessed upon exposure of the corresponding rhodamines to aqueous basic conditions. The electron-withdrawing effect of the P=O group facilitates the hydrolytic deamination, and, moreover, prolonged exposure to aqueous basic conditions generates P=O-bridged fluoresceins, that is, a series of three P=O-bridged xanthene dyes is available in one simple operation. The P=O-bridged rhodols show significant bathochromic shifts of the longest-wavelength absorption maximum (Δλ=125 nm; >3600 cm-1 ) upon changing the solvent from toluene to water, whereas the emission is shifted less drastically (Δλ=70 nm; 1600 cm-1 ). The hydrogen bonding between the P=O and C=O groups with protic solvents results in substantial stabilization of the LUMO level, which is responsible for the solvatochromism.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Japan
| |
Collapse
|
82
|
Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection. Infect Immun 2017; 85:IAI.00351-17. [PMID: 28652309 DOI: 10.1128/iai.00351-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7aLysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7aLysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7aLysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7aLysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection.
Collapse
|
83
|
Perrin L, Roudeau S, Carmona A, Domart F, Petersen JD, Bohic S, Yang Y, Cloetens P, Ortega R. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons. ACS Chem Neurosci 2017; 8:1490-1499. [PMID: 28323401 DOI: 10.1021/acschemneuro.6b00452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.
Collapse
Affiliation(s)
- Laura Perrin
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Stéphane Roudeau
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Asuncion Carmona
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Florelle Domart
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
| | - Jennifer D. Petersen
- University of Bordeaux, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM,
University of Bordeaux, 33000 Bordeaux, France
| | - Sylvain Bohic
- ESRF, The European Synchrotron, 38000 Grenoble, France
- Inserm U1216, 38000 Grenoble, France
- Grenoble Institut
des Neurosciences, GIN University of Grenoble Alpes, 38000 Grenoble, France
| | - Yang Yang
- ESRF, The European Synchrotron, 38000 Grenoble, France
| | | | - Richard Ortega
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| |
Collapse
|
84
|
Shimberg GD, Ok K, Neu HM, Splan KE, Michel SLJ. Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP). Inorg Chem 2017; 56:6838-6848. [PMID: 28557421 DOI: 10.1021/acs.inorgchem.7b00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Collapse
Affiliation(s)
- Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kathryn E Splan
- Department of Chemistry, Macalester College , 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
85
|
Bousleiman J, Pinsky A, Ki S, Su A, Morozova I, Kalachikov S, Wiqas A, Silver R, Sever M, Austin RN. Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3? Int J Mol Sci 2017; 18:ijms18061133. [PMID: 28587098 PMCID: PMC5485957 DOI: 10.3390/ijms18061133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022] Open
Abstract
A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3.
Collapse
Affiliation(s)
- Jamie Bousleiman
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Alexa Pinsky
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Sohee Ki
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Angela Su
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amen Wiqas
- Department of Biology, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rae Silver
- Department of Psychology and Program in Neuroscience, Barnard College of Columbia University, New York, NY 10027, USA.
- Department of Psychology, Columbia University, New York, NY 10027, USA.
- Department of Pathology and Cell Biology Columbia Health Sciences, New York, NY 10027, USA.
| | - Mary Sever
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|
86
|
Interactions of cisplatin and the copper transporter CTR1 in human colon cancer cells. J Biol Inorg Chem 2017; 22:765-774. [PMID: 28516214 DOI: 10.1007/s00775-017-1467-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
There is much interest in understanding the mechanisms by which platinum-based anticancer agents enter cells, and the copper transporter CTR1 has been the focus of many recent studies. While there is a clinical correlation between CTR1 levels and platinum efficacy, cellular studies have provided conflicting evidence relating to the relationship between cisplatin and CTR1. We report here our studies of the relationship between cisplatin and copper homeostasis in human colon cancer cells. While the accumulation of copper and platinum do not appear to compete with each other, we did observe that cisplatin perturbs CTR1 distribution within 10 min, a far shorter incubation time than commonly employed in cellular studies of cisplatin. Furthermore, on these short time-scales, cisplatin caused an increase in the cytoplasmic labile copper pool. While the predominant focus of studies to date has been on CTR1, these studies highlight the importance of investigating the interaction of cisplatin with other copper proteins.
Collapse
|
87
|
Abstract
Identifying what elements are required for neural activity as potential path toward consciousness, which represents life with the state or quality of awareness, is a "Holy Grail" of chemistry. As life itself arises from coordinated interactions between elements across the periodic table, the majority of which are metals, new approaches for analysis, binding, and control of these primary chemical entities can help enrich our understanding of inorganic chemistry in living systems in a context that is both universal and personal.
Collapse
|
88
|
Kulkarni RU, Kramer DJ, Pourmandi N, Karbasi K, Bateup HS, Miller EW. Voltage-sensitive rhodol with enhanced two-photon brightness. Proc Natl Acad Sci U S A 2017; 114:2813-2818. [PMID: 28242676 PMCID: PMC5358379 DOI: 10.1073/pnas.1610791114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.
Collapse
Affiliation(s)
| | - Daniel J Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Narges Pourmandi
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kaveh Karbasi
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
89
|
Mizuno D, Kawahara M. Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
90
|
Tanaka KI, Kawahara M. Copper Enhances Zinc-Induced Neurotoxicity and the Endoplasmic Reticulum Stress Response in a Neuronal Model of Vascular Dementia. Front Neurosci 2017; 11:58. [PMID: 28232787 PMCID: PMC5299027 DOI: 10.3389/fnins.2017.00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
Zinc (Zn), an essential trace element, is secreted by synaptic vesicles during neuronal excitation and plays several critical roles in neuronal information processing. However, excess Zn ion (Zn2+) is neurotoxic and has a causative role in the pathogenesis of vascular dementia. Here, we investigated the molecular mechanism of Zn2+-induced neurotoxicity by using immortalized hypothalamic neurons (GT1-7 cells), which are more vulnerable than other neuronal cells to Zn2+. We examined the effects of other metal ions on the Zn2+-induced neurotoxicity in these cells and found that sub-lethal concentrations of copper ion (Cu2+) markedly exacerbated Zn2+-induced neurotoxicity. The co-administration of Cu2+ and Zn2+ also significantly increased the expression of genes related to the endoplasmic reticulum's stress response, including CHOP, GADD34, and ATF4. Similar to Zn2+, Cu2+ is stored in presynaptic vesicles and secreted during neuronal excitation. Thus, based on our results, we hypothesize here that Cu2+ interacts with Zn2+ in the synapse to synergistically promote neuronal death and significantly influence the pathogenesis of vascular dementia.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio Analytical Chemistry, Musashino University Nishitokyo-shi, Japan
| | - Masahiro Kawahara
- Department of Bio Analytical Chemistry, Musashino University Nishitokyo-shi, Japan
| |
Collapse
|
91
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
92
|
Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A, Chang CJ. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2016; 113:14219-14224. [PMID: 27911810 PMCID: PMC5167165 DOI: 10.1073/pnas.1613628113] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper is a required metal nutrient for life, but global or local alterations in its homeostasis are linked to diseases spanning genetic and metabolic disorders to cancer and neurodegeneration. Technologies that enable longitudinal in vivo monitoring of dynamic copper pools can help meet the need to study the complex interplay between copper status, health, and disease in the same living organism over time. Here, we present the synthesis, characterization, and in vivo imaging applications of Copper-Caged Luciferin-1 (CCL-1), a bioluminescent reporter for tissue-specific copper visualization in living animals. CCL-1 uses a selective copper(I)-dependent oxidative cleavage reaction to release d-luciferin for subsequent bioluminescent reaction with firefly luciferase. The probe can detect physiological changes in labile Cu+ levels in live cells and mice under situations of copper deficiency or overload. Application of CCL-1 to mice with liver-specific luciferase expression in a diet-induced model of nonalcoholic fatty liver disease reveals onset of hepatic copper deficiency and altered expression levels of central copper trafficking proteins that accompany symptoms of glucose intolerance and weight gain. The data connect copper dysregulation to metabolic liver disease and provide a starting point for expanding the toolbox of reactivity-based chemical reporters for cell- and tissue-specific in vivo imaging.
Collapse
Affiliation(s)
- Marie C Heffern
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Hyo Min Park
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
| | - Ho Yu Au-Yeung
- Department of Chemistry, University of California, Berkeley, CA 94720
| | | | - Cheri M Ackerman
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720;
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
93
|
Chun H, Sharma AK, Lee J, Chan J, Jia S, Kim BE. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans. J Biol Chem 2016; 292:1-14. [PMID: 27881675 DOI: 10.1074/jbc.m116.760876] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 12/23/2022] Open
Abstract
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways.
Collapse
Affiliation(s)
- Haarin Chun
- From the Department of Animal and Avian Sciences
| | | | - Jaekwon Lee
- the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, and
| | - Jefferson Chan
- the Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Shang Jia
- the Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences, .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
94
|
Bonnemaison ML, Duffy ME, Mains RE, Vogt S, Eipper BA, Ralle M. Copper, zinc and calcium: imaging and quantification in anterior pituitary secretory granules. Metallomics 2016; 8:1012-22. [PMID: 27426256 DOI: 10.1039/c6mt00079g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anterior pituitary is specialized for the synthesis, storage and release of peptide hormones. The activation of inactive peptide hormone precursors requires a specific set of proteases and other post-translational processing enzymes. High levels of peptidylglycine α-amidating monooxygenase (PAM), an essential peptide processing enzyme, occur in the anterior pituitary. PAM, which converts glycine-extended peptides into amidated products, requires copper and zinc to support its two catalytic activities and calcium for structure. We used X-ray fluorescence microscopy on rat pituitary sections and inductively coupled plasma mass spectrometry on subcellular fractions prepared from rat anterior pituitary to localize and quantify copper, zinc and calcium. X-ray fluorescence microscopy indicated that the calcium concentration in pituitary tissue was about 2.5 mM, 10-times more than zinc and 50-times more than copper. Although no higher than cytosolic levels, secretory granule levels of copper exceeded PAM levels by a factor of 10. Atp7a, which transports copper into the lumen of the secretory pathway, was enriched in endosomes and Golgi, not in secretory granules. If Atp7a transfers copper directly to PAM, this pH-dependent process is likely to occur in Golgi and endosomes.
Collapse
Affiliation(s)
- Mathilde L Bonnemaison
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Shen C, Kolanowski JL, Tran CMN, Kaur A, Akerfeldt MC, Rahme MS, Hambley TW, New EJ. A ratiometric fluorescent sensor for the mitochondrial copper pool. Metallomics 2016; 8:915-9. [PMID: 27550322 DOI: 10.1039/c6mt00083e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper plays a key role in the modulation of cellular function, defence, and growth. Here we present InCCu1, a ratiometric fluorescent sensor for mitochondrial copper, which changes from red to blue emission in the presence of Cu(i). Employing this probe in microscopy and flow cytometry, we show that cisplatin-treated cells have an impaired ability to accumulate copper in the mitochondria.
Collapse
Affiliation(s)
- Clara Shen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Yamamoto T, Tsigelny IF, Götz AW, Howell SB. Cisplatin inhibits MEK1/2. Oncotarget 2016; 6:23510-22. [PMID: 26155939 PMCID: PMC4695133 DOI: 10.18632/oncotarget.4355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
Cisplatin (cDDP) is known to bind to the CXXC motif of proteins containing a ferrodoxin-like fold but little is known about its ability to interact with other Cu-binding proteins. MEK1/2 has recently been identified as a Cu-dependent enzyme that does not contain a CXXC motif. We found that cDDP bound to and inhibited the activity of recombinant MEK1 with an IC50 of 0.28 μM and MEK1/2 in whole cells with an IC50 of 37.4 μM. The inhibition of MEK1/2 was relieved by both Cu+1 and Cu+2 in a concentration-dependent manner. cDDP did not inhibit the upstream pathways responsible for activating MEK1/2, and did not cause an acute depletion of cellular Cu that could account for the reduction in MEK1/2 activity. cDDP was found to bind MEK1/2 in whole cells and the extent of binding was augmented by supplementary Cu and reduced by Cu chelation. Molecular modeling predicts 3 Cu and cDDP binding sites and quantum chemistry calculations indicate that cDDP would be expected to displace Cu from each of these sites. We conclude that, at clinically relevant concentrations, cDDP binds to and inhibits MEK1/2 and that both the binding and inhibitory activity are related to its interaction with Cu bound to MEK1/2. This may provide the basis for useful interactions of cDDP with other drugs that inhibit MAPK pathway signaling.
Collapse
Affiliation(s)
- Tetsu Yamamoto
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor F Tsigelny
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Neuroscience Department, University of California, San Diego, La Jolla, CA 92093, USA.,San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen B Howell
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
97
|
Krishnamoorthy L, Cotruvo JA, Chan J, Kaluarachchi H, Muchenditsi A, Pendyala VS, Jia S, Aron AT, Ackerman CM, Vander Wal MN, Guan T, Smaga LP, Farhi SL, New EJ, Lutsenko S, Chang CJ. Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol 2016; 12:586-92. [PMID: 27272565 PMCID: PMC4955676 DOI: 10.1038/nchembio.2098] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/25/2016] [Indexed: 01/03/2023]
Abstract
Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining body weight and energy stores. Using a mouse model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we found that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue in a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype.
Collapse
Affiliation(s)
- Lakshmi Krishnamoorthy
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Joseph A. Cotruvo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jefferson Chan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Abigael Muchenditsi
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | - Shang Jia
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Allegra T. Aron
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Mark N. Vander Wal
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Timothy Guan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Lukas P. Smaga
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Samouil L. Farhi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Elizabeth J. New
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
98
|
Goldberg JM, Loas A, Lippard SJ. Metalloneurochemistry and the Pierian Spring: 'Shallow Draughts Intoxicate the Brain'. Isr J Chem 2016; 56:791-802. [PMID: 28190893 DOI: 10.1002/ijch.201600034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metal ions perform critical and diverse functions in nervous system physiology and pathology. The field of metalloneurochemistry aims to understand the mechanistic bases for these varied roles at the molecular level. Here, we review several areas of research that illustrate progress toward achieving this ambitious goal and identify key challenges for the future. We examine the use of lithium as a mood stabilizer, the roles of mobile zinc and copper in the synapse, the interplay of nitric oxide and metals in retrograde signaling, and the regulation of iron homeostasis in the brain. These topics were chosen to demonstrate not only the breadth of the field, but also to highlight opportunities for discovery by studying such complex systems in greater detail. We are beginning to uncover the principles by which receptors and transmitters utilize metal ions to modulate neurotransmission. These advances have revealed exciting new insights into the intricate mechanisms that give rise to learning, memory, and sensory perception, while opening many new avenues for further exploration.
Collapse
Affiliation(s)
- Jacob M Goldberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (U.S.A.)
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (U.S.A.)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (U.S.A.)
| |
Collapse
|
99
|
Ramos-Torres KM, Kolemen S, Chang CJ. Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems. Isr J Chem 2016; 56:724-737. [PMID: 31263315 DOI: 10.1002/ijch.201600023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper is an essential element in biological systems. Its potent redox activity renders it necessary for life, but at the same time, misregulation of its cellular pools can lead to oxidative stress implicated in aging and various disease states. Copper is commonly thought of as a static cofactor buried in protein active sites; however, evidence of a more loosely bound, labile pool of copper has emerged. To help identify and understand new roles for dynamic copper pools in biology, we have developed selective molecular imaging agents for this metal, drawing inspiration from both biological binding motifs and synthetic model complexes that reveal thioether coordination as a general design strategy for selective and sensitive copper recognition. In this review, we summarize some contributions, primarily from our own laboratory, on fluorescence- and magnetic resonance-based molecular-imaging probes for studying copper in living systems using thioether coordination chemistry.
Collapse
Affiliation(s)
| | - Safacan Kolemen
- Department of Chemistry, University of California Berkeley, CA 94704 (USA)
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, CA 94704 (USA).,Department of Molecular and Cell Biology, University of California Berkeley, CA 94704 (USA).,Howard Hughes Medical Institute, Tel.: (+1) 510-642-4704
| |
Collapse
|
100
|
Lee S, Barin G, Ackerman CM, Muchenditsi A, Xu J, Reimer JA, Lutsenko S, Long JR, Chang CJ. Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease. J Am Chem Soc 2016; 138:7603-9. [PMID: 27285482 PMCID: PMC5555401 DOI: 10.1021/jacs.6b02515] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Copper is an essential
nutrient for life, but at the same time,
hyperaccumulation of this redox-active metal in biological fluids
and tissues is a hallmark of pathologies such as Wilson’s and
Menkes diseases, various neurodegenerative diseases, and toxic environmental
exposure. Diseases characterized by copper hyperaccumulation are currently
challenging to identify due to costly diagnostic tools that involve
extensive technical workup. Motivated to create simple yet highly
selective and sensitive diagnostic tools, we have initiated a program
to develop new materials that can enable monitoring of copper levels
in biological fluid samples without complex and expensive instrumentation.
Herein, we report the design, synthesis, and properties of PAF-1-SMe,
a robust three-dimensional porous aromatic framework (PAF) densely
functionalized with thioether groups for selective capture and concentration
of copper from biofluids as well as aqueous samples. PAF-1-SMe exhibits
a high selectivity for copper over other biologically relevant metals,
with a saturation capacity reaching over 600 mg/g. Moreover, the combination
of PAF-1-SMe as a material for capture and concentration of copper
from biological samples with 8-hydroxyquinoline as a colorimetric
indicator affords a method for identifying aberrant elevations of
copper in urine samples from mice with Wilson’s disease and
also tracing exogenously added copper in serum. This divide-and-conquer
sensing strategy, where functional and robust porous materials serve
as molecular recognition elements that can be used to capture and
concentrate analytes in conjunction with molecular indicators for
signal readouts, establishes a valuable starting point for the use
of porous polymeric materials in noninvasive diagnostic applications.
Collapse
Affiliation(s)
| | | | | | - Abigael Muchenditsi
- Department of Physiology, Johns Hopkins University, School of Medicine , Baltimore, Maryland 21205, United States
| | | | | | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine , Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|