51
|
Zheng N, Karra P, VandenBerg MA, Kim JH, Webber MJ, Holland WL, Chou DHC. Synthesis and Characterization of an A6-A11 Methylene Thioacetal Human Insulin Analogue with Enhanced Stability. J Med Chem 2019; 62:11437-11443. [PMID: 31804076 PMCID: PMC7217704 DOI: 10.1021/acs.jmedchem.9b01589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin has been a life-saving drug for millions of people with diabetes. However, several challenges exist which limit therapeutic benefits and reduce patient convenience. One key challenge is the fibrillation propensity, which necessitates refrigeration for storage. To address this limitation, we chemically synthesized and evaluated a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized SCS-Ins showed enhanced serum stability and aggregation resistance while retaining bioactivity compared with native insulin.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael A. VandenBerg
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Matthew J. Webber
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
52
|
RgIA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. Mar Drugs 2019; 18:md18010012. [PMID: 31877728 PMCID: PMC7024385 DOI: 10.3390/md18010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic drugs are widely utilized in the treatment of human cancers. Painful chemotherapy-induced neuropathy is a common, debilitating, and dose-limiting side effect for which there is currently no effective treatment. Previous studies have demonstrated the potential utility of peptides from the marine snail from the genus Conus for the treatment of neuropathic pain. α-Conotoxin RgIA and a potent analog, RgIA4, have previously been shown to prevent the development of neuropathy resulting from the administration of oxaliplatin, a platinum-based antineoplastic drug. Here, we have examined its efficacy against paclitaxel, a chemotherapeutic drug that works by a mechanism of action distinct from that of oxaliplatin. Paclitaxel was administered at 2 mg/kg (intraperitoneally (IP)) every other day for a total of 8 mg/kg. Sprague Dawley rats that were co-administered RgIA4 at 80 µg/kg (subcutaneously (SC)) once daily, five times per week, for three weeks showed significant recovery from mechanical allodynia by day 31. Notably, the therapeutic effects reached significance 12 days after the last administration of RgIA4, which is suggestive of a rescue mechanism. These findings support the effects of RgIA4 in multiple chemotherapeutic models and the investigation of α9α10 nicotinic acetylcholine receptors (nAChRs) as a non-opioid target in the treatment of chronic pain.
Collapse
|
53
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
54
|
The α 1-adrenoceptor inhibitor ρ-TIA facilitates net hunting in piscivorous Conus tulipa. Sci Rep 2019; 9:17841. [PMID: 31780714 PMCID: PMC6882899 DOI: 10.1038/s41598-019-54186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 11/08/2022] Open
Abstract
Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon for prey capture, the Gastridium clade that includes the well-studied Conus geographus and Conus tulipa, have developed a net hunting strategy to catch fish. This unique feeding behaviour requires secretion of "nirvana cabal" peptides to dampen the escape response of targeted fish allowing for their capture directly by mouth. However, the active components of the nirvana cabal remain poorly defined. In this study, we evaluated the behavioural effects of likely nirvana cabal peptides on the teleost model, Danio rerio (zebrafish). Surprisingly, the conantokins (NMDA receptor antagonists) and/or conopressins (vasopressin receptor agonists and antagonists) found in C. geographus and C. tulipa venom failed to produce a nirvana cabal-like effect in zebrafish. In contrast, low concentrations of the non-competitive adrenoceptor antagonist ρ-TIA found in C. tulipa venom (EC50 = 190 nM) dramatically reduced the escape response of zebrafish larvae when added directly to aquarium water. ρ-TIA inhibited the zebrafish α1-adrenoceptor, confirming ρ-TIA has the potential to reverse the known stimulating effects of norepinephrine on fish behaviour. ρ-TIA may act alone and not as part of a cabal, since it did not synergise with conopressins and/or conantokins. This study highlights the importance of using ecologically relevant animal behaviour models to decipher the complex neurobiology underlying the prey capture and defensive strategies of cone snails.
Collapse
|
55
|
Xiong X, Blakely A, Karra P, VandenBerg MA, Ghabash G, Whitby F, Zhang YW, Webber MJ, Holland WL, Hill CP, Chou DHC. Novel four-disulfide insulin analog with high aggregation stability and potency. Chem Sci 2019; 11:195-200. [PMID: 32110371 PMCID: PMC7012051 DOI: 10.1039/c9sc04555d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
A novel four-disulfide insulin analog was designed with retained bioactivity and increased fibrillation stability.
Although insulin was first purified and used therapeutically almost a century ago, there is still a need to improve therapeutic efficacy and patient convenience. A key challenge is the requirement for refrigeration to avoid inactivation of insulin by aggregation/fibrillation. Here, in an effort to mitigate this problem, we introduced a 4th disulfide bond between a C-terminal extended insulin A chain and residues near the C-terminus of the B chain. Insulin activity was retained by an analog with an additional disulfide bond between residues A22 and B22, while other linkages tested resulted in much reduced potency. Furthermore, the A22-B22 analog maintains the native insulin tertiary structure as demonstrated by X-ray crystal structure determination. We further demonstrate that this four-disulfide analog has similar in vivo potency in mice compared to native insulin and demonstrates higher aggregation stability. In conclusion, we have discovered a novel four-disulfide insulin analog with high aggregation stability and potency.
Collapse
Affiliation(s)
- Xiaochun Xiong
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Alan Blakely
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology , University of Utah , Salt Lake City UT 84112 , USA
| | - Michael A VandenBerg
- Department of Chemical & Biomolecular Engineering , University of Notre Dame , IN 46556 , USA
| | - Gabrielle Ghabash
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Frank Whitby
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Yi Wolf Zhang
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering , University of Notre Dame , IN 46556 , USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology , University of Utah , Salt Lake City UT 84112 , USA
| | - Christopher P Hill
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | | |
Collapse
|
56
|
Venom Diversity and Evolution in the Most Divergent Cone Snail Genus Profundiconus. Toxins (Basel) 2019; 11:toxins11110623. [PMID: 31661832 PMCID: PMC6891753 DOI: 10.3390/toxins11110623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023] Open
Abstract
Profundiconus is the most divergent cone snail genus and its unique phylogenetic position, sister to the rest of the family Conidae, makes it a key taxon for examining venom evolution and diversity. Venom gland and foot transcriptomes of Profundiconus cf. vaubani and Profundiconus neocaledonicus were de novo assembled, annotated, and analyzed for differential expression. One hundred and thirty-seven venom components were identified from P. cf. vaubani and 82 from P. neocaledonicus, with only four shared by both species. The majority of the transcript diversity was composed of putative peptides, including conotoxins, profunditoxins, turripeptides, insulin, and prohormone-4. However, there were also a significant percentage of other putative venom components such as chymotrypsin and L-rhamnose-binding lectin. The large majority of conotoxins appeared to be from new gene superfamilies, three of which are highly different from previously reported venom peptide toxins. Their low conotoxin diversity and the type of insulin found suggested that these species, for which no ecological information are available, have a worm or molluscan diet associated with a narrow dietary breadth. Our results indicate that Profundiconus venom is highly distinct from that of other cone snails, and therefore important for examining venom evolution in the Conidae family.
Collapse
|
57
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
58
|
Elnahriry KA, Wai DC, Krishnarjuna B, Badawy NN, Chittoor B, MacRaild CA, Williams-Noonan BJ, Surm JM, Chalmers DK, Zhang AH, Peigneur S, Mobli M, Tytgat J, Prentis P, Norton RS. Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon 2019; 168:104-112. [DOI: 10.1016/j.toxicon.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
|
59
|
Morlighem JÉRL, Radis-Baptista G. The Place for Enzymes and Biologically Active Peptides from Marine Organisms for Application in Industrial and Pharmaceutical Biotechnology. Curr Protein Pept Sci 2019; 20:334-355. [PMID: 30255754 DOI: 10.2174/1389203719666180926121722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Since the beginning of written history, diverse texts have reported the use of enzymatic preparations in food processing and have described the medicinal properties of crude and fractionated venoms to treat various diseases and injuries. With the biochemical characterization of enzymes from distinct sources and bioactive polypeptides from animal venoms, the last sixty years have testified the advent of industrial enzymology and protein therapeutics, which are currently applicable in a wide variety of industrial processes, household products, and pharmaceuticals. Bioprospecting of novel biocatalysts and bioactive peptides is propelled by their unsurpassed properties that are applicable for current and future green industrial processes, biotechnology, and biomedicine. The demand for both novel enzymes with desired characteristics and novel peptides that lead to drug development, has experienced a steady increase in response to the expanding global market for industrial enzymes and peptidebased drugs. Moreover, although largely unexplored, oceans and marine realms, with their unique ecosystems inhabited by a large variety of species, including a considerable number of venomous animals, are recognized as untapped reservoirs of molecules and macromolecules (enzymes and bioactive venom-derived peptides) that can potentially be converted into highly valuable biopharmaceutical products. In this review, we have focused on enzymes and animal venom (poly)peptides that are presently in biotechnological use, and considering the state of prospection of marine resources, on the discovery of useful industrial biocatalysts and drug leads with novel structures exhibiting selectivity and improved performance.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| | - Gandhi Radis-Baptista
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| |
Collapse
|
60
|
Katayama H, Nagasawa H. Chemical synthesis of N-glycosylated insulin-like androgenic gland factor from the freshwater prawn Macrobrachium rosenbergii. J Pept Sci 2019; 25:e3215. [PMID: 31515898 DOI: 10.1002/psc.3215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/25/2019] [Indexed: 12/27/2022]
Abstract
Crustacean insulin-like androgenic gland factor (IAG) of Macrobrachium rosenbergii, a heterodimeric peptide having both four disulfide bonds and an N-linked glycan, was synthesized by the combination of solid-phase peptide synthesis and the regioselective disulfide formation reactions. The disulfide isomer of IAG could also be synthesized by the same manner. The conformational analysis of these peptides by circular dichroism (CD) spectral measurement indicated that the disulfide bond arrangement affected the peptide conformation in IAG. On the other hand, the N-linked glycan attached at A chain showed no effect on CD spectra of IAG. This is the first report for the chemical synthesis of insulin-like heterodimeric glycopeptide having three interchain disulfides, and the synthetic strategy shown here might be useful for the synthesis of other glycosylated four-disulfide insulin-like peptides.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
61
|
Phuong MA, Alfaro ME, Mahardika GN, Marwoto RM, Prabowo RE, von Rintelen T, Vogt PWH, Hendricks JR, Puillandre N. Lack of Signal for the Impact of Conotoxin Gene Diversity on Speciation Rates in Cone Snails. Syst Biol 2019; 68:781-796. [PMID: 30816949 PMCID: PMC6934442 DOI: 10.1093/sysbio/syz016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding why some groups of organisms are more diverse than others is a central goal in macroevolution. Evolvability, or the intrinsic capacity of lineages for evolutionary change, is thought to influence disparities in species diversity across taxa. Over macroevolutionary time scales, clades that exhibit high evolvability are expected to have higher speciation rates. Cone snails (family: Conidae, $>$900 spp.) provide a unique opportunity to test this prediction because their toxin genes can be used to characterize differences in evolvability between clades. Cone snails are carnivorous, use prey-specific venom (conotoxins) to capture prey, and the genes that encode venom are known and diversify through gene duplication. Theory predicts that higher gene diversity confers a greater potential to generate novel phenotypes for specialization and adaptation. Therefore, if conotoxin gene diversity gives rise to varying levels of evolvability, conotoxin gene diversity should be coupled with macroevolutionary speciation rates. We applied exon capture techniques to recover phylogenetic markers and conotoxin loci across 314 species, the largest venom discovery effort in a single study. We paired a reconstructed timetree using 12 fossil calibrations with species-specific estimates of conotoxin gene diversity and used trait-dependent diversification methods to test the impact of evolvability on diversification patterns. Surprisingly, we did not detect any signal for the relationship between conotoxin gene diversity and speciation rates, suggesting that venom evolution may not be the rate-limiting factor controlling diversification dynamics in Conidae. Comparative analyses showed some signal for the impact of diet and larval dispersal strategy on diversification patterns, though detection of a signal depended on the dataset and the method. If our results remain true with increased taxonomic sampling in future studies, they suggest that the rapid evolution of conid venom may cause other factors to become more critical to diversification, such as ecological opportunity or traits that promote isolation among lineages.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Jl Sesetan-Markisa 6, Denpasar, Bali 80225, Indonesia
| | - Ristiyanti M Marwoto
- Zoology Division (Museum Zoologicum Bogoriense), Research Center for Biology, LIPI, Km.46, Jl. Raya Bogor, Cibinong, Bogor, West Java 16911, Indonesia
| | - Romanus Edy Prabowo
- Aquatic Biology Laboratory, Faculty of Biology, Universitas Jenderal Soedirman, Jalan dr. Suparno 63 Grendeng, Purwokerto, Indonesia, 53122
| | - Thomas von Rintelen
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Philipp W H Vogt
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | | | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, 1259 Trumansburg Road, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| |
Collapse
|
62
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
63
|
Ahorukomeye P, Disotuar MM, Gajewiak J, Karanth S, Watkins M, Robinson SD, Flórez Salcedo P, Smith NA, Smith BJ, Schlegel A, Forbes BE, Olivera B, Hung-Chieh Chou D, Safavi-Hemami H. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. eLife 2019; 8:41574. [PMID: 30747102 PMCID: PMC6372279 DOI: 10.7554/elife.41574] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/30/2018] [Indexed: 12/27/2022] Open
Abstract
The fish-hunting marine cone snail Conus geographus uses a specialized venom insulin to induce hypoglycemic shock in its prey. We recently showed that this venom insulin, Con-Ins G1, has unique characteristics relevant to the design of new insulin therapeutics. Here, we show that fish-hunting cone snails provide a rich source of minimized ligands of the vertebrate insulin receptor. Insulins from C. geographus, Conus tulipa and Conus kinoshitai exhibit diverse sequences, yet all bind to and activate the human insulin receptor. Molecular dynamics reveal unique modes of action that are distinct from any other insulins known in nature. When tested in zebrafish and mice, venom insulins significantly lower blood glucose in the streptozotocin-induced model of diabetes. Our findings suggest that cone snails have evolved diverse strategies to activate the vertebrate insulin receptor and provide unique insight into the design of novel drugs for the treatment of diabetes. Insulin is a hormone critical for maintaining healthy blood sugar levels in humans. When the insulin system becomes faulty, blood sugar levels become too high, which can lead to diabetes. At the moment, the only effective treatment for one of the major types of diabetes are daily insulin injections. However, designing fast-acting insulin drugs has remained a challenge. Insulin molecules form clusters (so-called hexamers) that first have to dissolve in the body to activate the insulin receptor, which plays a key role in regulating the blood sugar levels throughout the body. This can take time and can therefore delay the blood-sugar control. In 2015, researchers discovered that the fish-hunting cone snail Conus geographus uses a specific type of insulin to capture its prey – fish. The cone snail releases insulin into the surrounding water and then engulfs its victim with its mouth. This induces dangerously low blood sugar levels in the fish and so makes them an easy target. Unlike the human version, the snail insulin does not cluster, and despite structural differences, can bind to the human insulin receptor. Now, Ahorukomeye, Disotuar et al. – including some of the authors involved in the previous study – wanted to find out whether other fish-hunting cone snails also make insulins and if they differed from the one previously discovered in C. geographus. The insulin molecules were extracted and analyzed, and the results showed that the three cone snail species had different versions of insulin – but none of them formed clusters. Ahorukomeye, Disotuar et al. further revealed that the snail insulins could bind to the human insulin receptors and could also reverse high blood sugar levels in fish and mouse models of the disease. This research may help guide future studies looking into developing fast-acting insulin drugs for diabetic patients. A next step will be to fully understand how snail insulins can be active at the human receptor without forming clusters. Cone snails solved this problem millions of years ago and by understanding how they have done this, researchers are hoping to redesign current diabetic therapeutics. Since the snail insulins do not form clusters and should act faster than currently available insulin drugs, they may lead to better or new diabetes treatments.
Collapse
Affiliation(s)
- Peter Ahorukomeye
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Maria M Disotuar
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Joanna Gajewiak
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Santhosh Karanth
- Molecular Medicine Program, University of Utah, Salt Lake City, United States.,Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, United States
| | - Maren Watkins
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Samuel D Robinson
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Paula Flórez Salcedo
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Amnon Schlegel
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.,Molecular Medicine Program, University of Utah, Salt Lake City, United States.,Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, United States
| | - Briony E Forbes
- Department of Medical Biochemistry, Flinders University, Bedford Park, Australia
| | - Baldomero Olivera
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
64
|
Cherif--Feildel M, Berthelin CH, Rivière G, Favrel P, Kellner K. Data for evolutive analysis of insulin related peptides in bilaterian species. Data Brief 2019; 22:546-550. [PMID: 30627605 PMCID: PMC6321970 DOI: 10.1016/j.dib.2018.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/05/2023] Open
Abstract
In bilaterian species, the amino acid sequence conservation between Insulin related peptides is relatively low except for the cysteine residues involved in the disulphide bonds. In the A chain, the conserved cystein residues are included in a signature motif. Investigating the variations in this motif would give insight into the phylogenetic history of the family. The table presented in this paper contains a large set of insulin-related peptides in bilateral phylogenetic groups (deuterostomian, ecdysozoan, lophotrochozoan). NCBI databases in silico wide screening combined with bibliographic researches provided a framework for identifying and categorising the structural characteristics of these insulin related peptides. The dataset includes NCBI IDs of each sequence with hyperlinks to FASTA format. Moreover, the structural type (α, β or γ), the A chain motif, the total number of cysteins, the C peptide cleavage mode and the potential additional domains (D or E) are specified for each sequence. The data are associated with the research article "Molecular evolution and functional characterisation of insulin-related peptides in molluscs: contributions of Crassostrea gigas genomic and transcriptomic-wide screening" [1]. The table presented here can be found at http://dx.doi.org/10.17632/w4gr8zcpk5.4#file-21c0f6a5-a3e3-4a15-86e0-e5a696458866.
Collapse
Affiliation(s)
| | | | | | | | - Kristell Kellner
- Normandy University, Caen, France. University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
65
|
Dutt M, Dutertre S, Jin AH, Lavergne V, Alewood PF, Lewis RJ. Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Mar Drugs 2019; 17:md17010071. [PMID: 30669642 PMCID: PMC6356538 DOI: 10.3390/md17010071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, μ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.
Collapse
Affiliation(s)
- Mriga Dutt
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Sébastien Dutertre
- Institut des Biomolecules Max Mousseron, UMR 5247, Université Montpellier-CNRS, 34093 Montpellier, France.
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | | | - Paul Francis Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Richard James Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| |
Collapse
|
66
|
O'Brien H, Kanemura S, Okumura M, Baskin RP, Bandyopadhyay PK, Olivera BM, Ellgaard L, Inaba K, Safavi-Hemami H. Ero1-Mediated Reoxidation of Protein Disulfide Isomerase Accelerates the Folding of Cone Snail Toxins. Int J Mol Sci 2018; 19:ijms19113418. [PMID: 30384459 PMCID: PMC6275033 DOI: 10.3390/ijms19113418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023] Open
Abstract
Disulfide-rich peptides are highly abundant in nature and their study has provided fascinating insight into protein folding, structure and function. Venomous cone snails belong to a group of organisms that express one of the largest sets of disulfide-rich peptides (conotoxins) found in nature. The diversity of structural scaffolds found for conotoxins suggests that specialized molecular adaptations have evolved to ensure their efficient folding and secretion. We recently showed that canonical protein disulfide isomerase (PDI) and a conotoxin-specific PDI (csPDI) are ubiquitously expressed in the venom gland of cone snails and play a major role in conotoxin folding. Here, we identify cone snail endoplasmic reticulum oxidoreductin-1 (Conus Ero1) and investigate its role in the oxidative folding of conotoxins through reoxidation of cone snail PDI and csPDI. We show that Conus Ero1 preferentially reoxidizes PDI over csPDI, suggesting that the reoxidation of csPDI may rely on an Ero1-independent molecular pathway. Despite the preferential reoxidation of PDI over csPDI, the combinatorial effect of Ero1 and csPDI provides higher folding yields than Ero1 and PDI. We further demonstrate that the highest in vitro folding rates of two model conotoxins are achieved when all three enzymes are present, indicating that these enzymes may act synergistically. Our findings provide new insight into the generation of one of the most diverse classes of disulfide-rich peptides and may improve current in vitro approaches for the production of venom peptides for pharmacological studies.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Shingo Kanemura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
| | - Robert P Baskin
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N., Denmark.
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
67
|
Kunalan S, Othman I, Syed Hassan S, Hodgson WC. Proteomic Characterization of Two Medically Important Malaysian Snake Venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (Basel) 2018; 10:toxins10110434. [PMID: 30373186 PMCID: PMC6266455 DOI: 10.3390/toxins10110434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Calloselasma rhodostoma (CR) and Ophiophagus hannah (OH) are two medically important snakes found in Malaysia. While some studies have described the biological properties of these venoms, feeding and environmental conditions also influence the concentration and distribution of snake venom toxins, resulting in variations in venom composition. Therefore, a combined proteomic approach using shotgun and gel filtration chromatography, analyzed by tandem mass spectrometry, was used to examine the composition of venoms from these Malaysian snakes. The analysis revealed 114 proteins (15 toxin families) and 176 proteins (20 toxin families) in Malaysian Calloselasma rhodostoma and Ophiophagus hannah species, respectively. Flavin monoamine oxidase, phospholipase A2, phosphodiesterase, snake venom metalloproteinase, and serine protease toxin families were identified in both venoms. Aminopeptidase, glutaminyl-peptide cyclotransferase along with ankyrin repeats were identified for the first time in CR venom, and insulin, c-type lectins/snaclecs, hepatocyte growth factor, and macrophage colony-stimulating factor together with tumor necrosis factor were identified in OH venom for the first time. Our combined proteomic approach has identified a comprehensive arsenal of toxins in CR and OH venoms. These data may be utilized for improved antivenom production, understanding pathological effects of envenoming, and the discovery of biologically active peptides with medical and/or biotechnological value.
Collapse
Affiliation(s)
- Sugita Kunalan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
68
|
Katayama H, Mukainakano T, Kogure J, Ohira T. Chemical synthesis of the crustacean insulin-like peptide with four disulfide bonds. J Pept Sci 2018; 24:e3132. [PMID: 30346100 DOI: 10.1002/psc.3132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
Among the insulin-family peptides, two additional cysteine residues other than six conserved cysteines are sometimes found in invertebrate insulin-like peptides (ILPs), although the synthetic method for such four disulfide ILPs has not yet been well established. In this study, we synthesized a crustacean insulin-like androgenic gland factor with four disulfides by the regioselective disulfide bond formation reactions using four orthogonal Cys-protecting groups. Its disulfide isomer could be also synthesized by the same method, indicating that the synthetic strategy developed in this study might be useful for the synthesis of other four disulfide ILPs.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Takafumi Mukainakano
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Junya Kogure
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| |
Collapse
|
69
|
Abalde S, Tenorio MJ, Afonso CML, Zardoya R. Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones. Genome Biol Evol 2018; 10:2643-2662. [PMID: 30060147 PMCID: PMC6178336 DOI: 10.1093/gbe/evy150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/27/2022] Open
Abstract
The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily had the α4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors, ultimately producing paralysis. This function is performed by mature peptides having a α3/5 cysteine spacing pattern in piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, Puerto Real, Spain
| | - Carlos M L Afonso
- Fisheries, Biodiversity and Conervation Group, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
70
|
Zhang H, Fu Y, Wang L, Liang A, Chen S, Xu A. Identifying novel conopepetides from the venom ducts of Conus litteratus through integrating transcriptomics and proteomics. J Proteomics 2018; 192:346-357. [PMID: 30267875 DOI: 10.1016/j.jprot.2018.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
The venom ducts of marine cone snails secrete highly complex mixtures of cysteine-rich active peptides, which are generally known as conotoxins or conopeptides and provide a potential fertile resource for pharmacological neuroscience research and the discovery of new drugs. Previous studies have devoted substantial effort to the identification of novel conopeptides, and the 109 cone snail species have yielded 7000 known conopeptides to date. Here, we used de novo deep transcriptome sequencing analyses combined with traditional Sanger sequencing and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to identify 30 distinct conopeptide precursors. Twenty of these were previously reported and the other 10 were novel conopeptide precursors. The study provides the first identification of the Con-ikot-ikot, NSF-bt05, O3 and I1 gene superfamilies in C. litteratus. A new putative superfamily was identified. In addition, the following cysteine frameworks were first identified in this study: CC-C-C-C-C-C-C-C-C-C-C-C-CC-C-C-C-C-C and C-C-C-C-C-CC-C. Several isomerases involved in post-translational modification of conopeptides were identified as well. The discovery of new conopeptides in C. litteratus will enhance our understanding of the conopeptide diversity in this particular clade of cone snails. We also found the existence of intraspecific variations in vermivorous species. Finally, the analysis strategy offers a relatively reliable workflow for screening for peptide drug candidates. SIGNIFICANCE: These novel conopeptides provide a potential resource for the development of new channel-targeting drugs. The intraspecific variation in C. litteratus enhance our understanding of the conopeptide diversity in this particular clade of cone snails. The identified three cysteine residues, which might participate in the formation of disulfide bonds, provide a clue to get the connectivity of cysteine frameworks. Finally, the analysis strategy offers a relatively reliable workflow for screening for peptide drug candidates.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China
| | - Anwen Liang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China.
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
71
|
Karanth S, Adams JD, Serrano MDLA, Quittner-Strom EB, Simcox J, Villanueva CJ, Ozcan L, Holland WL, Yost HJ, Vella A, Schlegel A. A Hepatocyte FOXN3-α Cell Glucagon Axis Regulates Fasting Glucose. Cell Rep 2018; 24:312-319. [PMID: 29996093 DOI: 10.1016/j.celrep.2018.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 01/26/2023] Open
Abstract
The common genetic variation at rs8004664 in the FOXN3 gene is independently and significantly associated with fasting blood glucose, but not insulin, in non-diabetic humans. Recently, we reported that primary hepatocytes from rs8004664 hyperglycemia risk allele carriers have increased FOXN3 transcript and protein levels and liver-limited overexpression of human FOXN3, a transcriptional repressor that had not been implicated in metabolic regulation previously, increases fasting blood glucose in zebrafish. Here, we find that injection of glucagon into mice and adult zebrafish decreases liver Foxn3 protein and transcript levels. Zebrafish foxn3 loss-of-function mutants have decreased fasting blood glucose, blood glucagon, liver gluconeogenic gene expression, and α cell mass. Conversely, liver-limited overexpression of foxn3 increases α cell mass. Supporting these genetic findings in model organisms, non-diabetic rs8004664 risk allele carriers have decreased suppression of glucagon during oral glucose tolerance testing. By reciprocally regulating each other, liver FOXN3 and glucagon control fasting glucose.
Collapse
Affiliation(s)
- Santhosh Karanth
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J D Adams
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Maria de Los Angeles Serrano
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ezekiel B Quittner-Strom
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - Judith Simcox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lale Ozcan
- Department of Medicine, Division of Molecular Medicine, Columbia University Medical Center, New York, NY, USA
| | - William L Holland
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - H Joseph Yost
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adrian Vella
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
72
|
Prashanth JR, Dutertre S, Lewis RJ. Pharmacology of predatory and defensive venom peptides in cone snails. MOLECULAR BIOSYSTEMS 2018; 13:2453-2465. [PMID: 29090697 DOI: 10.1039/c7mb00511c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cone snails are predatory gastropods whose neurotoxic venom peptides (conotoxins) have been extensively studied for pharmacological probes, venom evolution mechanisms and potential therapeutics. Conotoxins have a wide range of structural and functional classes that continue to undergo accelerated evolution that underlies the rapid expansion of the genus over their short evolutionary history. A number of pharmacological classes, driven by separately evolved defensive and predatory venoms, have been hypothesised to facilitate shifts in prey that exemplify the adaptability of cone snails. Here we provide an overview of these pharmacological families and discuss their ecological roles and evolutionary impact.
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia.
| | | | | |
Collapse
|
73
|
Drosophila melanogaster as a Model for Diabetes Type 2 Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1417528. [PMID: 29854726 PMCID: PMC5941822 DOI: 10.1155/2018/1417528] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/03/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Drosophila melanogaster has been used as a very versatile and potent model in the past few years for studies in metabolism and metabolic disorders, including diabetes types 1 and 2. Drosophila insulin signaling, despite having seven insulin-like peptides with partially redundant functions, is very similar to the human insulin pathway and has served to study many different aspects of diabetes and the diabetic state. Yet, very few studies have addressed the chronic nature of diabetes, key for understanding the full-blown disease, which most studies normally explore. One of the advantages of having Drosophila mutant viable combinations at different levels of the insulin pathway, with significantly reduced insulin pathway signaling, is that the abnormal metabolic state can be studied from the onset of the life cycle and followed throughout. In this review, we look at the chronic nature of impaired insulin signaling. We also compare these results to the results gleaned from vertebrate model studies.
Collapse
|
74
|
Chilukuri H, Kulkarni MJ, Fernandes M. Revisiting amino acids and peptides as anti-glycation agents. MEDCHEMCOMM 2018; 9:614-624. [PMID: 30108952 PMCID: PMC6071831 DOI: 10.1039/c7md00514h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
Abstract
The importance of controlling or preventing protein glycation cannot be overstated and is of prime importance in the treatment of diabetes and associated complications including Alzheimer's disease, cataracts, atherosclerosis, kidney aliments among others. In this respect, simple molecules such as amino acids and peptides hold much promise both in terms of ease and scale-up of synthesis as well as in relation to negligible/low associated toxicity. In view of this, a comprehensive account of literature reports is presented, that documents the anti-glycation activity of natural and non-natural amino acids and peptides. This review also discusses the chemical reactions involved in glycation and the formation of advanced glycation end-products (AGEs) and possible/probable intervention sites and mechanism of action of the reported amino acids/peptides. This aspect of amino acids/peptides adds to their growing importance in medicinal and therapeutic applications.
Collapse
Affiliation(s)
- H Chilukuri
- Organic Chemistry Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India . ;
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL Campus , Pune -411008 , India
| | - M J Kulkarni
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL Campus , Pune -411008 , India
- Proteomics Facility , Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India
| | - M Fernandes
- Organic Chemistry Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India . ;
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL Campus , Pune -411008 , India
| |
Collapse
|
75
|
Abstract
Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.
Collapse
|
76
|
Raaymakers C, Verbrugghe E, Hernot S, Hellebuyck T, Betti C, Peleman C, Claeys M, Bert W, Caveliers V, Ballet S, Martel A, Pasmans F, Roelants K. Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nat Commun 2017; 8:1495. [PMID: 29138448 PMCID: PMC5686178 DOI: 10.1038/s41467-017-01710-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Animals using toxic peptides and proteins for predation or defense typically depend on specialized morphological structures, like fangs, spines, or a stinger, for effective intoxication. Here we show that amphibian poisons instead incorporate their own molecular system for toxin delivery to attacking predators. Skin-secreted peptides, generally considered part of the amphibian immune system, permeabilize oral epithelial tissue and enable fast access of cosecreted toxins to the predator's bloodstream and organs. This absorption-enhancing system exists in at least three distantly related frog lineages and is likely to be a widespread adaptation, determining the outcome of predator-prey encounters in hundreds of species.
Collapse
Affiliation(s)
- Constantijn Raaymakers
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium.,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sophie Hernot
- Department of Nuclear Medicine, UZ Brussel and In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Tom Hellebuyck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Cecilia Betti
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Cindy Peleman
- Department of Nuclear Medicine, UZ Brussel and In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Myriam Claeys
- Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000, Ghent, Belgium
| | - Wim Bert
- Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000, Ghent, Belgium
| | - Vicky Caveliers
- Department of Nuclear Medicine, UZ Brussel and In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium.
| |
Collapse
|
77
|
Robinson SD, Undheim EAB, Ueberheide B, King GF. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev Proteomics 2017; 14:931-939. [DOI: 10.1080/14789450.2017.1377613] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Samuel D. Robinson
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
| | | | | | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| |
Collapse
|
78
|
Menschaert G, David F. Proteogenomics from a bioinformatics angle: A growing field. MASS SPECTROMETRY REVIEWS 2017; 36:584-599. [PMID: 26670565 PMCID: PMC6101030 DOI: 10.1002/mas.21483] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/01/2015] [Indexed: 05/16/2023]
Abstract
Proteogenomics is a research area that combines areas as proteomics and genomics in a multi-omics setup using both mass spectrometry and high-throughput sequencing technologies. Currently, the main goals of the field are to aid genome annotation or to unravel the proteome complexity. Mass spectrometry based identifications of matching or homologues peptides can further refine gene models. Also, the identification of novel proteoforms is also made possible based on detection of novel translation initiation sites (cognate or near-cognate), novel transcript isoforms, sequence variation or novel (small) open reading frames in intergenic or un-translated genic regions by analyzing high-throughput sequencing data from RNAseq or ribosome profiling experiments. Other proteogenomics studies using a combination of proteomics and genomics techniques focus on antibody sequencing, the identification of immunogenic peptides or venom peptides. Over the years, a growing amount of bioinformatics tools and databases became available to help streamlining these cross-omics studies. Some of these solutions only help in specific steps of the proteogenomics studies, e.g. building custom sequence databases (based on next generation sequencing output) for mass spectrometry fragmentation spectrum matching. Over the last few years a handful integrative tools also became available that can execute complete proteogenomics analyses. Some of these are presented as stand-alone solutions, whereas others are implemented in a web-based framework such as Galaxy. In this review we aimed at sketching a comprehensive overview of all the bioinformatics solutions that are available for this growing research area. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:584-599, 2017.
Collapse
Affiliation(s)
- Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics, Department of
Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience
Engineering, Ghent University, Ghent, Belgium
- To whom correspondence should be addressed. Tel:
+32 9 264 99 22; Fax: +32 9 264 6220;
| | - Fenyö David
- Center for Health Informatics and Bioinformatics and Department of
Biochemistry and Molecular Pharmacology, New York University School of Medicine, New
York, New York, USA
| |
Collapse
|
79
|
Liu F, Li P, Gelfanov V, Mayer J, DiMarchi R. Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity. Acc Chem Res 2017; 50:1855-1865. [PMID: 28771323 DOI: 10.1021/acs.accounts.7b00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin is a miraculous hormone that has served a seminal role in the treatment of insulin-dependent diabetes for nearly a century. Insulin resides within in a superfamily of structurally related peptides that are distinguished by three invariant disulfide bonds that anchor the three-dimensional conformation of the hormone. The additional family members include the insulin-like growth factors (IGF) and the relaxin-related set of peptides that includes the so-called insulin-like peptides. Advances in peptide chemistry and rDNA-based synthesis have enabled the preparation of multiple insulin analogues. The translation of these methods from insulin to related peptides has presented unique challenges that pertain to differing biophysical properties and unique amino acid compositions. This Account presents a historical context for the advances in the chemical synthesis of insulin and the related peptides, with division into two general categories where disulfide bond formation is facilitated by native conformational folding or alternatively orthogonal chemical reactivity. The inherent differences in biophysical properties of insulin-like peptides, and in particular within synthetic intermediates, have constituted a central limitation to achieving high yield synthesis of properly folded peptides. Various synthetic approaches have been advanced in the past decade to successfully address this challenge. The use of chemical ligation and metastable amide bond surrogates are two of the more important synthetic advances in the preparation of high quality synthetic precursors to high potency peptides. The discovery and application of biomimetic connecting peptides simplifies proper disulfide formation and the subsequent traceless removal by chemical methods dramatically simplifies the total synthesis of virtually any two-chain insulin-like peptide. We report the application of these higher synthetic yield methodologies to the preparation of insulin-like peptides in support of exploratory in vivo studies requiring a large quantity of peptide. Tangentially, we demonstrate the use of these methods to study the relative importance of the IGF-1 connecting peptide to its biological activity. We report the translation of these finding in search of an insulin analog that might be comparably enhanced by a suitable connecting peptide for interaction with the insulin receptor, as occurs with IGF-1 and its receptor. The results identify a unique receptor site in the IGF-1 receptor from which this enhancement derives. The selective substitution of this specific IGF-1 receptor sequence into the homologous site in the insulin receptor generated a chimeric receptor that was equally capable of signaling with insulin or IGF-1. This novel receptor proved to enhance the potency of lower affinity insulin ligands when they were supplemented with the IGF-1 connecting peptide that similarly enhanced IGF-1 activity at its receptor. The chimeric insulin receptor demonstrated no further enhancement of potency for native insulin when it was similarly prepared as a single-chain analogue with a native IGF-1 connecting peptide. These results suggest a more highly evolved insulin receptor structure where the requirement for an additional structural element to achieve high potency interaction as demonstrated for IGF-1 is no longer required.
Collapse
Affiliation(s)
- Fa Liu
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Pengyun Li
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily Gelfanov
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - John Mayer
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
80
|
Hugo SE, Schlegel A. A Genetic Model to Study Increased Hexosamine Biosynthetic Flux. Endocrinology 2017; 158:2420-2426. [PMID: 28582574 PMCID: PMC5551556 DOI: 10.1210/en.2017-00359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022]
Abstract
Recently, we identified harvest moon (hmn), a fully penetrant and expressive recessive zebrafish mutant with hepatic steatosis. Larvae showed increased triacylglycerol in the absence of other obvious defects. When we attempted to raise these otherwise normal-appearing mutants to adulthood, we observed a developmental arrest and death in the early juvenile period. In this study, we report the positional cloning of the hmn locus and characterization of the defects caused by the mutation. Using bulk segregant analysis and fine mapping, we find that hmn mutants harbor a point mutation in an invariant residue within the sugar isomerase 1 domain of the gene encoding the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP) glutamine-fructose-6-phosphate transamidase (Gfpt1). The mutated protein shows increased abundance. The HBP generates β-N-acetyl-glucosamine (GlcNAc) as a spillover pathway from glucose. GlcNAc can be O-linked to seryl and threonyl residues of diverse cellular proteins (O-GlcNAc modification). Although some of these O-GlcNAc modifications serve an essential structural role, many others are dynamically generated on signaling molecules, including several impacting insulin signaling. We find that gfpt1 mutants show global increase in O-GlcNAc modification, and, surprisingly, lower fasting blood glucose in males. Taken together with our previously reported work, the gfpt1 mutant we isolated demonstrates that global increase in O-GlcNAc modification causes some severe insulin resistance phenotypes (hepatic steatosis and runting) but does not cause hyperglycemia. This animal model will provide a platform for dissecting how O-GlcNAc modification alters insulin responsiveness in multiple tissues.
Collapse
Affiliation(s)
- Sarah E. Hugo
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
81
|
Conlon JM, Musale V, Attoub S, Mangoni ML, Leprince J, Coquet L, Jouenne T, Abdel-Wahab YHA, Flatt PR, Rinaldi AC. Cytotoxic peptides with insulin-releasing activities from skin secretions of the Italian stream frog Rana italica (Ranidae). J Pept Sci 2017; 23:769-776. [PMID: 28699258 DOI: 10.1002/psc.3025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Abstract
Peptidomic analysis of norepinephrine-stimulated skin secretions from Italian stream frog Rana italica led to the purification and characterization of two host-defense peptides differing by a single amino acid residue belonging to the brevinin-1 family (brevinin-1ITa and -1ITb), a peptide belonging to the temporin family (temporin-ITa) and a component identified as prokineticin Bv8. The secretions contained relatively high concentrations of the methionine-sulphoxide forms of brevinin-1ITa and -1ITb suggesting that these peptides may have a role as antioxidants in the skin of this montane frog. Brevinin-1ITa (IVPFLLGMVPKLVCLITKKC) displayed potent cytotoxicity against non-small cell lung adenocarcinoma A549 cells (LC50 = 18 μM), breast adenocarcinoma MDA-MB-231 cells (LC50 = 8 μM) and colorectal adenocarcinoma HT-29 cells (LC50 = 18 μM), but the peptide was also strongly hemolytic against mouse erythrocytes (LC50 = 7 μM). Temporin-ITa (VFLGAIAQALTSLLGKL.NH2 ) was between three and fivefold less potent against these cells. Brevinin-1ITa inhibited growth of both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli as well as a strain of the opportunist yeast pathogen Candida parapsilosis, whereas temporin-ITa was active only against S. epidermidis and C. parapsilosis. Both peptides stimulated the release of insulin from BRIN-BD11 clonal β-cells at concentrations ≥1 nM, but brevinin-1ITa was cytotoxic to the cells at concentrations ≥3 μM. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK
| | - Vishal Musale
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK
| | - Samir Attoub
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Jérôme Leprince
- Inserm U982, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000, Mont-Saint-Aignan, France
| | - Laurent Coquet
- CNRS UMR 6270, PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000, Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS UMR 6270, PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000, Mont-Saint-Aignan, France
| | - Yasser H A Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK
| | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Monserrato, (CA), Italy
| |
Collapse
|
82
|
Robinson SD, Safavi-Hemami H. Venom peptides as pharmacological tools and therapeutics for diabetes. Neuropharmacology 2017; 127:79-86. [PMID: 28689026 DOI: 10.1016/j.neuropharm.2017.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/24/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a chronic disease caused by a deficiency in production of insulin by the beta cells of the pancreas (type 1 diabetes, T1D), or by partial deficiency of insulin production and the ineffectiveness of the insulin produced (type 2 diabetes, T2D). Animal venoms are a unique source of compounds targeting ion channels and receptors in the nervous and cardiovascular systems. In recent years, several venom peptides have also emerged as pharmacological tools and therapeutics for T1D and T2D. Some of these peptides act directly as mimics of endogenous metabolic hormones while others act on ion channels expressed in pancreatic beta cells. Here, we provide an overview of the discovery of these venom peptides, their mechanisms of action in the context of diabetes, and their therapeutic potential for the treatment of this disease. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Samuel D Robinson
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
83
|
Olivera BM, Raghuraman S, Schmidt EW, Safavi-Hemami H. Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:717-735. [PMID: 28551870 DOI: 10.1007/s00359-017-1183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 11/24/2022]
Abstract
From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products-venom components from predatory marine cone snails-this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as "Chemical Neuroethology", linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.
Collapse
Affiliation(s)
| | | | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
84
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
85
|
The Venom Repertoire of Conus gloriamaris (Chemnitz, 1777), the Glory of the Sea. Mar Drugs 2017; 15:md15050145. [PMID: 28531118 PMCID: PMC5450551 DOI: 10.3390/md15050145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022] Open
Abstract
The marine cone snail Conus gloriamaris is an iconic species. For over two centuries, its shell was one of the most prized and valuable natural history objects in the world. Today, cone snails have attracted attention for their remarkable venom components. Many conotoxins are proving valuable as research tools, drug leads, and drugs. In this article, we present the venom gland transcriptome of C. gloriamaris, revealing this species' conotoxin repertoire. More than 100 conotoxin sequences were identified, representing a valuable resource for future drug discovery efforts.
Collapse
|
86
|
Sadeghi M, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. Neuropharmacology 2017; 127:116-123. [PMID: 28533165 DOI: 10.1016/j.neuropharm.2017.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/28/2023]
Abstract
Conotoxins (conopeptides) are a diverse group of peptides isolated from the venom of marine cone snails. Conus peptides modulate pain by interacting with voltage-gated ion channels and G protein-coupled receptors (GPCRs). Opiate drugs targeting GPCRs have long been used, nonetheless, many undesirable side effects associated with opiates have been observed including addiction. Consequently, alternative avenues to pain management are a largely unmet need. It has been shown that various voltage-gated calcium channels (VGCCs) respond to GPCR modulation. Thus, regulation of VGCCs by GPCRs has become a valuable alternative in the management of pain. In this review, we focus on analgesic conotoxins that exert their effects via GPCR-mediated inhibition of ion channels involved in nociception and pain transmission. Specifically, α-conotoxin Vc1.1 activation of GABAB receptors and inhibition of voltage-gated calcium channels as a novel mechanism for reducing the excitability of dorsal root ganglion neurons is described. Vc1.1 and other α-conotoxins have been shown to be analgesic in different animal models of chronic pain. This review will outline the functional effects of conopeptide modulation of GPCRs and how their signalling is translated to downstream components of the pain pathways. Where available we present the proposed signalling mechanisms that couples metabotropic receptor activation to their downstream effectors to produce analgesia. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
87
|
|
88
|
Identification of a cono-RFamide from the venom of Conus textile that targets ASIC3 and enhances muscle pain. Proc Natl Acad Sci U S A 2017; 114:E3507-E3515. [PMID: 28396446 DOI: 10.1073/pnas.1616232114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated Na+ channels that are expressed throughout the nervous system. ASICs have been implicated in several neuronal disorders, like ischemic stroke, neuronal inflammation, and pathological pain. Several toxins from venomous animals have been identified that target ASICs with high specificity and potency. These toxins are extremely useful in providing protein pharmacophores and to characterize function and structure of ASICs. Marine cone snails contain a high diversity of toxins in their venom such as conotoxins, which are short polypeptides stabilized by disulfide bonds, and conopeptides, which have no or only one disulfide bond. Whereas conotoxins selectively target specific neuronal proteins, mainly ion channels, the targets of conopeptides are less well known. Here, we perform an in vitro screen of venoms from 18 cone snail species to identify toxins targeting ASICs. We identified a small conopeptide of only four amino acids from the venom of Conus textile that strongly potentiated currents of ASIC3, which has a specific role in the pain pathway. This peptide, RPRFamide, belongs to the subgroup of cono-RFamides. Electrophysiological characterization of isolated dorsal root ganglion (DRG) neurons revealed that RPRFamide increases their excitability. Moreover, injection of the peptide into the gastrocnemius muscle strongly enhanced acid-induced muscle pain in mice that was abolished by genetic inactivation of ASIC3. In summary, we identified a conopeptide that targets the nociceptor-specific ion channel ASIC3.
Collapse
|
89
|
Robinson SD, Li Q, Bandyopadhyay PK, Gajewiak J, Yandell M, Papenfuss AT, Purcell AW, Norton RS, Safavi-Hemami H. Hormone-like peptides in the venoms of marine cone snails. Gen Comp Endocrinol 2017; 244:11-18. [PMID: 26301480 PMCID: PMC4762756 DOI: 10.1016/j.ygcen.2015.07.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins.
Collapse
Affiliation(s)
- Samuel D Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Qing Li
- Eccles Institute of Human Genetics, University of Utah, and School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, and School of Medicine, Salt Lake City, UT 84112, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Anthony W Purcell
- The Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Department of Biology, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
90
|
Tetsch L. Schneller als der Arzt erlaubt. CHEM UNSERER ZEIT 2017. [DOI: 10.1002/ciuz.201790021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
91
|
Prashanth JR, Hasaballah N, Vetter I. Pharmacological screening technologies for venom peptide discovery. Neuropharmacology 2017; 127:4-19. [PMID: 28377116 DOI: 10.1016/j.neuropharm.2017.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023]
Abstract
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Nojod Hasaballah
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, 20 Cornwall St, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
92
|
Wu F, Mayer JP, Gelfanov VM, Liu F, DiMarchi RD. Synthesis of Four-Disulfide Insulin Analogs via Sequential Disulfide Bond Formation. J Org Chem 2017; 82:3506-3512. [DOI: 10.1021/acs.joc.6b03078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fangzhou Wu
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John P. Mayer
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily M. Gelfanov
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Fa Liu
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard D. DiMarchi
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| |
Collapse
|
93
|
Robinson SD, Safavi-Hemami H. Insulin as a weapon. Toxicon 2016; 123:56-61. [DOI: 10.1016/j.toxicon.2016.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
|
94
|
Zhou Y, Yu W, Zhong H, Li J, Li H, He F, Zhou J, Tang Y, Yu J, Yu F. Transcriptome analysis reveals that insulin is an immunomodulatory hormone in common carp. FISH & SHELLFISH IMMUNOLOGY 2016; 59:213-219. [PMID: 27742590 DOI: 10.1016/j.fsi.2016.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Common carp (Cyprinus carpio) is a widespread freshwater fish and economically important species in China and other East Asian countries. Recent studies suggest that insulin can alter the expression of immune genes and, thus, can be regarded as an immunomodulatory hormone. To understand the mechanism of the immune response to insulin, we performed a comparative RNA-seq transcriptome analysis using livers from common carp injected with insulin (5 μg/g bodyweight) or saline as a control. After filtering the low-quality reads and removing the adaptors, the clean raw reads were assembled into 60,421 unigenes with mean length of 746.81 bp. Furthermore, 37,107 unigenes were annotated based on homology after blast search in public databases. Differentially expressed genes were identified using the fragments per kb per million fragments method and EdgeR software. In total, 782 differentially expressed genes were found. Thereinto, 444 and 338 genes were upregulated and downregulated, respectively, in the insulin-injected group. A Gene Ontology analysis indicated that these genes were concentrated in glucose metabolism, hormone secretion, andimmune system processes. Moreover, 153 enriched KEGG pathways were associated with the differentially expressed genes, including the Toll-like receptor (TLR) and nuclear factor kappa beta (NF-κB) signaling pathways. Signal transducer and activator of transcription 1 (10.56-fold), TLR3 (0.089-fold), activator protein-1 (0.007-fold), tumor necrosis factor-α (0.139-fold), and macrophage inflammatory protein-1β (0.038-fold) expression were significantly changed after the insulin injection. This study characterized the profile of genes expression response to insulin in common carp liver for the first time and provided new insight into understanding the molecular mechanism of insulin as an immunomodulatory hormone.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biotechnology and Environmental Science, Changsha University, Changsha 410003, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Wenjuan Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jianlin Li
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongxia Li
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Feng He
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jie Zhou
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yongkai Tang
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Juhua Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Fan Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
95
|
Tsend-Ayush E, He C, Myers MA, Andrikopoulos S, Wong N, Sexton PM, Wootten D, Forbes BE, Grutzner F. Monotreme glucagon-like peptide-1 in venom and gut: one gene - two very different functions. Sci Rep 2016; 6:37744. [PMID: 27898108 PMCID: PMC5127184 DOI: 10.1038/srep37744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
The importance of Glucagon like peptide 1 (GLP-1) for metabolic control and insulin release sparked the evolution of genes mimicking GLP-1 action in venomous species (e.g. Exendin-4 in Heloderma suspectum (gila monster)). We discovered that platypus and echidna express a single GLP-1 peptide in both intestine and venom. Specific changes in GLP-1 of monotreme mammals result in resistance to DPP-4 cleavage which is also observed in the GLP-1 like Exendin-4 expressed in Heloderma venom. Remarkably we discovered that monotremes evolved an alternative mechanism to degrade GLP-1. We also show that monotreme GLP-1 stimulates insulin release in cultured rodent islets, but surprisingly shows low receptor affinity and bias toward Erk signaling. We propose that these changes in monotreme GLP-1 are the result of conflicting function of this peptide in metabolic control and venom. This evolutionary path is fundamentally different from the generally accepted idea that conflicting functions in a single gene favour duplication and diversification, as is the case for Exendin-4 in gila monster. This provides novel insight into the remarkably different metabolic control mechanism and venom function in monotremes and an unique example of how different selective pressures act upon a single gene in the absence of gene duplication.
Collapse
Affiliation(s)
- Enkhjargal Tsend-Ayush
- Robinson Research Institute, School of Biological Sciences, The University of Adelaide, South Australia, 5000, Australia
| | - Chuan He
- Robinson Research Institute, School of Biological Sciences, The University of Adelaide, South Australia, 5000, Australia
| | - Mark A Myers
- School of Applied and Biomedical Sciences, Federation University Australia, Mount Helen, Victoria, 3353, Australia
| | - Sof Andrikopoulos
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Nicole Wong
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, 3052, Australia
| | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, 3052, Australia
| | - Briony E Forbes
- Robinson Research Institute, School of Biological Sciences, The University of Adelaide, South Australia, 5000, Australia.,School of Medicine, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Frank Grutzner
- Robinson Research Institute, School of Biological Sciences, The University of Adelaide, South Australia, 5000, Australia
| |
Collapse
|
96
|
Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Showers Corneli P, Seger J, Yandell M, Olivera BM. Venom Insulins of Cone Snails Diversify Rapidly and Track Prey Taxa. Mol Biol Evol 2016; 33:2924-2934. [PMID: 27524826 PMCID: PMC5062327 DOI: 10.1093/molbev/msw174] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A specialized insulin was recently found in the venom of a fish-hunting cone snail, Conus geographus Here we show that many worm-hunting and snail-hunting cones also express venom insulins, and that this novel gene family has diversified explosively. Cone snails express a highly conserved insulin in their nerve ring; presumably this conventional signaling insulin is finely tuned to the Conus insulin receptor, which also evolves very slowly. By contrast, the venom insulins diverge rapidly, apparently in response to biotic interactions with prey and also possibly the cones' own predators and competitors. Thus, the inwardly directed signaling insulins appear to experience predominantly purifying sele\ction to target an internal receptor that seldom changes, while the outwardly directed venom insulins frequently experience directional selection to target heterospecific insulin receptors in a changing mix of prey, predators and competitors. Prey insulin receptors may often be constrained in ways that prevent their evolutionary escape from targeted venom insulins, if amino-acid substitutions that result in escape also degrade the receptor's signaling functions.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aiping Lu
- School of Life Sciences and Technology, Institute of Protein Research, Tongji University, Shanghai, China
| | - Qing Li
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT
| | - Alexander E Fedosov
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Science, Leninsky Prospect, Moscow, Russia
| | - Jason Biggs
- University of Guam Marine Laboratory, Agana, Guam
| | | | - Jon Seger
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
97
|
Gorson J, Holford M. Small Packages, Big Returns: Uncovering the Venom Diversity of Small Invertebrate Conoidean Snails. Integr Comp Biol 2016; 56:962-972. [PMID: 27371389 PMCID: PMC6058754 DOI: 10.1093/icb/icw063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venomous organisms used in research were historically chosen based on size and availability. This opportunity-driven strategy created a species bias in which snakes, scorpions, and spiders became the primary subjects of venom research. Increasing technological advancements have enabled interdisciplinary studies using genomics, transcriptomics, and proteomics to expand venom investigation to animals that produce small amounts of venom or lack traditional venom producing organs. One group of non-traditional venomous organisms that have benefitted from the rise of -omic technologies is the Conoideans. The Conoidean superfamily of venomous marine snails includes, the Terebridae, Turridae (s.l), and Conidae. Conoidea venom is used for both predation and defense, and therefore under strong selection pressures. The need for conoidean venom peptides to be potent and specific to their molecular targets has made them important tools for investigating cellular physiology and bioactive compounds that are beneficial to improving human health. A convincing case for the potential of Conoidean venom is made with the first commercially available conoidean venom peptide drug Ziconotide (Prialt®), an analgesic derived from Conus magus venom that is used to treat chronic pain in HIV and cancer patients. Investigation of conoidean venom using -omics technology provides significant insights into predator-driven diversification in biodiversity and identifies novel compounds for manipulating cellular communication, especially as it pertains to disease and disorders.
Collapse
Affiliation(s)
- J Gorson
- *Department of Chemistry, Hunter College, The City University of New York, Belfer Research Building, NY, 10021 USA
- Departments of Biology, Chemistry, and Biochemistry, The Graduate City, The City University of New York, NY, 10016 USA
- Invertebrate Zoology, Sackler Institute of Comparative Genomics, American Museum of Natural History, NY, 10024 USA
| | - M Holford
- *Department of Chemistry, Hunter College, The City University of New York, Belfer Research Building, NY, 10021 USA
- Departments of Biology, Chemistry, and Biochemistry, The Graduate City, The City University of New York, NY, 10016 USA
- Invertebrate Zoology, Sackler Institute of Comparative Genomics, American Museum of Natural History, NY, 10024 USA
| |
Collapse
|
98
|
De Meyts P. Structural basis for the poisonous activity of a predator's venom insulin. Nat Struct Mol Biol 2016; 23:872-874. [PMID: 27706132 DOI: 10.1038/nsmb.3304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pierre De Meyts
- de Duve Institute, Brussels, Belgium, and at Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
99
|
A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nat Struct Mol Biol 2016; 23:916-920. [PMID: 27617429 DOI: 10.1038/nsmb.3292] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Insulins in the venom of certain fish-hunting cone snails facilitate prey capture by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone's hexameric storage form. Removal of this segment (residues B23-B30) in human insulin results in substantial loss of receptor affinity. Here, we found that Con-Ins G1 is monomeric, strongly binds the human insulin receptor and activates receptor signaling. Con-Ins G1 thus is a naturally occurring B-chain-minimized mimetic of human insulin. Our crystal structure of Con-Ins G1 reveals a tertiary structure highly similar to that of human insulin and indicates how Con-Ins G1's lack of an equivalent to the key receptor-engaging residue PheB24 is mitigated. These findings may facilitate efforts to design ultrarapid-acting therapeutic insulins.
Collapse
|
100
|
Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genomics 2016; 17:401. [PMID: 27229931 PMCID: PMC4880860 DOI: 10.1186/s12864-016-2755-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. RESULTS We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. CONCLUSIONS The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that species with more generalized diets tend to have more complex venoms and utilize a greater number of venom genes for prey capture. Whether this increased gene diversity confers an increased capacity for evolutionary change remains to be tested. Overall, our results corroborate the key role of diet in influencing patterns of venom evolution in cone snails and other venomous radiations.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Jl Sesetan-Markisa 6, Denpasar, Bali, 80225, Indonesia
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|