51
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
52
|
Sesena-Rubfiaro A, Prajapati NJ, Paolino L, Lou L, Cotayo D, Pandey P, Shaver M, Hutcheson J, Agarwal A, He J. Membrane Remodeling of Human-Engineered Cardiac Tissue by Chronic Electric Stimulation. ACS Biomater Sci Eng 2023; 9:1644-1655. [PMID: 36765460 PMCID: PMC10542861 DOI: 10.1021/acsbiomaterials.2c01370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show immature features, but these are improved by integration into 3D cardiac constructs. In addition, it has been demonstrated that physical manipulations such as electrical stimulation (ES) are highly effective in improving the maturation of human-engineered cardiac tissue (hECT) derived from hiPSC-CMs. Here, we continuously applied an ES in capacitive coupling configuration, which is below the pacing threshold, to millimeter-sized hECTs for 1-2 weeks. Meanwhile, the structural and functional developments of the hECTs were monitored and measured using an array of assays. Of particular note, a nanoscale imaging technique, scanning ion conductance microscopy (SICM), has been used to directly image membrane remodeling of CMs at different locations on the tissue surface. Periodic crest/valley patterns with a distance close to the sarcomere length appeared on the membrane of CMs near the edge of the tissue after ES, suggesting the enhanced transverse tubulation network. The SICM observation is also supported by the fluorescence images of the transverse tubulation network and α-actinin. Correspondingly, essential cardiac functions such as calcium handling and contraction force generation were improved. Our study provides evidence that chronic subthreshold ES can still improve the structural and functional developments of hECTs.
Collapse
Affiliation(s)
| | - Navin J. Prajapati
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Lia Paolino
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Daniel Cotayo
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Popular Pandey
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Mohammed Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami FL 33199, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami FL 33199, USA
| |
Collapse
|
53
|
Yong U, Kim D, Kim H, Hwang DG, Cho S, Nam H, Kim S, Kim T, Jeong U, Kim K, Chung WK, Yeo WH, Jang J. Biohybrid 3D Printing of a Tissue-Sensor Platform for Wireless, Real-Time, and Continuous Monitoring of Drug-Induced Cardiotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208983. [PMID: 36528341 DOI: 10.1002/adma.202208983] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Drug-induced cardiotoxicity is regarded as a major hurdle in the early stages of drug development. Although there are various methods for preclinical cardiotoxicity tests, they cannot completely predict the cardiotoxic potential of a compound due to the lack of physiological relevance. Recently, 3D engineered heart tissue (EHT) has been used to investigate cardiac muscle functions as well as pharmacological effects by exhibiting physiological auxotonic contractions. However, there is still no adequate platform for continuous monitoring to test acute and chronic pharmacological effects in vitro. Here, a biohybrid 3D printing method for fabricating a tissue-sensor platform, composed of a bipillar-grafted strain gauge sensor and EHT, is first introduced. Two pillars are three-dimensionally printed as grafts onto a strain gauge-embedded substrate to promote the EHT contractility and guide the self-assembly of the EHTs along with the strain gauge. In addition, the integration of a wireless multi-channel electronic system allows for continuous monitoring of the EHT contractile force by the tissue-sensor platform and, ultimately, for the observation of the acute and chronic drug effects of cardiotoxicants. In summary, biohybrid 3D printing technology is expected to be a potential fabrication method to provide a next-generation tissue-sensor platform for an effective drug development process.
Collapse
Affiliation(s)
- Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea
| | - Donghwan Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Sungkeon Cho
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Hyoryung Nam
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea
| | - Sejin Kim
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Taeyeong Kim
- Department of Materials Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Keehoon Kim
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Mechanical Engineering, POSTECH, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
54
|
Wang C, Ramahdita G, Genin G, Huebsch N, Ma Z. Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. BIOPHYSICS REVIEWS 2023; 4:011314. [PMID: 37008887 PMCID: PMC10062054 DOI: 10.1063/5.0141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
Mechanical forces impact cardiac cells and tissues over their entire lifespan, from development to growth and eventually to pathophysiology. However, the mechanobiological pathways that drive cell and tissue responses to mechanical forces are only now beginning to be understood, due in part to the challenges in replicating the evolving dynamic microenvironments of cardiac cells and tissues in a laboratory setting. Although many in vitro cardiac models have been established to provide specific stiffness, topography, or viscoelasticity to cardiac cells and tissues via biomaterial scaffolds or external stimuli, technologies for presenting time-evolving mechanical microenvironments have only recently been developed. In this review, we summarize the range of in vitro platforms that have been used for cardiac mechanobiological studies. We provide a comprehensive review on phenotypic and molecular changes of cardiomyocytes in response to these environments, with a focus on how dynamic mechanical cues are transduced and deciphered. We conclude with our vision of how these findings will help to define the baseline of heart pathology and of how these in vitro systems will potentially serve to improve the development of therapies for heart diseases.
Collapse
Affiliation(s)
| | - Ghiska Ramahdita
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | - Zhen Ma
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
55
|
Singh BN, Yucel D, Garay BI, Tolkacheva EG, Kyba M, Perlingeiro RCR, van Berlo JH, Ogle BM. Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering. Circ Res 2023; 132:519-540. [PMID: 36795845 PMCID: PMC9943541 DOI: 10.1161/circresaha.122.321770] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.
Collapse
Affiliation(s)
- Bhairab N. Singh
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
| | - Dogacan Yucel
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Bayardo I. Garay
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School, MN, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Rita C. R. Perlingeiro
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Jop H. van Berlo
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Brenda M. Ogle
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
- Masonic Cancer Center, University of Minnesota, MN, USA
| |
Collapse
|
56
|
Eguchi A, Gonzalez AFGS, Torres-Bigio SI, Koleckar K, Birnbaum F, Zhang JZ, Wang VY, Wu JC, Artandi SE, Blau HM. TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs. Proc Natl Acad Sci U S A 2023; 120:e2209967120. [PMID: 36719921 PMCID: PMC9963063 DOI: 10.1073/pnas.2209967120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.
Collapse
Affiliation(s)
- Asuka Eguchi
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Adriana Fernanda G S Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
| | - Sofía I Torres-Bigio
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kassie Koleckar
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
| | - Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
| | - Joe Z Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Vicky Y Wang
- Stanford Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph C Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94035
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
57
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
58
|
Dow LP, Gaietta G, Kaufman Y, Swift MF, Lemos M, Lane K, Hopcroft M, Bezault A, Sauvanet C, Volkmann N, Pruitt BL, Hanein D. Morphological control enables nanometer-scale dissection of cell-cell signaling complexes. Nat Commun 2022; 13:7831. [PMID: 36539423 PMCID: PMC9768166 DOI: 10.1038/s41467-022-35409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.
Collapse
Affiliation(s)
- Liam P. Dow
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Guido Gaietta
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Yair Kaufman
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Mark F. Swift
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Moara Lemos
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Kerry Lane
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Matthew Hopcroft
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Armel Bezault
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Cécile Sauvanet
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Niels Volkmann
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Beth L. Pruitt
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Dorit Hanein
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France ,grid.133342.40000 0004 1936 9676Present Address: Department of Chemistry and Biochemistry, and of Biomedical Engineering, University of California, Santa Barbara, CA USA
| |
Collapse
|
59
|
Titin-truncating variants in hiPSC cardiomyocytes induce pathogenic proteinopathy and sarcomere defects with preserved core contractile machinery. Stem Cell Reports 2022; 18:220-236. [PMID: 36525964 PMCID: PMC9860080 DOI: 10.1016/j.stemcr.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.
Collapse
|
60
|
Morris TA, Eldeen S, Tran RDH, Grosberg A. A comprehensive review of computational and image analysis techniques for quantitative evaluation of striated muscle tissue architecture. BIOPHYSICS REVIEWS 2022; 3:041302. [PMID: 36407035 PMCID: PMC9667907 DOI: 10.1063/5.0057434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Unbiased evaluation of morphology is crucial to understanding development, mechanics, and pathology of striated muscle tissues. Indeed, the ability of striated muscles to contract and the strength of their contraction is dependent on their tissue-, cellular-, and cytoskeletal-level organization. Accordingly, the study of striated muscles often requires imaging and assessing aspects of their architecture at multiple different spatial scales. While an expert may be able to qualitatively appraise tissues, it is imperative to have robust, repeatable tools to quantify striated myocyte morphology and behavior that can be used to compare across different labs and experiments. There has been a recent effort to define the criteria used by experts to evaluate striated myocyte architecture. In this review, we will describe metrics that have been developed to summarize distinct aspects of striated muscle architecture in multiple different tissues, imaged with various modalities. Additionally, we will provide an overview of metrics and image processing software that needs to be developed. Importantly to any lab working on striated muscle platforms, characterization of striated myocyte morphology using the image processing pipelines discussed in this review can be used to quantitatively evaluate striated muscle tissues and contribute to a robust understanding of the development and mechanics of striated muscles.
Collapse
Affiliation(s)
| | - Sarah Eldeen
- Center for Complex Biological Systems, University of California, Irvine, California 92697-2700, USA
| | | | | |
Collapse
|
61
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
62
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
63
|
Pioner JM, Santini L, Palandri C, Langione M, Grandinetti B, Querceto S, Martella D, Mazzantini C, Scellini B, Giammarino L, Lupi F, Mazzarotto F, Gowran A, Rovina D, Santoro R, Pompilio G, Tesi C, Parmeggiani C, Regnier M, Cerbai E, Mack DL, Poggesi C, Ferrantini C, Coppini R. Calcium handling maturation and adaptation to increased substrate stiffness in human iPSC-derived cardiomyocytes: The impact of full-length dystrophin deficiency. Front Physiol 2022; 13:1030920. [PMID: 36419836 PMCID: PMC9676373 DOI: 10.3389/fphys.2022.1030920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyocytes differentiated from human induced Pluripotent Stem Cells (hiPSC- CMs) are a unique source for modelling inherited cardiomyopathies. In particular, the possibility of observing maturation processes in a simple culture dish opens novel perspectives in the study of early-disease defects caused by genetic mutations before the onset of clinical manifestations. For instance, calcium handling abnormalities are considered as a leading cause of cardiomyocyte dysfunction in several genetic-based dilated cardiomyopathies, including rare types such as Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy. To better define the maturation of calcium handling we simultaneously measured action potential and calcium transients (Ca-Ts) using fluorescent indicators at specific time points. We combined micropatterned substrates with long-term cultures to improve maturation of hiPSC-CMs (60, 75 or 90 days post-differentiation). Control-(hiPSC)-CMs displayed increased maturation over time (90 vs 60 days), with longer action potential duration (APD), increased Ca-T amplitude, faster Ca-T rise (time to peak) and Ca-T decay (RT50). The progressively increased contribution of the SR to Ca release (estimated by post-rest potentiation or Caffeine-induced Ca-Ts) appeared as the main determinant of the progressive rise of Ca-T amplitude during maturation. As an example of severe cardiomyopathy with early onset, we compared hiPSC-CMs generated from a DMD patient (DMD-ΔExon50) and a CRISPR-Cas9 genome edited cell line isogenic to the healthy control with deletion of a G base at position 263 of the DMD gene (c.263delG-CMs). In DMD-hiPSC-CMs, changes of Ca-Ts during maturation were less pronounced: indeed, DMD cells at 90 days showed reduced Ca-T amplitude and faster Ca-T rise and RT50, as compared with control hiPSC-CMs. Caffeine-Ca-T was reduced in amplitude and had a slower time course, suggesting lower SR calcium content and NCX function in DMD vs control cells. Nonetheless, the inotropic and lusitropic responses to forskolin were preserved. CRISPR-induced c.263delG-CM line recapitulated the same developmental calcium handling alterations observed in DMD-CMs. We then tested the effects of micropatterned substrates with higher stiffness. In control hiPSC-CMs, higher stiffness leads to higher amplitude of Ca-T with faster decay kinetics. In hiPSC-CMs lacking full-length dystrophin, however, stiffer substrates did not modify Ca-Ts but only led to higher SR Ca content. These findings highlighted the inability of dystrophin-deficient cardiomyocytes to adjust their calcium homeostasis in response to increases of extracellular matrix stiffness, which suggests a mechanism occurring during the physiological and pathological development (i.e. fibrosis).
Collapse
Affiliation(s)
| | - Lorenzo Santini
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Silvia Querceto
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy
| | | | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Rosaria Santoro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | | | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raffaele Coppini
- Department of Neurofarba, University of Florence, Florence, Italy
| |
Collapse
|
64
|
Shi H, Wang C, Gao BZ, Henderson JH, Ma Z. Cooperation between myofibril growth and costamere maturation in human cardiomyocytes. Front Bioeng Biotechnol 2022; 10:1049523. [PMID: 36394013 PMCID: PMC9663467 DOI: 10.3389/fbioe.2022.1049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Costameres, as striated muscle-specific cell adhesions, anchor both M-lines and Z-lines of the sarcomeres to the extracellular matrix. Previous studies have demonstrated that costameres intimately participate in the initial assembly of myofibrils. However, how costamere maturation cooperates with myofibril growth is still underexplored. In this work, we analyzed zyxin (costameres), α-actinin (Z-lines) and myomesin (M-lines) to track the behaviors of costameres and myofibrils within the cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). We quantified the assembly and maturation of costameres associated with the process of myofibril growth within the hiPSC-CMs in a time-dependent manner. We found that asynchrony existed not only between the maturation of myofibrils and costameres, but also between the formation of Z-costameres and M-costameres that associated with different structural components of the sarcomeres. This study helps us gain more understanding of how costameres assemble and incorporate into the cardiomyocyte sarcomeres, which sheds a light on cardiomyocyte mechanobiology.
Collapse
Affiliation(s)
- Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhen Ma,
| |
Collapse
|
65
|
Jimenez-Vazquez EN, Jain A, Jones DK. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate. Curr Protoc 2022; 2:e601. [PMID: 36383047 PMCID: PMC9710304 DOI: 10.1002/cpz1.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiac myocytes isolated from adult heart tissue have a rod-like shape with highly organized intracellular structures. Cardiomyocytes derived from human pluripotent stem cells (iPSC-CMs), on the other hand, exhibit disorganized structure and contractile mechanics, reflecting their pronounced immaturity. These characteristics hamper research using iPSC-CMs. The protocol described here enhances iPSC-CM maturity and function by controlling the cellular shape and environment of the cultured cells. Microstructured silicone membranes function as a cell culture substrate that promotes cellular alignment. iPSC-CMs cultured on micropatterned membranes display an in-vivo-like rod-shaped morphology. This physiological cellular morphology along with the soft biocompatible silicone substrate, which has similar stiffness to the native cardiac matrix, promotes maturation of contractile function, calcium handling, and electrophysiology. Incorporating this technique for enhanced iPSC-CM maturation will help bridge the gap between animal models and clinical care, and ultimately improve personalized medicine for cardiovascular diseases. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cardiomyocyte differentiation of iPSCs Basic Protocol 2: Purification of differentiated iPSC-CMs using MACS negative selection Basic Protocol 3: Micropatterning on PDMS.
Collapse
Affiliation(s)
| | - Abhilasha Jain
- Department of Pharmacology, University of Michigan Medical School
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School
- Department of Internal Medicine, University of Michigan Medical School
| |
Collapse
|
66
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
67
|
Lou L, Paul T, Aguiar BA, Dolmetsch T, Zhang C, Agarwal A. Direct Observation of Adhesion and Mechanical Behavior of a Single Poly(lactic- co-glycolic acid) (PLGA) Fiber Using an In Situ Technique for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42876-42886. [PMID: 36107749 DOI: 10.1021/acsami.2c09665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanometer- and submicrometer-sized fiber have been used as scaffolds for tissue engineering, because of their fundamental load-bearing properties in synergy with mechano-transduction. This study investigates a single biodegradable poly(lactic-co-glycolic acid) (PLGA) fiber's load-displacement behavior utilizing the nanoindentation technique coupled with a high-resolution in situ imaging system. It is demonstrated that a maximum force of ∼3 μN in the radial direction and displacement of at least 150% of fiber diameter should be applied to acquire the fiber's macroscopic mechanical properties for tissue engineering. The adhesion behavior of a single fiber is captured using a high-resolution camera. The digital image correlation (DIC) technique is adopted to quantify the adhesion force (∼25 μN) between the fiber and the tip. Adhesion force has also been quantified for the fiber after immersing in phosphate-buffered saline (PBS) to mimic the bioenvironment. A 4-fold increase in adhesion force after PBS treatment was observed due to water penetration and hydrolysis on the fiber's surface. A high similarity between mechanical properties of a single fiber and native tissues (elastic modulus of 10-25 kPa) and superior adhesion force (25-107.25 μN) was observed, which is excellent for promoting cell-matrix communication. Overall, this study examines the mechanics of a single fiber using innovative indentation and imaging processing techniques, disclosing its profound and striking roles in tissue engineering.
Collapse
Affiliation(s)
- Lihua Lou
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Tanaji Paul
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Brandon A Aguiar
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Tyler Dolmetsch
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Cheng Zhang
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Arvind Agarwal
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
68
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
69
|
Leowattana W, Leowattana T, Leowattana P. Human-induced pluripotent stem cell-atrial-specific cardiomyocytes and atrial fibrillation. World J Clin Cases 2022; 10:9588-9601. [PMID: 36186184 PMCID: PMC9516943 DOI: 10.12998/wjcc.v10.i27.9588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Patient-specific human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs) may be produced, genome-edited, and differentiated into multiple cell types for regenerative medicine, disease modeling, drug testing, toxicity screening, and three-dimensional tissue fabrication. There is presently no complete model of atrial fibrillation (AF) available for studying human pharmacological responses and evaluating the toxicity of potential medication candidates. It has been demonstrated that hiPSC-aCMs can replicate the electrophysiological disease phenotype and genotype of AF. The hiPSC-aCMs, however, are immature and do not reflect the maturity of aCMs in the native myocardium. Numerous laboratories utilize a variety of methodologies and procedures to improve and promote aCM maturation, including electrical stimulation, culture duration, biophysical signals, and changes in metabolic variables. This review covers the current methods being explored for use in the maturation of patient-specific hiPSC-aCMs and their application towards a personalized approach to the pharmacologic therapy of AF.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
70
|
Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods 2022; 19:1064-1071. [PMID: 36064773 DOI: 10.1038/s41592-022-01591-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Engineered cardiac tissues derived from human induced pluripotent stem cells offer unique opportunities for patient-specific disease modeling, drug discovery and cardiac repair. Since the first engineered hearts were introduced over two decades ago, human induced pluripotent stem cell-based three-dimensional cardiac organoids and heart-on-a-chip systems have now become mainstays in basic cardiovascular research as valuable platforms for investigating fundamental human pathophysiology and development. However, major obstacles remain to be addressed before the field can truly advance toward commercial and clinical translation. Here we provide a snapshot of the state-of-the-art methods in cardiac tissue engineering, with a focus on in vitro models of the human heart. Looking ahead, we discuss major challenges and opportunities in the field and suggest strategies for enabling broad acceptance of engineered cardiac tissues as models of cardiac pathophysiology and testbeds for the development of therapies.
Collapse
|
71
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
72
|
Gao H, Yang F, Sattari K, Du X, Fu T, Fu S, Liu X, Lin J, Sun Y, Yao J. Bioinspired two-in-one nanotransistor sensor for the simultaneous measurements of electrical and mechanical cellular responses. SCIENCE ADVANCES 2022; 8:eabn2485. [PMID: 36001656 PMCID: PMC9401615 DOI: 10.1126/sciadv.abn2485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 07/11/2022] [Indexed: 05/21/2023]
Abstract
The excitation-contraction dynamics in cardiac tissue are the most important physiological parameters for assessing developmental state. We demonstrate integrated nanoelectronic sensors capable of simultaneously probing electrical and mechanical cellular responses. The sensor is configured from a three-dimensional nanotransistor with its conduction channel protruding out of the plane. The structure promotes not only a tight seal with the cell for detecting action potential via field effect but also a close mechanical coupling for detecting cellular force via piezoresistive effect. Arrays of nanotransistors are integrated to realize label-free, submillisecond, and scalable interrogation of correlated cell dynamics, showing advantages in tracking and differentiating cell states in drug studies. The sensor can further decode vector information in cellular motion beyond typical scalar information acquired at the tissue level, hence offering an improved tool for cell mechanics studies. The sensor enables not only improved bioelectronic detections but also reduced invasiveness through the two-in-one converging integration.
Collapse
Affiliation(s)
- Hongyan Gao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Feiyu Yang
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Kianoosh Sattari
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Xian Du
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Tianda Fu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Shuai Fu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Xiaomeng Liu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jun Yao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| |
Collapse
|
73
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
74
|
Reilly L, Munawar S, Zhang J, Crone WC, Eckhardt LL. Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes. Front Cardiovasc Med 2022; 9:966094. [PMID: 36035948 PMCID: PMC9411865 DOI: 10.3389/fcvm.2022.966094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has both challenges and promise. While patient-derived iPSC-CMs provide a unique opportunity for disease modeling with isogenic cells, the challenge is that these cells still demonstrate distinct properties which make it functionally less akin to adult cardiomyocytes. In response to this challenge, numerous innovations in differentiation and modification of hiPSC-CMs and culture techniques have been developed. Here, we provide a focused commentary on hiPSC-CMs for use in disease modeling, the progress made in generating electrically and metabolically mature hiPSC-CMs and enabling investigative platforms. The solutions are bringing us closer to the promise of modeling heart disease using human cells in vitro.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianhua Zhang
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wendy C. Crone
- Department of Engineering Physics, College of Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Lee L. Eckhardt
| |
Collapse
|
75
|
Strimaityte D, Tu C, Yanez A, Itzhaki I, Wu H, Wu JC, Yang H. Contractility and Calcium Transient Maturation in the Human iPSC-Derived Cardiac Microfibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35376-35388. [PMID: 35901275 PMCID: PMC9780031 DOI: 10.1021/acsami.2c07326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.
Collapse
Affiliation(s)
- Dovile Strimaityte
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Chengyi Tu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Ilanit Itzhaki
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haodi Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joseph C. Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
76
|
Jimenez-Vazquez EN, Arad M, Macías Á, Vera-Pedrosa ML, Cruz FM, Gutierrez LK, Cuttitta AJ, Monteiro da Rocha A, Herron TJ, Ponce-Balbuena D, Guerrero-Serna G, Binah O, Michele DE, Jalife J. SNTA1 gene rescues ion channel function and is antiarrhythmic in cardiomyocytes derived from induced pluripotent stem cells from muscular dystrophy patients. eLife 2022; 11:e76576. [PMID: 35762211 PMCID: PMC9239678 DOI: 10.7554/elife.76576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Background Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients. Methods To test whether dystrophin mutations lead to defective cardiac NaV1.5-Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays. Results Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (INa) and inward rectifier potassium (IK1) currents. Membrane NaV1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, INa and IK1 densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers. Conclusions We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the NaV1.5-Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a NaV1.5-Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias. Funding Supported by National Institutes of Health R01 HL122352 grant; 'la Caixa' Banking Foundation (HR18-00304); Fundación La Marató TV3: Ayudas a la investigación en enfermedades raras 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.
Collapse
Affiliation(s)
- Eric N Jimenez-Vazquez
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, and Tel Aviv UniversityTel AvivIsrael
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Maria L Vera-Pedrosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Francisco Miguel Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Lilian K Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - André Monteiro da Rocha
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Todd J Herron
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifaIsrael
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - José Jalife
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
77
|
Exploring the Potential of Symmetric Exon Deletion to Treat Non-Ischemic Dilated Cardiomyopathy by Removing Frameshift Mutations in TTN. Genes (Basel) 2022; 13:genes13061093. [PMID: 35741855 PMCID: PMC9222585 DOI: 10.3390/genes13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) is one of the most frequent pathologies requiring cardiac transplants. Even though the etiology of this disease is complex, frameshift mutations in the giant sarcomeric protein Titin could explain up to 25% of the familial and 18% of the sporadic cases of DCM. Many studies have shown the potential of genome editing using CRISPR/Cas9 to correct truncating mutations in sarcomeric proteins and have established the grounds for myoediting. However, these therapies are still in an immature state, with only few studies showing an efficient treatment of cardiac diseases. This publication hypothesizes that the Titin (TTN)-specific gene structure allows the application of myoediting approaches in a broad range of locations to reframe TTNtvvariants and to treat DCM patients. Additionally, to pave the way for the generation of efficient myoediting approaches for DCM, we screened and selected promising target locations in TTN. We conceptually explored the deletion of symmetric exons as a therapeutic approach to restore TTN’s reading frame in cases of frameshift mutations. We identified a set of 94 potential candidate exons of TTN that we consider particularly suitable for this therapeutic deletion. With this study, we aim to contribute to the development of new therapies to efficiently treat titinopathies and other diseases caused by mutations in genes encoding proteins with modular structures, e.g., Obscurin.
Collapse
|
78
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
79
|
Gomes MR, Castelo Ferreira F, Sanjuan-Alberte P. Electrospun piezoelectric scaffolds for cardiac tissue engineering. BIOMATERIALS ADVANCES 2022; 137:212808. [PMID: 35929248 DOI: 10.1016/j.bioadv.2022.212808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The use of smart materials in tissue engineering is becoming increasingly appealing to provide additional functionalities and control over cell fate. The stages of tissue development and regeneration often require various electrical and electromechanical cues supported by the extracellular matrix, which is often neglected in most tissue engineering approaches. Particularly, in cardiac cells, electrical signals modulate cell activity and are responsible for the maintenance of the excitation-contraction coupling. Addition of electroconductive and topographical cues improves the biomimicry of cardiac tissues and plays an important role in driving cells towards the desired phenotype. Current platforms used to apply electrical stimulation to cells in vitro often require large external equipment and wires and electrodes immersed in the culture media, limiting the scalability and applicability of this process. Piezoelectric materials represent a shift in paradigm in materials and methods aimed at providing electrical stimulation to cardiac cells since they can produce and deliver electrical signals to cells and tissues by mechanoelectrical transduction. Despite the ability of piezoelectric materials to mimic the mechanoelectrical transduction of the heart, the use of these materials is limited in cardiac tissue engineering and methods to characterise piezoelectricity are often built in-house, which poses an additional difficulty when comparing results from the literature. In this work, we aim at providing an overview of the main challenges in cardiac tissue engineering and how piezoelectric materials could offer a solution to them. A revision on the existing literature in electrospun piezoelectric materials applied to cardiac tissue engineering is performed for the first time, as electrospinning plays an important role in the manufacturing of scaffolds with enhanced piezoelectricity and extracellular matrix native-like morphology. Finally, an overview of the current techniques used to evaluate piezoelectricity and their limitations is provided.
Collapse
Affiliation(s)
- Mariana Ramalho Gomes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
80
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
81
|
Chirikian O, Feinstein S, Faynus MA, Kim AA, Lane K, Torres G, Pham J, Singh Z, Nguyen A, Thomas D, Clegg DO, Wu JC, Pruitt BL. The effects of xeno-free cryopreservation on the contractile properties of human iPSC derived cardiomyocytes. J Mol Cell Cardiol 2022; 168:107-114. [DOI: 10.1016/j.yjmcc.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
|
82
|
Tani H, Tohyama S. Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Front Cell Dev Biol 2022; 10:855763. [PMID: 35433691 PMCID: PMC9008275 DOI: 10.3389/fcell.2022.855763] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama,
| |
Collapse
|
83
|
Murata K, Masumoto H. Systems for the functional evaluation of human heart tissues derived from pluripotent stem cells. Stem Cells 2022; 40:537-545. [PMID: 35303744 PMCID: PMC9216506 DOI: 10.1093/stmcls/sxac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Human pluripotent stem cells (hPSCs) are expected to be a promising cell source in regenerative medicine and drug discovery for the treatment of various intractable diseases. An approach for creating a three-dimensional (3D) structure from hPSCs that mimics human cardiac tissue functions has made it theoretically possible to conduct drug discovery and cardiotoxicity tests by assessing pharmacological responses in human cardiac tissues by a screening system using a compound library. The myocardium functions as a tissue composed of organized vascular networks, supporting stromal cells and cardiac muscle cells. Considering this, the reconstruction of tissue structure by various cells of cardiovascular lineages, such as vascular cells and cardiac muscle cells, is desirable for the ideal conformation of hPSC-derived cardiac tissues. Heart-on-a-chip, an organ-on-a-chip system to evaluate the physiological pump function of 3D cardiac tissues might hold promise in medical researches such as drug discovery and regenerative medicine. Here, we review various modalities to evaluate the function of human stem cell-derived cardiac tissues and introduce heart-on-a-chip systems that can recapitulate physiological parameters of hPSC-derived cardiac tissues.
Collapse
Affiliation(s)
- Kozue Murata
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
84
|
Birnbaum F, Eguchi A, Pardon G, Chang ACY, Blau HM. Tamoxifen treatment ameliorates contractile dysfunction of Duchenne muscular dystrophy stem cell-derived cardiomyocytes on bioengineered substrates. NPJ Regen Med 2022; 7:19. [PMID: 35304486 PMCID: PMC8933505 DOI: 10.1038/s41536-022-00214-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive genetic myopathy that leads to heart failure from dilated cardiomyopathy by early adulthood. Recent evidence suggests that tamoxifen, a selective estrogen receptor modulator widely used to treat breast cancer, ameliorates DMD cardiomyopathy. However, the mechanism of action of 4-hydroxytamoxifen, the active metabolite of tamoxifen, on cardiomyocyte function remains unclear. To examine the effects of chronic 4-hydroxytamoxifen treatment, we used state-of-the-art human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and a bioengineered platform to model DMD. We assessed the beating rate and beating velocity of iPSC-CMs in monolayers and as single cells on micropatterns that promote a physiological cardiomyocyte morphology. We found that 4-hydroxytamoxifen treatment of DMD iPSC-CMs decreased beating rate, increased beating velocity, and ameliorated calcium-handling deficits, leading to prolonged viability. Our study highlights the utility of a bioengineered iPSC-CM platform for drug testing and underscores the potential of repurposing tamoxifen as a therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Asuka Eguchi
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gaspard Pardon
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex C Y Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
85
|
Arslan U, Moruzzi A, Nowacka J, Mummery CL, Eckardt D, Loskill P, Orlova VV. Microphysiological stem cell models of the human heart. Mater Today Bio 2022; 14:100259. [PMID: 35514437 PMCID: PMC9062349 DOI: 10.1016/j.mtbio.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Models of heart disease and drug responses are increasingly based on human pluripotent stem cells (hPSCs) since their ability to capture human heart (dys-)function is often better than animal models. Simple monolayer cultures of hPSC-derived cardiomyocytes, however, have shortcomings. Some of these can be overcome using more complex, multi cell-type models in 3D. Here we review modalities that address this, describe efforts to tailor readouts and sensors for monitoring tissue- and cell physiology (exogenously and in situ) and discuss perspectives for implementation in industry and academia.
Collapse
Affiliation(s)
- Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Joanna Nowacka
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for in Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
86
|
Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. MICROSYSTEMS & NANOENGINEERING 2022; 8:26. [PMID: 35299653 PMCID: PMC8882466 DOI: 10.1038/s41378-021-00344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 05/08/2023]
Abstract
Emerging heart-on-a-chip platforms are promising approaches to establish cardiac cell/tissue models in vitro for research on cardiac physiology, disease modeling and drug cardiotoxicity as well as for therapeutic discovery. Challenges still exist in obtaining the complete capability of in situ sensing to fully evaluate the complex functional properties of cardiac cell/tissue models. Changes to contractile strength (contractility) and beating regularity (rhythm) are particularly important to generate accurate, predictive models. Developing new platforms and technologies to assess the contractile functions of in vitro cardiac models is essential to provide information on cell/tissue physiologies, drug-induced inotropic responses, and the mechanisms of cardiac diseases. In this review, we discuss recent advances in biosensing platforms for the measurement of contractile functions of in vitro cardiac models, including single cardiomyocytes, 2D monolayers of cardiomyocytes, and 3D cardiac tissues. The characteristics and performance of current platforms are reviewed in terms of sensing principles, measured parameters, performance, cell sources, cell/tissue model configurations, advantages, and limitations. In addition, we highlight applications of these platforms and relevant discoveries in fundamental investigations, drug testing, and disease modeling. Furthermore, challenges and future outlooks of heart-on-a-chip platforms for in vitro measurement of cardiac functional properties are discussed.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Manpreet Malhi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350 China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1 Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| |
Collapse
|
87
|
Rothermel TM, Cook BL, Alford PW. Cellular Microbiaxial Stretching Assay for Measurement and Characterization of the Anisotropic Mechanical Properties of Micropatterned Cells. Curr Protoc 2022; 2:e370. [PMID: 35195953 DOI: 10.1002/cpz1.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Characterizing the mechanical properties of single cells is important for developing descriptive models of tissue mechanics and improving the understanding of mechanically driven cell processes. Standard methods for measuring single-cell mechanical properties typically provide isotropic mechanical descriptions. However, many cells exhibit specialized geometries in vivo, with anisotropic cytoskeletal architectures reflective of their function, and are exposed to dynamic multiaxial loads, raising the need for more complete descriptions of their anisotropic mechanical properties under complex deformations. Here, we describe the cellular microbiaxial stretching (CμBS) assay in which controlled deformations are applied to micropatterned cells while simultaneously measuring cell stress. CμBS utilizes a set of linear actuators to apply tensile or compressive, short- or long-term deformations to cells micropatterned on a fluorescent bead-doped polyacrylamide gel. Using traction force microscopy principles and the known geometry of the cell and the mechanical properties of the underlying gel, we calculate the stress within the cell to formulate stress-strain curves that can be further used to create mechanical descriptions of the cells, such as strain energy density functions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Assembly of CμBS stretching constructs Basic Protocol 2: Polymerization of micropatterned, bead-doped polyacrylamide gel on an elastomer membrane Support Protocol: Cell culture and seeding onto CμBS constructs Basic Protocol 3: Implementing CμBS stretching protocols and traction force microscopy Basic Protocol 4: Data analysis and cell stress measurements.
Collapse
Affiliation(s)
- Taylor M Rothermel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Bernard L Cook
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
88
|
Floy ME, Shabnam F, Simmons AD, Bhute VJ, Jin G, Friedrich WA, Steinberg AB, Palecek SP. Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells. Annu Rev Chem Biomol Eng 2022; 13:255-278. [PMID: 35320695 DOI: 10.1146/annurev-chembioeng-092120-033922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA; , .,Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Gyuhyung Jin
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Will A Friedrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Alexandra B Steinberg
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| |
Collapse
|
89
|
Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach. Cell Mol Life Sci 2022; 79:149. [PMID: 35199227 PMCID: PMC8866374 DOI: 10.1007/s00018-022-04196-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.
Collapse
|
90
|
Harlev I, Holmes JW, Cohen N. The influence of boundary conditions and protein availability on the remodeling of cardiomyocytes. Biomech Model Mechanobiol 2022; 21:189-201. [PMID: 34661804 DOI: 10.1007/s10237-021-01526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/03/2021] [Indexed: 11/27/2022]
Abstract
The heart muscle is capable of growing and remodeling in response to changes in its mechanical and hormonal environment. While this capability is essential to the healthy function of the heart, under extreme conditions it may also lead to heart failure. In this work, we derive a thermodynamically based and microscopically motivated model that highlights the influence of mechanical boundary conditions and hormonal changes on the remodeling process in cardiomyocytes. We begin with a description of the kinematics associated with the remodeling process. Specifically, we derive relations between the macroscopic deformation, the number of sarcomeres, the sarcomere stretch, and the number of myofibrils in the cell. We follow with the derivation of evolution equations that describe the production and the degradation of protein in the cytosol. Next, we postulate a dissipation-based formulation that characterizes the remodeling process. We show that this process stems from a competition between the internal energy, the entropy, the energy supplied to the system by ATP and other sources, and dissipation mechanisms. To illustrate the merit of this framework, we study four initial and boundary conditions: (1) a myocyte undergoing isometric contractions in the presence of either an infinite or a limited supply of proteins and (2) a myocyte that is free to dilate along the radial direction with an infinite and a limited supply of proteins. This work underscores the importance of boundary conditions on the overall remodeling response of cardiomyocytes, suggesting a plausible mechanism that might play a role in distinguishing eccentric vs. concentric hypertrophy.
Collapse
Affiliation(s)
- Ido Harlev
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Jeffrey W Holmes
- Division of Cardiovascular Disease, Division of Cardiothoracic Surgery, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Noy Cohen
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
91
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
92
|
Sherman WF, Asad M, Grosberg A. An Energetic Approach to Modeling Cytoskeletal Architecture in Maturing Cardiomyocytes. J Biomech Eng 2022; 144:021002. [PMID: 34382649 PMCID: PMC8547018 DOI: 10.1115/1.4052112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/28/2021] [Indexed: 02/03/2023]
Abstract
Through a variety of mechanisms, a healthy heart is able to regulate its structure and dynamics across multiple length scales. Disruption of these mechanisms can have a cascading effect, resulting in severe structural and/or functional changes that permeate across different length scales. Due to this hierarchical structure, there is interest in understanding how the components at the various scales coordinate and influence each other. However, much is unknown regarding how myofibril bundles are organized within a densely packed cell and the influence of the subcellular components on the architecture that is formed. To elucidate potential factors influencing cytoskeletal development, we proposed a computational model that integrated interactions at both the cellular and subcellular scale to predict the location of individual myofibril bundles that contributed to the formation of an energetically favorable cytoskeletal network. Our model was tested and validated using experimental metrics derived from analyzing single-cell cardiomyocytes. We demonstrated that our model-generated networks were capable of reproducing the variation observed in experimental cells at different length scales as a result of the stochasticity inherent in the different interactions between the various cellular components. Additionally, we showed that incorporating length-scale parameters resulted in physical constraints that directed cytoskeletal architecture toward a structurally consistent motif. Understanding the mechanisms guiding the formation and organization of the cytoskeleton in individual cardiomyocytes can aid tissue engineers toward developing functional cardiac tissue.
Collapse
Affiliation(s)
- William F. Sherman
- Center for Complex Biological Systems, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697
| | - Mira Asad
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, University of California, Irvine, CA 92697
| | - Anna Grosberg
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697; Department of Chemical and Biomolecular Engineering, Center for Complex Biological Systems, University of California, Irvine, CA 92697
| |
Collapse
|
93
|
Basara G, Saeidi-Javash M, Ren X, Bahcecioglu G, Wyatt BC, Anasori B, Zhang Y, Zorlutuna P. Electrically conductive 3D printed Ti 3C 2T x MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomater 2022; 139:179-189. [PMID: 33352299 PMCID: PMC8213874 DOI: 10.1016/j.actbio.2020.12.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023]
Abstract
Tissue engineered cardiac patches have great potential as a therapeutic treatment for myocardial infarction (MI). However, for successful integration with the native tissue and proper function of the cells comprising the patch, it is crucial for these patches to mimic the ordered structure of the native extracellular matrix and the electroconductivity of the human heart. In this study, a new composite construct that can provide both conductive and topographical cues for human induced pluripotent stem cell derived cardiomyocytes (iCMs) is developed for cardiac tissue engineering applications. The constructs are fabricated by 3D printing conductive titanium carbide (Ti3C2Tx) MXene in pre-designed patterns on polyethylene glycol (PEG) hydrogels, using aerosol jet printing, at a cell-level resolution and then seeded with iCMs and cultured for one week with no signs of cytotoxicity. The results presented in this work illustrate the vital role of 3D-printed Ti3C2Tx MXene on aligning iCMs with a significant increase in MYH7, SERCA2, and TNNT2 expressions, and with an improved synchronous beating as well as conduction velocity. This study demonstrates that 3D printed Ti3C2Tx MXene can potentially be used to create physiologically relevant cardiac patches for the treatment of MI. STATEMENT OF SIGNIFICANCE: As cardiovascular diseases and specifically myocardial infarction (MI) continue to be the leading cause of death worldwide, it is critical that new clinical interventions be developed. Tissue engineered cardiac patches have shown significant potential as clinical therapeutics to promote recovery following MI. Unfortunately, current constructs lack the ordered structure and electroconductivity of native human heart. In this study, we engineered a composite construct that can provide both conductive and topographical cues for human induced pluripotent stem cell derived cardiomyocytes. By 3D printing conductive Ti3C2Tx MXene in pre-designed patterns on polyethylene glycol hydrogels, using aerosol jet printing, at a cell-level resolution, we developed tissue engineered patches that have the potential for providing a new clinical therapeutic to combat cardiovascular disease.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mortaza Saeidi-Javash
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian C. Wyatt
- Integrated Nanosystems Development Institute and Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Babak Anasori
- Integrated Nanosystems Development Institute and Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA,Corresponding author: Pinar Zorlutuna, , Address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556, Phone no: +1 574 631 8543, Fax no: +1 574 631 8341
| |
Collapse
|
94
|
Morsink M, Severino P, Luna-Ceron E, Hussain MA, Sobahi N, Shin SR. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomater 2022; 139:141-156. [PMID: 34818579 PMCID: PMC11041526 DOI: 10.1016/j.actbio.2021.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) represents one of the most prevalent cardiovascular diseases, with a highly relevant and impactful role in public health. Despite the therapeutic advances of the last decades, MI still begets extensive death rates around the world. The pathophysiology of the disease correlates with cardiomyocyte necrosis, caused by an imbalance in the demand of oxygen to cardiac tissues, resulting from obstruction of the coronary flow. To alleviate the severe effects of MI, the use of various biomaterials exhibit vast potential in cardiac repair and regeneration, acting as native extracellular matrices. These hydrogels have been combined with nano sized or functional materials which possess unique electrical, mechanical, and topographical properties that play important roles in regulating phenotypes and the contractile function of cardiomyocytes even in adverse microenvironments. These nano-biomaterials' differential properties have led to substantial healing on in vivo cardiac injury models by promoting fibrotic scar reduction, hemodynamic function preservation, and benign cardiac remodeling. In this review, we discuss the interplay of the unique physical properties of electrically conductive nano-biomaterials, are able to manipulate the phenotypes and the electrophysiological behavior of cardiomyocytes in vitro, and can enhance heart regeneration in vivo. Consequently, the understanding of the decisive roles of the nano-biomaterials discussed in this review could be useful for designing novel nano-biomaterials in future research for cardiac tissue engineering and regeneration. STATEMENT OF SIGNIFICANCE: This study introduced and deciphered the understanding of the role of multimodal cues in recent advances of electrically conductive nano-biomaterials on cardiac tissue engineering. Compared with other review papers, which mainly describe these studies based on various types of electrically conductive nano-biomaterials, in this review paper we mainly discussed the interplay of the unique physical properties (electrical conductivity, mechanical properties, and topography) of electrically conductive nano-biomaterials, which would allow them to manipulate phenotypes and the electrophysiological behavior of cardiomyocytes in vitro and to enhance heart regeneration in vivo. Consequently, understanding the decisive roles of the nano-biomaterials discussed in the review could help design novel nano-biomaterials in future research for cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Margaretha Morsink
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | - Patrícia Severino
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; University of Tiradentes (Unit), Biotechnological Postgraduate Program. Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, United States of America
| | - Eder Luna-Ceron
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America
| | - Mohammad A Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America.
| |
Collapse
|
95
|
Alvarez-Dominguez JR, Melton DA. Cell maturation: Hallmarks, triggers, and manipulation. Cell 2022; 185:235-249. [PMID: 34995481 PMCID: PMC8792364 DOI: 10.1016/j.cell.2021.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
How cells become specialized, or "mature," is important for cell and developmental biology. While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation not as a switch but as a dynamic continuum of adaptive phenotypic states set by genetic and environment programing. The hallmarks of maturity comprise changes in anatomy (form, gene circuitry, and interconnectivity) and physiology (function, rhythms, and proliferation) that confer adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, and growth factors) and physical (mechanical, spatial, and electrical) triggers in vitro and in vivo and how maturation strategies may support disease research and regenerative medicine.
Collapse
Affiliation(s)
- Juan R. Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
96
|
Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovasc Res 2022; 118:20-36. [PMID: 33757124 PMCID: PMC8932155 DOI: 10.1093/cvr/cvab115] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Manifestations of cardiovascular diseases (CVDs) in a patient or a population differ based on inherent biological makeup, lifestyle, and exposure to environmental risk factors. These variables mean that therapeutic interventions may not provide the same benefit to every patient. In the context of CVDs, human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer an opportunity to model CVDs in a patient-specific manner. From a pharmacological perspective, iPSC-CM models can serve as go/no-go tests to evaluate drug safety. To develop personalized therapies for early diagnosis and treatment, human-relevant disease models are essential. Hence, to implement and leverage the utility of iPSC-CMs for large-scale treatment or drug discovery, it is critical to (i) carefully evaluate the relevant limitations of iPSC-CM differentiations, (ii) establish quality standards for defining the state of cell maturity, and (iii) employ techniques that allow scalability and throughput with minimal batch-to-batch variability. In this review, we briefly describe progress made with iPSC-CMs in disease modelling and pharmacological testing, as well as current iPSC-CM maturation techniques. Finally, we discuss current platforms for large-scale manufacturing of iPSC-CMs that will enable high-throughput drug screening applications.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Sushma Shenoy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| |
Collapse
|
97
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
98
|
Müller D, Donath S, Brückner EG, Biswanath Devadas S, Daniel F, Gentemann L, Zweigerdt R, Heisterkamp A, Kalies SMK. How Localized Z-Disc Damage Affects Force Generation and Gene Expression in Cardiomyocytes. Bioengineering (Basel) 2021; 8:bioengineering8120213. [PMID: 34940366 PMCID: PMC8698600 DOI: 10.3390/bioengineering8120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The proper function of cardiomyocytes (CMs) is highly related to the Z-disc, which has a pivotal role in orchestrating the sarcomeric cytoskeletal function. To better understand Z-disc related cardiomyopathies, novel models of Z-disc damage have to be developed. Human pluripotent stem cell (hPSC)-derived CMs can serve as an in vitro model to better understand the sarcomeric cytoskeleton. A femtosecond laser system can be applied for localized and defined damage application within cells as single Z-discs can be removed. We have investigated the changes in force generation via traction force microscopy, and in gene expression after Z-disc manipulation in hPSC-derived CMs. We observed a significant weakening of force generation after removal of a Z-disc. However, no significant changes of the number of contractions after manipulation were detected. The stress related gene NF-kB was significantly upregulated. Additionally, α-actinin (ACTN2) and filamin-C (FLNc) were upregulated, pointing to remodeling of the Z-disc and the sarcomeric cytoskeleton. Ultimately, cardiac troponin I (TNNI3) and cardiac muscle troponin T (TNNT2) were significantly downregulated. Our results allow a better understanding of transcriptional coupling of Z-disc damage and the relation of damage to force generation and can therefore finally pave the way to novel therapies of sarcomeric disorders.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Emanuel Georg Brückner
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Santoshi Biswanath Devadas
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Fiene Daniel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Robert Zweigerdt
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefan Michael Klaus Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
99
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
100
|
Brazhkina O, Park JH, Park HJ, Bheri S, Maxwell JT, Hollister SJ, Davis ME. Designing a 3D Printing Based Auxetic Cardiac Patch with hiPSC-CMs for Heart Repair. J Cardiovasc Dev Dis 2021; 8:jcdd8120172. [PMID: 34940527 PMCID: PMC8706296 DOI: 10.3390/jcdd8120172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
Myocardial infarction is one of the largest contributors to cardiovascular disease and reduces the ability of the heart to pump blood. One promising therapeutic approach to address the diminished function is the use of cardiac patches composed of biomaterial substrates and cardiac cells. These patches can be enhanced with the application of an auxetic design, which has a negative Poisson’s ratio and can be modified to suit the mechanics of the infarct and surrounding cardiac tissue. Here, we examined multiple auxetic models (orthogonal missing rib and re-entrant honeycomb in two orientations) with tunable mechanical properties as a cardiac patch substrate. Further, we demonstrated that 3D printing based auxetic cardiac patches of varying thicknesses (0.2, 0.4, and 0.6 mm) composed of polycaprolactone and gelatin methacrylate can support induced pluripotent stem cell-derived cardiomyocyte function for 14-day culture. Taken together, this work shows the potential of cellularized auxetic cardiac patches as a suitable tissue engineering approach to treating cardiovascular disease.
Collapse
Affiliation(s)
- Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
| | - Jeong Hun Park
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
| | - Joshua T. Maxwell
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30332, USA;
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Scott J. Hollister
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Correspondence: (S.J.H.); (M.E.D.)
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30332, USA;
- Correspondence: (S.J.H.); (M.E.D.)
| |
Collapse
|