51
|
Chen D, Tang JX, Li B, Hou L, Wang X, Kang L. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol 2018; 18:60. [PMID: 30253761 PMCID: PMC6156852 DOI: 10.1186/s12896-018-0465-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023] Open
Abstract
Background The CRISPR/Cas9 system has been widely used to generate gene knockout/knockin models by inducing frameshift mutants in cell lines and organisms. Several recent studies have reported that such mutants can lead to in-frame exon skipping in cell lines. However, there was little research about post-transcriptional effect of CRISPR-mediated gene editing in vivo. Results We showed that frameshift indels also induced complete or stochastic exon skipping by deleting different regions to influence pre-mRNA splicing in vivo. In the migratory locust, the missing 55 bp at the boundary of intron 3 and exon 4 of an olfactory receptor gene, LmigOr35, resulted in complete exon 4 skipping, whereas the lacking 22 bp in exon 4 of LmigOr35 only resulted in stochastic exon 4 skipping. A single sgRNA induced small insertions or deletions at the boundary of intron and exon to disrupt the 3′ splicing site causing completely exon skipping, or alternatively induce small insertions or deletions in the exon to stochastic alter splicing causing the stochastic exon skipping. Conclusions These results indicated that complete or stochastic exon skipping could result from the CRISPR-mediated genome editing by deleting different regions of the gene. Although exon skipping caused by CRISPR-mediated editing was an unexpected outcome, this finding could be developed as a technology to investigate pre-mRNA splicing or to cure several human diseases caused by splicing mutations. Electronic supplementary material The online version of this article (10.1186/s12896-018-0465-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dafeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Xin Tang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Beibei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
52
|
Si Y, Song Z, Sun X, Wang J. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet 2018; 177:563-579. [PMID: 30105773 PMCID: PMC6175222 DOI: 10.1002/ajmg.b.32651] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
Major depression in negative mood is presumably induced by chronic stress with lack of reward. However, most individuals who experience chronic stress demonstrate resilience. Molecular mechanisms underlying stress- induced depression versus resilience remain unknown, which are investigated in brain reward circuits. Mice were treated by chronic unpredictable mild stress (CUMS) for 4 weeks. The tests of sucrose preference, Y-maze, and forced swimming were used to identify depression-like emotion behavior or resilience. High-throughput sequencing was used to analyze mRNA and miRNA quantity in the nucleus accumbens (NAc) harvested from the mice in the groups of control, CUMS-induced depression (CUMS-MDD), and CUMS-resistance to identify molecular profiles of CUMS-MDD versus CUMS-resilience. In data analyses and comparison among three groups, 1.5-fold ratio in reads per kilo-base per million reads (RPKM) was set to judge involvements of mRNA and miRNA in CUMS, MDD, or resilience. The downregulations of serotonergic/dopaminergic synapses, MAPK/calcium signaling pathways, and morphine addiction as well as the upregulations of cAMP/PI3K-Akt signaling pathways and amino acid metabolism are associated with CUMS-MDD. The downregulations of chemokine signaling pathway, synaptic vesicle cycle, and nicotine addiction as well as the upregulations of calcium signaling pathway and tyrosine metabolism are associated with CUMS-resilience. The impairments of serotonergic/dopaminergic synapses and PI3K-Akt/MAPK signaling pathways in the NAc are associated with depression. The upregulation of these entities is associated with resilience. Consistent results from analyzing mRNA/miRNA and using different methods validate our finding and conclusion.
Collapse
Affiliation(s)
- Yawei Si
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China
| | - Zhenhua Song
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China
| | - Xiaoyan Sun
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China,College of Life Science, University of Chinese Academy of SciencesBeijing100049China,Institute of Biophysics, Chinese Academy of SciencesBeijing100101China
| | - Jin‐Hui Wang
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China,College of Life Science, University of Chinese Academy of SciencesBeijing100049China,Institute of Biophysics, Chinese Academy of SciencesBeijing100101China
| |
Collapse
|
53
|
Sun X, Song Z, Si Y, Wang JH. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:150-165. [PMID: 29864451 DOI: 10.1016/j.pnpbp.2018.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Chronic stress with lack of reward presumably may impair brain reward circuit, leading to major depressive disorder (MDD). Most individuals experiencing chronic stress do not suffer from MDD, i.e., resilience, implying the presence of endogenous anti-depression in the brain. Molecular mechanisms underlying stress-induced depression versus resilience were investigated. Mice were treated by chronic unpredictable mild stress (CUMS) for four weeks. Their mood state was assessed by behavioral tasks, such as sucrose preference, Y-maze and forced swimming testes. To reveal comprehensive molecular profiles of major depression versus resilience, mRNA and microRNA profiles were analyzed by high-throughput sequencing in the ventral tegmental area (VTA) harvested from control, CUMS-susceptible and CUMS-resilience mice. In data analyses of control versus CUMS-susceptible mice as well as control versus CUMS-resilience mice, 1.5 fold ratio in reads per kilo-base per million reads was set as the threshold to judge the involvement of mRNAs and microRNAs in the CUMS, depression or resilience. The downregulation of synaptic vesicle cycle, neurotrophin, GABAergic synapse and morphine addiction as well as the upregulation of transmitter release, calcium signal and cAMP-dependent response element binding are associated to CUMS-susceptibility. The downregulation of tyrosine metabolism and protein process in endoplasmic reticulum as well as the upregulation of amino acid biosynthesis, neuroactive ligand-receptor interaction and dopaminergic synapse are associated to CUMS-resilience. Therefore, the impairment of neurons and GABA/dopaminergic synapses in the VTA is associated with major depression. The upregulation of these entities is associated with resilience. Consistent results obtained from analyzing mRNAs and microRNAs as well as using different approaches strengthen our finding and conclusion.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China
| | - Zhenhua Song
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China.
| | - Yawei Si
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China
| | - Jin-Hui Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China; University of Chinese Academy of Sciences, Institute of Biophysics, Beijing 100101, China.
| |
Collapse
|
54
|
Balan RK, Ramasamy A, Hande RH, Gawande SJ, Krishna Kumar NK. Genome-wide identification, expression profiling, and target gene analysis of microRNAs in the Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae). Ecol Evol 2018; 8:6399-6419. [PMID: 30038744 PMCID: PMC6053560 DOI: 10.1002/ece3.3762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Thrips tabaci Lindeman is an important polyphagous insect pest species estimated to cause losses of more than U.S. $1 billion worldwide annually. Chemical insecticides are of limited use in the management of T. tabaci due to the thigmokinetic behavior and development of resistance to insecticides. There is an urgent need to find alternative management strategies. Small noncoding RNAs (sncRNAs) especially microRNAs (miRNAs) hold great promise as key regulators of gene expression in a wide range of organisms. MiRNAs are a group of endogenously originated sncRNA known to regulate gene expression in animals, plants, and protozoans. In this study, we explored these RNAs in T. tabaci using deep sequencing to provide a basis for future studies of their biological and physiological roles in governing gene expression. Apart from snoRNAs and piRNAs, our study identified nine novel and 130 known miRNAs from T. tabaci. Functional classification of the targets for these miRNAs predicted that majority are involved in regulating transcription, translation, signal transduction and genetic information processing. The higher expression of few miRNAs (such as tta-miR-281, tta-miR-184, tta-miR-3533, tta-miR-N1, tta-miR-N7, and tta-miR-N9) in T. tabaci pupal and adult stages reflected their possible role in larval and adult development, metamorphosis, parthenogenesis, and reproduction. This is the first exploration of the miRNAome in T. tabaci, which not only provides insights into their possible role in insect metamorphosis, growth, and development but also offer an important resource for future pest management strategies.
Collapse
Affiliation(s)
- Rebijith K. Balan
- Department of Physiology, Development, and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Asokan Ramasamy
- Division of BiotechnologyICAR‐Indian Institute of Horticultural ResearchBangaloreIndia
| | - Ranjitha H. Hande
- Division of BiotechnologyICAR‐Indian Institute of Horticultural ResearchBangaloreIndia
| | - Suresh J. Gawande
- Crop Protection SectionICAR‐Directorate of Onion and Garlic ResearchPuneIndia
| | | |
Collapse
|
55
|
Guo X, Ma Z, Du B, Li T, Li W, Xu L, He J, Kang L. Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts. Nat Commun 2018; 9:1193. [PMID: 29567955 PMCID: PMC5864846 DOI: 10.1038/s41467-018-03437-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Dopamine receptor 1 (Dop1) mediates locust attraction behaviors, however, the mechanism by which Dop1 modulates this process remains unknown to date. Here, we identify differentially expressed small RNAs associated with locust olfactory attraction after activating and inhibiting Dop1. Small RNA transcriptome analysis and qPCR validation reveal that Dop1 activation and inhibition downregulates and upregulates microRNA-9a (miR-9a) expression, respectively. miR-9a knockdown in solitarious locusts increases their attraction to gregarious volatiles, whereas miR-9a overexpression in gregarious locusts reduces olfactory attraction. Moreover, miR-9a directly targets adenylyl cyclase 2 (ac2), causing its downregulation at the mRNA and protein levels. ac2 responds to Dop1 and mediates locust olfactory attraction. Mechanistically, Dop1 inhibits miR-9a expression through inducing the dissociation of La protein from pre-miR-9a and resulting in miR-9a maturation inhibition. Our results reveal a Dop1–miR-9a–AC2 circuit that modulates locust olfactory attraction underlying aggregation. This study suggests that miRNAs act as key messengers in the GPCR signaling. Migratory locusts shift between aggregating together during gregarious phases and living individually during solitary phases. Here, the authors find that the D1-like dopamine receptor regulates the olfactory attraction underlying this behavioral switch via microRNA-9a and adenylyl cyclase.
Collapse
Affiliation(s)
- Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongyuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baozhen Du
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Li
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wudi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingling Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
56
|
Hearn J, Chow FWN, Barton H, Tung M, Wilson PJ, Blaxter M, Buck A, Little TJ. Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 2018; 27:1402-1412. [PMID: 29420841 DOI: 10.1111/mec.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Maternal effects, where the performance of offspring is determined by the condition of their mother, are widespread and may in some cases be adaptive. The crustacean Daphnia magna shows strong maternal effects: offspring size at birth and other proxies for fitness are altered when their mothers are older or when mothers have experienced dietary restriction. The mechanisms for this transgenerational transmission of maternal experience are unknown, but could include changes in epigenetic patterning. MicroRNAs (miRNAs) are regulators of gene expression that have been shown to play roles in intergenerational information transfer, and here, we test whether miRNAs are involved in D. magna maternal effects. We found that miRNAs were differentially expressed in mothers of different ages or nutritional state. We then examined miRNA expression in their eggs, their adult daughters and great granddaughters, which did not experience any treatments. The maternal (treatment) generation exhibited differential expression of miRNAs, as did their eggs, but this was reduced in adult daughters and lost by great granddaughters. Thus, miRNAs are a component of maternal provisioning, but do not appear to be the cause of transgenerational responses under these experimental conditions. MicroRNAs may act in tandem with egg provisioning (e.g., with carbohydrates or fats), and possibly other small RNAs or epigenetic modifications.
Collapse
Affiliation(s)
- Jack Hearn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harriet Barton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew Tung
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip J Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
57
|
Lo N, Simpson SJ, Sword GA. Epigenetics and developmental plasticity in orthopteroid insects. CURRENT OPINION IN INSECT SCIENCE 2018; 25:25-34. [PMID: 29602359 DOI: 10.1016/j.cois.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
Developmental plasticity is a key driver of the extraordinary ecological success of insects. Epigenetic mechanisms provide an important link between the external stimuli that initiate polyphenisms, and the stable changes in gene expression that govern alternative insect morphs. We review the epigenetics of orthopteroid insects, focussing on recent research on locusts and termites, two groups which display high levels of phenotypic plasticity, and for which genome sequences have become available in recent years. We examine research on the potential role of DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression in these insects. DNA methylation patterns in orthopteroids share a number of characteristics with those of hymenopteran insects, although methylation levels are much higher, and extend to introns and repeat elements. Future examinations of epigenetic mechanisms in these insects will benefit from comparison of tissues from aged-matched individuals from alternative morphs, and adequate biological replication.
Collapse
Affiliation(s)
- Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Stephen J Simpson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory A Sword
- Department of Entomology, Interdisciplinary Faculty of Ecology and Evolutionary Biology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA
| |
Collapse
|
58
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
59
|
Meng X, Zhang X, Li J, Liu P. Identification and comparative profiling of ovarian and testicular microRNAs in the swimming crab Portunus trituberculatus. Gene 2018; 640:6-13. [DOI: 10.1016/j.gene.2017.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/17/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
|
60
|
Hong X, Qin J, Chen R, Yuan L, Zha J, Huang C, Li N, Ji X, Wang Z. Phenanthrene-Induced Apoptosis and Its Underlying Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14397-14405. [PMID: 29161501 DOI: 10.1021/acs.est.7b04045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenanthrene (Phe) is one of the most abundant low-molecular-weight polycyclic aromatic hydrocarbons (PAHs). Widespread human and aquatic organism exposure to Phe has been reported, but the toxic effects of Phe and potential mechanisms are unclear. We focused on the chronic hepatotoxicity of Phe in adult Chinese rare minnows (Gobiocypris rarus) and the underlying mechanisms. The chronic effects of exposing Chinese rare minnows to 8.9, 82.3, or 510.0 μg/L Phe for 30 days were examined by histopathological observation, TUNEL assays, caspase activity assays, and gene expression profiles. The liver lesion frequency and hepatocyte apoptosis were increased in Phe-exposed groups. Caspase 9 and caspase 3 enzyme activity in liver tissues was markedly increased. The expression of miR-17/92 cluster members was significantly increased in the 82.3 and 510.0 μg/L groups. Moreover, the response of primary hepatocytes indicated a significant decrease in the mitochondrial membrane potential (MMP) after a 48 h exposure to Phe. Interestingly, miR-18a was significantly decreased in primary hepatocytes in all treatments. Moreover, molecular docking indicated that Phe might have the same binding domain as pri-miR-18a, forming pi-pi and pi-σ interactions with heterogeneous nuclear ribonucleoprotein (hnRNP) A1. Given the above, Phe caused liver lesions and induced hepatocyte apoptosis through the intrinsic apoptosis pathway, and the interaction of Phe with hnRNP A1 contributes to the suppression of miR-18a expression and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University , Wuhan 430070, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University , Wuhan 430070, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
61
|
He K, Sun Y, Xiao H, Ge C, Li F, Han Z. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis. RNA (NEW YORK, N.Y.) 2017; 23:1817-1833. [PMID: 28860304 PMCID: PMC5689003 DOI: 10.1261/rna.061408.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/18/2017] [Indexed: 05/30/2023]
Abstract
The accurate rise and fall of active hormones is important for insect development. The ecdysteroids must be cleared in a timely manner. However, the mechanism of suppressing the ecdysteroid biosynthesis at the right time remains unclear. Here, we sequenced a small RNA library of Chilo suppressalis and identified 300 miRNAs in this notorious rice insect pest. Microarray analysis yielded 54 differentially expressed miRNAs during metamorphosis development. Target prediction and in vitro dual-luciferase assays confirmed that seven miRNAs (two conserved and five novel miRNAs) jointly targeted three Halloween genes in the ecdysteroid biosynthesis pathway. Overexpression of these seven miRNAs reduced the titer of 20-hydroxyecdysone (20E), induced mortality, and retarded development, which could be rescued by treatment with 20E. Comparative analysis indicated that the miRNA regulation of metamorphosis development is a conserved process but that the miRNAs involved are highly divergent. In all, we present evidence that both conserved and lineage-specific miRNAs have crucial roles in regulating development in insects by controlling ecdysteroid biosynthesis, which is important for ensuring developmental convergence and evolutionary diversity.
Collapse
Affiliation(s)
- Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Chang Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
62
|
Ylla G, Piulachs MD, Belles X. Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types. BMC Genomics 2017; 18:774. [PMID: 29020923 PMCID: PMC5637074 DOI: 10.1186/s12864-017-4177-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. Results We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0–6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. Conclusion miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode. Electronic supplementary material The online version of this article (10.1186/s12864-017-4177-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003, Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003, Barcelona, Spain.
| | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003, Barcelona, Spain.
| |
Collapse
|
63
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
64
|
Reynolds JA, Peyton JT, Denlinger DL. Changes in microRNA abundance may regulate diapause in the flesh fly, Sarcophaga bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 84:1-14. [PMID: 28300610 DOI: 10.1016/j.ibmb.2017.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Diapause, an alternative developmental pathway characterized by changes in developmental timing and metabolism, is coordinated by molecular mechanisms that are not completely understood. MicroRNA (miRNA) mediated gene silencing is emerging as a key component of animal development and may have a significant role in initiating, maintaining, and terminating insect diapause. In the present study, we test this possibility by using high-throughput sequencing and qRT-PCR to discover diapause-related shifts in miRNA abundance in the flesh fly, Sarcophaga bullata. We identified ten evolutionarily conserved miRNAs that were differentially expressed in diapausing pupae compared to their nondiapausing counterparts. miR-289-5p and miR-1-3p were overexpressed in diapausing pupae and may be responsible for silencing expression of candidate genes during diapause. miR-9c-5p, miR-13b-3p, miR-31a-5p, miR-92b-3p, miR-275-3p, miR-276a-3p, miR-277-3p, and miR-305-5p were underexpressed in diapausing pupae and may contribute to increased expression of heat shock proteins and other factors necessary for the enhanced environmental stress-response that is a feature of diapause. In S. bullata, a maternal effect blocks the programming of diapause in progeny of females that have experienced pupal diapause, and in this study we report that several miRNAs, including miR-263a-5p, miR-100-5p, miR-125-5p, and let-7-5p were significantly overexpressed in such nondiapausing flies and may prevent entry into diapause. Together these miRNAs appear to be integral to the molecular processes that mediate entry into diapause.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus OH 43210, USA.
| | - Justin T Peyton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus OH 43210, USA
| | - David L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus OH 43210, USA; Department of Entomology, The Ohio State University, Columbus OH 43210, USA
| |
Collapse
|
65
|
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc 2017; 92:2084-2111. [PMID: 28220606 DOI: 10.1111/brv.12322] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment-induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non-mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene-environment interactions shape developmental processes and physiological functions, which in turn may have wide-ranging implications for human health, and understanding biological adaptation and evolution.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijie Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
66
|
Wang X, Li Y, Zhang J, Zhang Q, Liu X, Li Z. De novo characterization of microRNAs in oriental fruit moth Grapholita molesta and selection of reference genes for normalization of microRNA expression. PLoS One 2017; 12:e0171120. [PMID: 28158242 PMCID: PMC5291412 DOI: 10.1371/journal.pone.0171120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous non-coding small RNAs that have critical regulatory functions in almost all known biological processes at the post-transcriptional level in a variety of organisms. The oriental fruit moth Grapholita molesta is one of the most serious pests in orchards worldwide and threatens the production of Rosacea fruits. In this study, a de novo small RNA library constructed from mixed stages of G. molesta was sequenced through Illumina sequencing platform and a total of 536 mature miRNAs consisting of 291 conserved and 245 novel miRNAs were identified. Most of the conserved and novel miRNAs were detected with moderate abundance. The miRNAs in the same cluster normally showed correlated expressional profiles. A comparative analysis of the 79 conserved miRNA families within 31 arthropod species indicated that these miRNA families were more conserved among insects and within orders of closer phylogenetic relationships. The KEGG pathway analysis and network prediction of target genes indicated that the complex composed of miRNAs, clock genes and developmental regulation genes may play vital roles to regulate the developmental circadian rhythm of G. molesta. Furthermore, based on the sRNA library of G. molesta, suitable reference genes were selected and validated for study of miRNA transcriptional profile in G. molesta under two biotic and six abiotic experimental conditions. This study systematically documented the miRNA profile in G. molesta, which could lay a foundation for further understanding of the regulatory roles of miRNAs in the development and metabolism in this pest and might also suggest clues to the development of genetic-based techniques for agricultural pest control.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yisong Li
- Department of Entomology, China Agricultural University, Beijing, China
- Department of Plant Protection, Shihezi University, Shihezi, China
| | - Jing Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (ZL); (XXL)
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (ZL); (XXL)
| |
Collapse
|
67
|
Xu L, Li L, Yang P, Ma Z. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts. INSECT MOLECULAR BIOLOGY 2017; 26:1-12. [PMID: 27717101 DOI: 10.1111/imb.12266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.
Collapse
Affiliation(s)
- L Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - P Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Z Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
68
|
Li Y, Zhang J, Chen D, Yang P, Jiang F, Wang X, Kang L. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:27-35. [PMID: 27744049 DOI: 10.1016/j.ibmb.2016.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 05/03/2023]
Abstract
Locusts are important agricultural pests worldwide and regarded as study models for entomology. However, the absence of targeted gene manipulation systems for locusts has restricted their applications for research. Herein, we report the successful use of the CRISPR/Cas9 system to induce a targeted heritable mutagenesis of the migratory locust, Locusta migratoria. The target sequence of gRNA was designed to disrupt the gene encoding the odorant receptor co-receptor (Orco) and examine the roles of the odorant receptor pathway in the locust. Microinjection of the mixture of Cas9-mRNA and Orco-gRNA into the locust eggs resulted in efficient target-gene editing at a rate of 71.7% in G0 animals and achieved a germline efficiency of up to 88.1% in G1 animals. By a crossing strategy, we successfully established stable Orco mutant lines. EAGs and SSRs indicated that the fourth-instar nymphs of the Orco mutants showed severely impaired electrophysiological responses to multiple odors. The Orco mutant locusts lost an attraction response to aggregation pheromones under the crowding conditions. The locomotor activity and body coloration of the Orco mutant locusts did not significantly differ from those of the two other genotypes. This study provides an easy and effective approach by using the CRISPR/Cas9 system for generating loss-of-function mutants for functional genetic studies of locusts and for managing insect pests.
Collapse
Affiliation(s)
- Yan Li
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Dafeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
69
|
Guo S, Jiang F, Yang P, Liu Q, Wang X, Kang L. Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:18-28. [PMID: 27343382 DOI: 10.1016/j.ibmb.2016.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
The density-dependent phase polyphenism in locusts offers an excellent model to investigate the epigenetic regulatory mechanisms underlying phenotypic plasticity. In this study, we identified histone-modifying enzymes mediating histone post-translational modifications, which serve as a major regulatory mechanism of epigenetic processes, on the basis of the whole genome sequence of the migratory locust, Locusta migratoria. We confirmed the existence of various functional histone modifications in the locusts. Compared with other sequenced insect genomes, the locust genome contains a richer repertoire of histone-modifying enzymes. Several locust histone-modifying enzymes display vertebrate-like characteristics, such as the presence of a Sirt3-like gene and multiple alternative splicing of GCN5 gene. Most histone-modifying enzymes are highly expressed in the eggs or in the testis tissues of male adults. Several histone deacetylases and H3K4-specific methyltransferases exhibit differential expression patterns in brain tissues between solitarious and gregarious locusts. These results reveal the main characteristics of histone-modifying enzymes and provide important cues for understanding the epigenetic mechanisms underlying phase polyphenism in locusts.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
70
|
Ma K, Guo L, Xu A, Cui S, Wang JH. Molecular Mechanism for Stress-Induced Depression Assessed by Sequencing miRNA and mRNA in Medial Prefrontal Cortex. PLoS One 2016; 11:e0159093. [PMID: 27427907 PMCID: PMC4948880 DOI: 10.1371/journal.pone.0159093] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023] Open
Abstract
Background Major depression is a prevalent mood disorder. Chronic stress is presumably main etiology that leads to the neuron and synapse atrophies in the limbic system. However, the intermediate molecules from stresses to neuronal atrophy remain elusive, which we have studied in the medial prefrontal cortices from depression mice. Methods and Results The mice were treated by the chronic unpredictable mild stress (CUMS) until they expressed depression-like behaviors confirmed by the tests of sucrose preference, forced swimming and Y-maze. High-throughput sequencings of microRNA and mRNA in the medial prefrontal cortices were performed in CUMS-induced depression mice versus control mice to demonstrate the molecular profiles of major depression. In the medial prefrontal cortices of depression-like mice, the levels of mRNAs that translated the proteins for the GABAergic synapses, dopaminergic synapses, myelination, synaptic vesicle cycle and neuronal growth were downregulated. miRNAs of regulating these mRNAs are upregulated. Conclusion The deteriorations of GABAergic and dopaminergic synapses as well as axonal growth are associated with CUMS-induced depression.
Collapse
MESH Headings
- Animals
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Gene Regulatory Networks
- Male
- Mice, Inbred C57BL
- MicroRNAs/analysis
- MicroRNAs/genetics
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Stress, Psychological/complications
- Stress, Psychological/genetics
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Ke Ma
- Qingdao University, School of Pharmacy, Shandong, China
| | - Li Guo
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Xu
- College of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Shan Cui
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Shandong, China
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
71
|
Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol 2016; 416:18-25. [PMID: 27287880 DOI: 10.1016/j.ydbio.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
Abstract
Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway.
Collapse
Affiliation(s)
- Alexandra Dallaire
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6.
| |
Collapse
|