51
|
Wang Y, Li B, Xue B, Libretto N, Xie Z, Shen H, Wang C, Raciti D, Marinkovic N, Zong H, Xie W, Li Z, Zhou G, Vitek J, Chen JG, Miller J, Wang G, Wang C. CO electroreduction on single-atom copper. SCIENCE ADVANCES 2023; 9:eade3557. [PMID: 37494432 DOI: 10.1126/sciadv.ade3557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Electroreduction of carbon dioxide (CO2) or carbon monoxide (CO) toward C2+ hydrocarbons such as ethylene, ethanol, acetate and propanol represents a promising approach toward carbon-negative electrosynthesis of chemicals. Fundamental understanding of the carbon─carbon (C-C) coupling mechanisms in these electrocatalytic processes is the key to the design and development of electrochemical systems at high energy and carbon conversion efficiencies. Here, we report the investigation of CO electreduction on single-atom copper (Cu) electrocatalysts. Atomically dispersed Cu is coordinated on a carbon nitride substrate to form high-density copper─nitrogen moieties. Chemisorption, electrocatalytic, and computational studies are combined to probe the catalytic mechanisms. Unlike the Langmuir-Hinshelwood mechanism known for copper metal surfaces, the confinement of CO adsorption on the single-copper-atom sites enables an Eley-Rideal type of C-C coupling between adsorbed (*CO) and gaseous [CO(g)] carbon moxide molecules. The isolated Cu sites also selectively stabilize the key reaction intermediates determining the bifurcation of reaction pathways toward different C2+ products.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bin Xue
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Nicole Libretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Canhui Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Han Zong
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wenjun Xie
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziyuan Li
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeff Vitek
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Jeffery Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
52
|
Qu J, Cao X, Gao L, Li J, Li L, Xie Y, Zhao Y, Zhang J, Wu M, Liu H. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering. NANO-MICRO LETTERS 2023; 15:178. [PMID: 37433948 PMCID: PMC10336000 DOI: 10.1007/s40820-023-01146-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising way to convert CO2 to chemicals. The multicarbon (C2+) products, especially ethylene, are of great interest due to their versatile industrial applications. However, selectively reducing CO2 to ethylene is still challenging as the additional energy required for the C-C coupling step results in large overpotential and many competing products. Nonetheless, mechanistic understanding of the key steps and preferred reaction pathways/conditions, as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO2RR. In this review, we first illustrate the key steps for CO2RR to ethylene (e.g., CO2 adsorption/activation, formation of *CO intermediate, C-C coupling step), offering mechanistic understanding of CO2RR conversion to ethylene. Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products (C1 and other C2+ products) are investigated, guiding the further design and development of preferred conditions for ethylene generation. Engineering strategies of Cu-based catalysts for CO2RR-ethylene are further summarized, and the correlations of reaction mechanism/pathways, engineering strategies and selectivity are elaborated. Finally, major challenges and perspectives in the research area of CO2RR are proposed for future development and practical applications.
Collapse
Affiliation(s)
- Junpeng Qu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Li Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiayi Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lu Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yuhan Xie
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, ON, M5S 1A4, Canada.
| | - Minghong Wu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Hao Liu
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
53
|
Xia Z, Xiao H. Grand Canonical Ensemble Modeling of Electrochemical Interfaces Made Simple. J Chem Theory Comput 2023. [PMID: 37399292 DOI: 10.1021/acs.jctc.3c00237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Grand canonical ensemble (GCE) modeling of electrochemical interfaces, in which the electrochemical potential is converged to a preset constant, is essential for understanding electrochemistry and electrocatalysis at the electrodes. However, it requires developing efficient and robust algorithms to perform practical and effective GCE modeling with density functional theory (DFT) calculations. Herein, we developed an efficient and robust fully converged constant-potential (FCP) algorithm based on Newton's method and a polynomial fitting to calculate the necessary derivative for DFT calculations. We demonstrated with the constant-potential geometry optimization and Born-Oppenheimer molecular dynamics (BOMD) calculations that our FCP algorithm is resistant to the numerical instability that plagues other algorithms, and it delivers efficient convergence to the preset electrochemical potential and renders accurate forces for updating the nuclear positions of an electronically open system, outperforming other algorithms. The implementation of our FCP algorithm enables flexibility in using various computational codes and versatility in performing advanced tasks including the constant-potential enhanced-sampling BOMD simulations that we showcased with the modeling of the electrochemical hydrogenation of CO, and it is thus expected to find a wide spectrum of applications in the modeling of chemistry at electrochemical interfaces.
Collapse
Affiliation(s)
- Zhaoming Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
54
|
Hermawan A, Amrillah T, Alviani VN, Raharjo J, Seh ZW, Tsuchiya N. Upcycling air pollutants to fuels and chemicals via electrochemical reduction technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117477. [PMID: 36780811 DOI: 10.1016/j.jenvman.2023.117477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The intensification of fossil fuel usage results in significant air pollution levels. Efforts have been put into developing efficient technologies capable of converting air pollution into valuable products, including fuels and valuable chemicals (e.g., CO2 to hydrocarbon and syngas and NOx to ammonia). Among the strategic efforts to mitigate the excessive concentration of CO2 and NOx pollutants in the atmosphere, the electrochemical reduction technology of CO2 (CO2RR) and NOx (NOxRR) emerges as one of the most promising approaches. It is even more attractive if CO2RR and NOxRR are paired with renewables to store intermittent electricity in the form of chemical feedstocks. This review provides an overview of the electrochemical reduction process to convert CO2 to C1 and/or C2+ chemicals and NOx to ammonia (NH3) with a focus on electrocatalysts, electrolytes, electrolyzer, and catalytic reactor designs toward highly selective electrochemical conversion of the desired products. While the attempts in these aspects are enormous, economic consideration and environmental feasibility for actual implementation are not comprehensively provided. We discuss CO2RR and NOxRR from the life cycle and techno-economic analyses to perceive the feasibility of the current achievements. The remaining challenges associated with the industrial implementation of electrochemical CO2 and NOx reduction are additionally provided.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia.
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| | - Jarot Raharjo
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Noriyoshi Tsuchiya
- Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| |
Collapse
|
55
|
Ringe S. The importance of a charge transfer descriptor for screening potential CO 2 reduction electrocatalysts. Nat Commun 2023; 14:2598. [PMID: 37147278 PMCID: PMC10162986 DOI: 10.1038/s41467-023-37929-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
It has been over twenty years since the linear scaling of reaction intermediate adsorption energies started to coin the fields of heterogeneous and electrocatalysis as a blessing and a curse at the same time. It has established the possibility to construct activity volcano plots as a function of a single or two readily accessible adsorption energies as descriptors, but also limited the maximal catalytic conversion rate. In this work, it is found that these established adsorption energy-based descriptor spaces are not applicable to electrochemistry, because they are lacking an important additional dimension, the potential of zero charge. This extra dimension arises from the interaction of the electric double layer with reaction intermediates which does not scale with adsorption energies. At the example of the electrochemical reduction of CO2 it is shown that the addition of this descriptor breaks the scaling relations, opening up a huge chemical space that is readily accessible via potential of zero charge-based material design. The potential of zero charge also explains product selectivity trends of electrochemical CO2 reduction in close agreement with reported experimental data highlighting its importance for electrocatalyst design.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
56
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
57
|
Zhang Z, Chen S, Zhu J, Ye C, Mao Y, Wang B, Zhou G, Mai L, Wang Z, Liu X, Wang D. Charge-Separated Pd δ--Cu δ+ Atom Pairs Promote CO 2 Reduction to C 2. NANO LETTERS 2023; 23:2312-2320. [PMID: 36861218 DOI: 10.1021/acs.nanolett.2c05112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Positively charged Cu sites have been confirmed to significantly promote the production of multicarbon (C2) products from an electrochemical CO2 reduction reaction (CO2RR). However, the positively charged Cu has difficulty in existing under a strong negative bias. In this work, we design a Pdδ--Cu3N catalyst containing charge-separated Pdδ--Cuδ+ atom pair that can stabilize the Cuδ+ sites. In situ characterizations and density functional theory reveal that the first reported negatively charged Pdδ- sites exhibited a superior CO binding capacity together with the adjacent Cuδ+ sites, synergistically promoting the CO dimerization process to produce C2 products. As a result, we achieve a 14-fold increase in the C2 product Faradaic efficiency (FE) on Pdδ--Cu3N, from 5.6% to 78.2%. This work provides a new strategy for synthesizing negative valence atom-pair catalysts and an atomic-level modulation approach of unstable Cuδ+ sites in the CO2RR.
Collapse
Affiliation(s)
- Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, People's Republic of China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yu Mao
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bingqing Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Gang Zhou
- School of Science, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, People's Republic of China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, People's Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
58
|
Peng X, Zeng L, Wang D, Liu Z, Li Y, Li Z, Yang B, Lei L, Dai L, Hou Y. Electrochemical C-N coupling of CO 2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem Soc Rev 2023; 52:2193-2237. [PMID: 36806286 DOI: 10.1039/d2cs00381c] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Electrochemical C-N coupling reactions based on abundant small molecules (such as CO2 and N2) have attracted increasing attention as a new "green synthetic strategy" for the synthesis of organonitrogen compounds, which have been widely used in organic synthesis, materials chemistry, and biochemistry. The traditional technology employed for the synthesis of organonitrogen compounds containing C-N bonds often requires the addition of metal reagents or oxidants under harsh conditions with high energy consumption and environmental concerns. By contrast, electrosynthesis avoids the use of other reducing agents or oxidants by utilizing "electrons", which are the cleanest "reagent" and can reduce the generation of by-products, consistent with the atomic economy and green chemistry. In this study, we present a comprehensive review on the electrosynthesis of high value-added organonitrogens from the abundant CO2 and nitrogenous small molecules (N2, NO, NO2-, NO3-, NH3, etc.) via the C-N coupling reaction. The associated fundamental concepts, theoretical models, emerging electrocatalysts, and value-added target products, together with the current challenges and future opportunities are discussed. This critical review will greatly increase the understanding of electrochemical C-N coupling reactions, and thus attract research interest in the fixation of carbon and nitrogen.
Collapse
Affiliation(s)
- Xianyun Peng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Libin Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Dashuai Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Zhibin Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Yan Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
- Donghai Laboratory, Zhoushan, China
| |
Collapse
|
59
|
Zhang J, Zeng G, Zhu S, Tao H, Pan Y, Lai W, Bao J, Lian C, Su D, Shao M, Huang H. Steering CO 2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction. Proc Natl Acad Sci U S A 2023; 120:e2218987120. [PMID: 36877842 PMCID: PMC10089218 DOI: 10.1073/pnas.2218987120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 03/08/2023] Open
Abstract
Selective electroreduction of carbon dioxide (CO2RR) into ethanol at an industrially relevant current density is highly desired. However, it is challenging because the competing ethylene production pathway is generally more thermodynamically favored. Herein, we achieve a selective and productive ethanol production over a porous CuO catalyst that presents a high ethanol Faradaic efficiency (FE) of 44.1 ± 1.0% and an ethanol-to-ethylene ratio of 1.2 at a large ethanol partial current density of 501.0 ± 15.0 mA cm-2, in addition to an extraordinary FE of 90.6 ± 3.4% for multicarbon products. Intriguingly, we found a volcano-shaped relationship between ethanol selectivity and nanocavity size of porous CuO catalyst in the range of 0 to 20 nm. Mechanistic studies indicate that the increased coverage of surface-bounded hydroxyl species (*OH) associated with the nanocavity size-dependent confinement effect contributes to the remarkable ethanol selectivity, which preferentially favors the *CHCOH hydrogenation to *CHCHOH (ethanol pathway) via yielding the noncovalent interaction. Our findings provide insights in favoring the ethanol formation pathway, which paves the path toward rational design of ethanol-oriented catalysts.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
| | - Gangming Zeng
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Haolan Tao
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
- Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong518055, P. R. China
| |
Collapse
|
60
|
Zhang XG, Zhao Y, Chen S, Xing SM, Dong JC, Li JF. Electrolyte effect for carbon dioxide reduction reaction on copper electrode interface: A DFT prediction. J Chem Phys 2023; 158:094704. [PMID: 36889978 DOI: 10.1063/5.0139463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
An insightful understanding of the interaction between the electrolyte and reaction intermediate and how promotion reaction occurs of electrolyte is challenging in the electrocatalysis reaction. Herein, theoretical calculations are used to investigate the reaction mechanism of CO2 reduction reaction to CO with different electrolytes at the Cu(111) surface. By analyzing the charge distribution of the chemisorbed CO2 (CO2 δ-) formation process, we find that the charge transfer is from metal electrode transfer to CO2 and the hydrogen bond interaction between electrolytes and CO2 δ- not only plays a key role in the stabilization of CO2 δ- structure but also reduces the formation energy of *COOH. In addition, the characteristic vibration frequency of intermediates in different electrolyte solutions shows that H2O is a component of HCO3 -, promoting CO2 adsorption and reduction. Our results provide essential insights into the role of electrolyte solutions in interface electrochemistry reactions and help understand the catalysis process at the molecular level.
Collapse
Affiliation(s)
- Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Si Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shu-Ming Xing
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
61
|
Ye R, Huang YY, Chen CC, Yao YG, Fan M, Zhou Z. Emerging catalysts for the ambient synthesis of ethylene glycol from CO 2 and its derivatives. Chem Commun (Camb) 2023; 59:2711-2725. [PMID: 36752126 DOI: 10.1039/d2cc06313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ethylene glycol (EG), a useful chemical raw material, has been widely applied in many aspects of modern society. The conventional preparation of ethylene glycol mainly uses the petroleum route at high temperatures and pressure. More and more approaches have been developed to synthesize EG from CO2 and its derivatives under mild conditions. In this review, the ambient synthesis of EG from thermocatalysis, photocatalysis, and electrocatalysis is highlighted. The coal-to-ethylene glycol technology, one of the typical thermal catalysis routes for EG preparation, is relatively mature. However, it still faces some problems to be solved in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is introduced. The main focus is on how to realize the preparation of EG under mild conditions. The strategies include doping promoters, modification of supports, design of catalysts with special structures, etc. Furthermore, the emerging technological progress of photocatalytic and electrocatalytic ethylene glycol synthesis under ambient conditions is introduced. Compared with the thermal catalytic reaction, the reaction conditions are milder. However, there are still many problems in large-scale production. Finally, we propose future development issues and related prospects for the ambient synthesis of EG using different catalytic routes.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yuan-Yuan Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Chong-Chong Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,College of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, Wyoming, 82071, USA. .,College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| |
Collapse
|
62
|
Li L, Su J, Lu J, Shao Q. Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO 2 to C 2+ Products. Chem Asian J 2023; 18:e202201044. [PMID: 36640117 DOI: 10.1002/asia.202201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Copper is a key metal for carbon dioxide (CO2 ) reduction reaction, which can reduce CO2 to value-added products. The core-shell structure can effectively promote the C-C coupling process due to its strong synergistic effect originated from its unique electronic structure and interface environment. Therefore, the combination of copper and core-shell structure to design an efficient Cu-based core-shell structure catalyst is of great significance for electrocatalytic CO2 reduction (CO2 RR). In this review, we first briefly summarize the basic principle of CO2 RR. In addition, we outline the advantages of core-shell structure for catalysis. Then, we review the recent research progresses of Cu-based core-shell structures for the selective reduction of multi-carbon (C2+ ) products. In the end, the challenges of using core-shell catalyst for CO2 RR are described, and the future development of this field is prospected.
Collapse
Affiliation(s)
- Lamei Li
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
63
|
Wei P, Gao D, Liu T, Li H, Sang J, Wang C, Cai R, Wang G, Bao X. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO 2/CO electrolysis. NATURE NANOTECHNOLOGY 2023; 18:299-306. [PMID: 36635334 DOI: 10.1038/s41565-022-01286-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO2 electrolysis performance. An alternative way is to use mixed CO/CO2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO2 co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm-2, corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min-1 at 150 A and acetate formation rate of 2.97 g min-1 at 250 A.
Collapse
Affiliation(s)
- Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hefei Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Sang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Cai
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
64
|
Rihm SD, Bai J, Pascazio L, Kraft M. Fully Automated Kinetic Models Extend our Understanding of Complex Reaction Mechanisms. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Simon D. Rihm
- University of Cambridge Department of Chemical Engineering and Biotechnology Philippa Fawcett Drive CB3 0AS Cambridge United Kingdom
- CARES, Cambridge Centre for Advanced Research and Education in Singapore 1 Create Way, #05-05 CREATE Tower 138602 Singapore
- National University of Singapore Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4 117585 Singapore
| | - Jiaru Bai
- University of Cambridge Department of Chemical Engineering and Biotechnology Philippa Fawcett Drive CB3 0AS Cambridge United Kingdom
| | - Laura Pascazio
- CARES, Cambridge Centre for Advanced Research and Education in Singapore 1 Create Way, #05-05 CREATE Tower 138602 Singapore
| | - Markus Kraft
- University of Cambridge Department of Chemical Engineering and Biotechnology Philippa Fawcett Drive CB3 0AS Cambridge United Kingdom
- CARES, Cambridge Centre for Advanced Research and Education in Singapore 1 Create Way, #05-05 CREATE Tower 138602 Singapore
- Nanyang Technological University School of Chemical and Biomedical Engineering 62 Nanyang Drive 637459 Singapore
- The Alan Turing Institute London United Kingdom
| |
Collapse
|
65
|
Chakraborty S, Das R, Riyaz M, Das K, Singh AK, Bagchi D, Vinod CP, Peter SC. Wurtzite CuGaS 2 with an In-Situ-Formed CuO Layer Photocatalyzes CO 2 Conversion to Ethylene with High Selectivity. Angew Chem Int Ed Engl 2023; 62:e202216613. [PMID: 36537874 DOI: 10.1002/anie.202216613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We present surface reconstruction-induced C-C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2 H4 ). Upon illumination, the catalyst efficiently converts CO2 to C2 H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron ) and a 20.6 μmol g-1 h-1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+ , with the assistance of existing Cu+ , functioning as an anchor for the generated *CO and thereby facilitating C-C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Kousik Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Ashutosh Kumar Singh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 410008, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| |
Collapse
|
66
|
Zheng S, Liang X, Pan J, Hu K, Li S, Pan F. Multi-Center Cooperativity Enables Facile C–C Coupling in Electrochemical CO 2 Reduction on a Ni 2P Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianhui Liang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Junjie Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Kang Hu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
67
|
Zha J, Meng X, Fan W, You Q, Xia N, Gu W, Zhao Y, Hu L, Li J, Deng H, Wang H, Yan N, Wu Z. Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3985-3992. [PMID: 36622953 DOI: 10.1021/acsami.2c18553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface atom replacement in materials without other composition/structure changes is challenging but is important for fundamental scientific research and for practical applications. In particular, for nanoparticles including nanoclusters, surface metal site-specific replacement with atomic precision has not yet been achieved. In this study, we for the first time achieved surface site-specific antigalvanic replacement with the remaining composition/structure and surface replacement-dependent selectivity in the electrocatalytic reduction of CO2. Density functional theory (DFT) calculations describe the catalysis selectivity switch induced by replacing Ag with Cu and explain why Cu replacement facilitates C2 production. Also, CO2 electroreduction to C2 on well-defined metal nanoclusters is first reported in this study.
Collapse
Affiliation(s)
- Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Xiangfu Meng
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lin Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University,Beijing 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Hui Wang
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| |
Collapse
|
68
|
Shao F, Xia Z, You F, Wong JK, Low QH, Xiao H, Yeo BS. Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces. Angew Chem Int Ed Engl 2023; 62:e202214210. [PMID: 36369647 DOI: 10.1002/anie.202214210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
We have employed in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) calculations to study the CO reduction reaction (CORR) on Cu single-crystal surfaces under various conditions. Coadsorbed and structure-/potential-dependent surface species, including *CO, Cu-Oad , and Cu-OHad , were identified using electrochemical spectroscopy and isotope labeling. The relative abundance of *OH follows a "volcano" trend with applied potentials in aqueous solutions, which is yet absent in absolute alcoholic solutions. Combined with DFT calculations, we propose that the surface H2 O can serve as a strong proton donor for the first protonation step in both the C1 and C2 pathways of CORR at various applied potentials in alkaline electrolytes, leaving adsorbed *OH on the surface. This work provides fresh insights into the initial protonation steps and identity of key interfacial intermediates formed during CORR on Cu surfaces.
Collapse
Affiliation(s)
- Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhaoming Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Futian You
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jun Kit Wong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Qi Hang Low
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Boon Siang Yeo
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
69
|
Xue W, Li J, Huang H, Zhang W, Mei D. Theoretical Screening of CO 2 Electroreduction over MOF-808-Supported Self-Adaptive Dual-Metal-Site Pairs. Inorg Chem 2023; 62:930-941. [PMID: 36607142 DOI: 10.1021/acs.inorgchem.2c03734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemical CO2 reduction to transportation fuels and valuable platform chemicals provides a sustainable avenue for renewable energy storage and realizes an artificially closed carbon loop. However, the rational design of highly active and selective CO2 reduction electrocatalysts remains a challenging task. Herein, a series of metal-organic framework (MOF)-supported flexible, self-adaptive dual-metal-site pairs (DMSPs) including 21 pairwise combinations of six transition metal single sites (MOF-808-EDTA-M1M2, M1/M2 = Fe, Cu, Ni, Pd, Pt, Au) for the CO2 reduction reaction (CO2RR) were theoretically screened using density functional theory calculations. Against the competitive hydrogen evolution reaction, MOF-808-EDTA-FeFe and MOF-808-EDTA-FePt were identified as the promising CO2RR electrocatalysts toward C1 and C2 products. The calculated limiting potential for CO2 electroreduction to C2H6 and C2H5OH over MOF-808-EDTA-FeFe is -0.87 V. Compared with an applied potential of -0.56 eV toward CH4 production over MOF-808-EDTA-FeFe, MOF-808-EDTA-FePt exhibits an even better activity for CO2 reduction to C1 products at a limiting potential of -0.35 V. The present work not only identifies promising candidates for highly selective CO2RR electrocatalysts leading to C1 and C2 products but also provides mechanistic insights into the dynamic nature of DMSPs for stabilizing various reaction intermediates in the CO2RR process.
Collapse
Affiliation(s)
- Wenjuan Xue
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Jian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Hongliang Huang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Weiwei Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Donghai Mei
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,School of Environmental Science and Engineering, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| |
Collapse
|
70
|
Hou J, Chang X, Li J, Xu B, Lu Q. Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure in Situ Spectroscopic and Reactivity Investigations. J Am Chem Soc 2022; 144:22202-22211. [PMID: 36404600 DOI: 10.1021/jacs.2c09956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The absolute coverage of CO has been a missing piece in the mechanistic puzzle of the CO reduction reaction (CORR) on Cu. For the first time, we revealed the upper bound of the CO coverage under electrocatalytic conditions to be 0.05 monolayer at atmospheric pressure and the saturation CO coverage to be ∼0.25 monolayer by conducting surface enhanced infrared spectroscopy at CO pressures up to 60 barg in a custom-designed spectroelectrochemical cell. CORR activities on Cu were also determined in the same pressure range. Calculated reaction orders of C2+ products with respect to adsorbed CO are substantially less than unity, clearly indicating that the coupling of adsorbed CO is not the rate-determining step leading to multicarbon products. The increase in CO coverage can reduce the C affinity on the Cu surface and favor the selectivity towards oxygenates, especially acetate, over ethylene. Uncommon products, including ethane, glycolaldehyde, and ethylene glycol, were detected in appreciable amounts, likely due to a new C-C coupling mechanism taking place at elevated CO pressures.
Collapse
Affiliation(s)
- Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Jing Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
71
|
She X, Wang Y, Xu H, Chi Edman Tsang S, Ping Lau S. Challenges and Opportunities in Electrocatalytic CO 2 Reduction to Chemicals and Fuels. Angew Chem Int Ed Engl 2022; 61:e202211396. [PMID: 35989680 PMCID: PMC10091971 DOI: 10.1002/anie.202211396] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Abstract
The global temperature increase must be limited to below 1.5 °C to alleviate the worst effects of climate change. Electrocatalytic CO2 reduction (ECO2 R) to generate chemicals and feedstocks is considered one of the most promising technologies to cut CO2 emission at an industrial level. However, despite decades of studies, advances at the laboratory scale have not yet led to high industrial deployment rates. This Review discusses practical challenges in the industrial chain that hamper the scaling-up deployment of the ECO2 R technology. Faradaic efficiencies (FEs) of about 100 % and current densities above 200 mA cm-2 have been achieved for the ECO2 R to CO/HCOOH, and the stability of the electrolysis system has been prolonged to 2000 h. For ECO2 R to C2 H4 , the maximum FE is over 80 %, and the highest current density has reached the A cm-2 level. Thus, it is believed that ECO2 R may have reached the stage for scale-up. We aim to provide insights that can accelerate the development of the ECO2 R technology.
Collapse
Affiliation(s)
- Xiaojie She
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| | - Yifei Wang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Hui Xu
- Institute for Energy ResearchSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Shu Ping Lau
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| |
Collapse
|
72
|
Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
73
|
Zhao Q, Martirez JMP, Carter EA. Electrochemical Hydrogenation of CO on Cu(100): Insights from Accurate Multiconfigurational Wavefunction Methods. J Phys Chem Lett 2022; 13:10282-10290. [PMID: 36305601 DOI: 10.1021/acs.jpclett.2c02444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Copper (Cu) remains the most efficacious electrocatalyst for electrochemical CO2 reduction (CO2R). Its activity and selectivity are highly facet-dependent. We recently examined the commonly proposed rate-limiting CO hydrogenation step on Cu(111) via embedded correlated wavefunction (ECW) theory and demonstrated that only this higher-level theory yields predictions consistent with potential-dependent experimental kinetics. Here, to understand the differing activities of Cu(111) and Cu(100) in catalyzing CO2R, we explore CO hydrogenation on Cu(100) using ECW theory. We predict that the preferred pathway involves the reduction of adsorbed CO (*CO) to *COH via proton-coupled electron transfer (PCET) at working potentials, although *CHO also may form with a kinetically accessible but higher barrier. In contrast, our earlier work on Cu(111) concluded that *COH and *CHO formation via PCET are equally feasible. This work illustrates one possible origin of the facet dependence of CO2R mechanisms and products on Cu electrodes and sheds light on how the selectivity of CO2R electrocatalysts can be controlled by the surface morphology.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - John Mark P Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
74
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
75
|
Charting C–C coupling pathways in electrochemical CO
2
reduction on Cu(111) using embedded correlated wavefunction theory. Proc Natl Acad Sci U S A 2022; 119:e2202931119. [PMID: 36306330 PMCID: PMC9636923 DOI: 10.1073/pnas.2202931119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electrochemical CO
2
reduction reaction (CO
2
RR) powered by excess zero-carbon-emission electricity to produce especially multicarbon (C
2+
) products could contribute to a carbon-neutral to carbon-negative economy. Foundational to the rational design of efficient, selective CO
2
RR electrocatalysts is mechanistic analysis of the best metal catalyst thus far identified, namely, copper (Cu), via quantum mechanical computations to complement experiments. Here, we apply embedded correlated wavefunction (ECW) theory, which regionally corrects the electron exchange-correlation error in density functional theory (DFT) approximations, to examine multiple C–C coupling steps involving adsorbed CO (*CO) and its hydrogenated derivatives on the most ubiquitous facet, Cu(111). We predict that two adsorbed hydrogenated CO species, either *COH or *CHO, are necessary precursors for C–C bond formation. The three kinetically feasible pathways involving these species yield all three possible products: *COH–CHO, *COH–*COH, and *OCH–*OCH. The most kinetically favorable path forms *COH–CHO. In contrast, standard DFT approximations arrive at qualitatively different conclusions, namely, that only *CO and *COH will prevail on the surface and their C–C coupling paths produce only *COH–*COH and *CO–*CO, with a preference for the first product. This work demonstrates the importance of applying qualitatively and quantitatively accurate quantum mechanical method to simulate electrochemistry in order ultimately to shed light on ways to enhance selectivity toward C
2+
product formation via CO
2
RR electrocatalysts.
Collapse
|
76
|
Li Y, Chen YX, Liu ZF. OH -···Au Hydrogen Bond and Its Effect on the Oxygen Reduction Reaction on Au(100) in Alkaline Media. J Phys Chem Lett 2022; 13:9035-9043. [PMID: 36150066 DOI: 10.1021/acs.jpclett.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using ab initio molecular dynamics simulations with fully solvated ions, we demonstrate that solvated OH- forms a stable hydrogen bond with Au(100). Unlike the hydrogen bond between H2O and Au reported previously, which is more favorable for negatively charged Au, the OH-···Au interaction is stabilized when a small positive charge is added to the metal slab. For electro-catalysis, this means that while OH2···Au plays a significant role in the hydrogen evolution reaction, OH-···Au could be a significant factor in the oxygen reduction reaction in alkaline media. It also points to a fundamental difference in the mechanism of oxygen reduction between gold and platinum electrodes.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen 518057, China
| |
Collapse
|
77
|
Zang Y, Liu T, Wei P, Li H, Wang Q, Wang G, Bao X. Selective CO
2
Electroreduction to Ethanol over a Carbon‐Coated CuO
x
Catalyst. Angew Chem Int Ed Engl 2022; 61:e202209629. [DOI: 10.1002/anie.202209629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Yipeng Zang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences China
| | - Hefei Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences China
| | - Qi Wang
- School of Materials Science and Engineering Dalian Jiaotong University Dalian 116028 China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xinhe Bao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
78
|
Chen C, Yu S, Yang Y, Louisia S, Roh I, Jin J, Chen S, Chen PC, Shan Y, Yang P. Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
Zhong G, Cheng T, Shah AH, Wan C, Huang Z, Wang S, Leng T, Huang Y, Goddard WA, Duan X. Determining the hydronium pK[Formula: see text] at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. Proc Natl Acad Sci U S A 2022; 119:e2208187119. [PMID: 36122216 PMCID: PMC9522355 DOI: 10.1073/pnas.2208187119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
Collapse
Affiliation(s)
- Guangyan Zhong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhihong Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tianle Leng
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
- Liquid Sunlight Alliance, California Institute of Technology, Pasadena, CA 91125
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
80
|
Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat Commun 2022; 13:5471. [PMID: 36115872 PMCID: PMC9482648 DOI: 10.1038/s41467-022-33258-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractElectrosynthesis of urea from CO2 and NOX provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the *NH and *CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed *NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals.
Collapse
|
81
|
Yu Y, Wang D, Hong Y, Zhang T, Liu C, Chen J, Qin G, Li S. Bulk-immiscible CuAg alloy nanorods prepared by phase transition from oxides for electrochemical CO 2 reduction. Chem Commun (Camb) 2022; 58:11163-11166. [PMID: 36111512 DOI: 10.1039/d2cc04789f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining Cu and Ag in an alloy state holds promise to serve as a tandem catalyst for electrocatalytic CO2 reduction, but is restricted by immiscibility in the bulk. Here, a far-from-equilibrium method is developed to synthesize CuAg alloy by electroreduction of Cu2Ag2O3 under a large cathodic overpotential. The alloy state of CuAg is conducive to the formation of C2+ molecules. A high formation rate of C2H4 of 159.8 μmol cm-2 h-1 is reached on the CuAg alloy nanorods, 2.3 times higher than that on pure Cu.
Collapse
Affiliation(s)
- Yihong Yu
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Di Wang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yimeng Hong
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Teng Zhang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Chuangwei Liu
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Jing Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gaowu Qin
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Song Li
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China. .,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
82
|
Qian SJ, Cao H, Chen JW, Chen JC, Wang YG, Li J. Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng-Jie Qian
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hao Cao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jie-Wei Chen
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jun-Chi Chen
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Department of Chemistry, Tsinghua University and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China
| |
Collapse
|
83
|
Tezel E, Whitten A, Yarema G, Denecke R, McEwen JS, Nikolla E. Electrochemical Reduction of CO 2 using Solid Oxide Electrolysis Cells: Insights into Catalysis by Nonstoichiometric Mixed Metal Oxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elif Tezel
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Ariel Whitten
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Genevieve Yarema
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Reinhard Denecke
- Wilhelm-Ostwald Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
| | - Jean-Sabin McEwen
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Eranda Nikolla
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
84
|
Barhács B, Janssens E, Höltzl T. C 2 product formation in the CO 2 electroreduction on boron-doped graphene anchored copper clusters. Phys Chem Chem Phys 2022; 24:21417-21426. [PMID: 36047512 DOI: 10.1039/d2cp01316a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A possible remedy for the increasing atmospheric CO2 concentration is capturing and reducing it into valuable chemicals like methane, methanol, ethylene, and ethanol. However, a suitable catalyst for this process is still under extensive research. Small sized copper clusters have gained attention in recent years due to their catalytic activity in the CO2 reduction reaction. Although C2+ products have a higher economic value, the formation of C1 products was investigated most thoroughly. Graphene is a promising support for small copper clusters in the electrochemical reduction of CO2. It exhibits good mechanical and electrical properties, but the weak interaction between copper and graphene is an issue. Our DFT computations reveal that small Cu clusters on the boron-doped graphene (BDG) support are promising catalysts for the electrochemical reduction of CO2. We found facile reaction pathways towards various C1 (carbon-monoxide, formic acid, formaldehyde, methanol or methane) and C2 (ethanol or ethylene) products on Cu4 and Cu7 clusters on BDG. The reactivity is cluster-size tunable with Cu4 being the more reactive agent, while Cu7 shows a higher selectivity towards C2 products.
Collapse
Affiliation(s)
- Balázs Barhács
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, BE-3001 Leuven, Belgium
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary. .,ELKH-BME Computation Driven Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.,Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, H-1158 Budapest, Hungary
| |
Collapse
|
85
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
86
|
Wei Z, Sautet P. Improving the Accuracy of Modelling CO
2
Electroreduction on Copper Using Many‐Body Perturbation Theory. Angew Chem Int Ed Engl 2022; 61:e202210060. [DOI: 10.1002/anie.202210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyang Wei
- Department of Chemistry and Biochemistry University of California Los Angeles CA, 90095 USA
| | - Philippe Sautet
- Department of Chemistry and Biochemistry University of California Los Angeles CA, 90095 USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA, 90095 USA
| |
Collapse
|
87
|
Wang Q, Qu Z, Zhang X, Chen L. Electronic-Level Insight into Interfacial Effects and Their Induced Anisotropic Ion Diffusion and Ion Selectivity in Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37608-37619. [PMID: 35917159 DOI: 10.1021/acsami.2c06687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osmotic energy conversion features directional ion migration in selective nanochannels, dominated by interfacial effects, temperature, and concentration. Current efforts emphasize membrane modification for superior reliability and durability, whereas the origin and implication of interfacial effects are unclear. This work performs ab initio molecular dynamics simulations for hydrated ion-graphene oxide interfaces by regulating the temperature and concentration. The interfacial effects associated with their induced anisotropic ion diffusion and ion selectivity are revealed. The scientific essence of the interfacial effects is an electron transfer triggered by hydrated ion-functional group interactions. The interfacial effects are clarified to include dynamic solvation structures, interfacial H-bonds, and chemical reactions. Ions possess incomplete hydration shells, and their arrangements vary from ordered to disordered to overlapped. Interfacial H-bonds restrict hydrated ions by constraining water molecules, whereas continuous reactions provide lateral pathways to generate anisotropy. Cation selectivity is further clarified by negative surface charges from hydroxyl deprotonation. Besides, temperature rise induces disordered hydrated ions as well as frequent and violent reactions, enhancing ion diffusion, selectivity, and anisotropy; excessive concentrations produce overlapped hydrated ions, more H-bonds, and inferior reactions, weakening ion diffusion, selectivity, and anisotropy. Finally, the bottom-up concept for osmotic energy conversion is summarized, and elevated temperature combined with low concentration is found to boost ion diffusion and ion selectivity synergistically. This work provides an in-depth understanding of interfacial phenomena and ion behaviors in nanochannels.
Collapse
Affiliation(s)
- Qiang Wang
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xu Zhang
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liang Chen
- MOE Key Laboratory of Thermal-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
88
|
Wei Z, Sautet P. Improving the Accuracy of Modelling CO2 Electroreduction on Copper Using Many‐Body Perturbation Theory. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyang Wei
- UCLA: University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Philippe Sautet
- University of California Los Angeles Chemical and Biomolecular Engineering 5531 Boelter HallBox 951592 90095-1592 Los Angeles UNITED STATES
| |
Collapse
|
89
|
Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
90
|
Zang Y, Liu T, Wei P, Li H, Wang Q, Wang G, Bao X. Selective CO2 Electroreduction to Ethanol over Carbon‐Coated CuOx Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yipeng Zang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis Chinese Academy of Sciences CHINA
| | - Tianfu Liu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis Chinese Academy of Sciences CHINA
| | - Pengfei Wei
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis Chinese Academy of Sciences CHINA
| | - Hefei Li
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis Chinese Academy of Sciences CHINA
| | - Qi Wang
- Dalian Jiaotong University School of Materials Science and Engineering CHINA
| | - Guoxiong Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences State Key Laboratory of Catalysis 457 Zhongshan Road 116023 Dalian CHINA
| | - Xinhe Bao
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis Chinese Academy of Sciences CHINA
| |
Collapse
|
91
|
Cao B, Li FZ, Gu J. Designing Cu-Based Tandem Catalysts for CO 2 Electroreduction Based on Mass Transport of CO Intermediate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bo Cao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fu-Zhi Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Gu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
92
|
Hou M, Shi Y, Li J, Gao Z, Zhang Z. Cu-based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction. Chem Asian J 2022; 17:e202200624. [PMID: 35859530 DOI: 10.1002/asia.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is an attractive pathway to convert CO2 into value-added chemicals and fuels. Copper (Cu) is the most effective monometallic catalyst for converting CO2 into multi-carbon products, but suffers from high overpotentials and poor selectivity. Therefore, it is essential to design efficient Cu-based catalyst to improve the selectivity of specific products. Due to the combination of advantages of organic and inorganic composite materials, organic-inorganic composites exhibit high catalytic performance towards CO2RR, and have been extensively studied. In this review, the research advances of various Cu-based organic-inorganic composite materials in CO2RR, i.e., organic molecular modified-metal Cu composites, Cu-based molecular catalyst/carbon carrier composites, Cu-based metal organic framework (MOF) composites, and Cu-based covalent organic framework (COF) composites are systematically summarized. Particularly, the synthesis strategies of Cu-based composites, structure-performance relationship, and catalytic mechanisms are discussed. Finally, the opportunities and challenges of Cu-based organic-inorganic composite materials in CO2RR are proposed.
Collapse
Affiliation(s)
- Man Hou
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - YongXia Shi
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - JunJun Li
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - ZengQiang Gao
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - Zhicheng Zhang
- Tianjin University, Department of Chemistry, 92, Weijin Road, Nankai District, Tianjin, 300072, Tianjin, CHINA
| |
Collapse
|
93
|
Shao F, Wong JK, Low QH, Iannuzzi M, Li J, Lan J. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proc Natl Acad Sci U S A 2022; 119:e2118166119. [PMID: 35858341 PMCID: PMC9304001 DOI: 10.1073/pnas.2118166119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/18/2022] [Indexed: 01/16/2023] Open
Abstract
Electrochemical reduction of CO(2) to value-added chemicals and fuels is a promising strategy to sustain pressing renewable energy demands and to address climate change issues. Direct observation of reaction intermediates during the CO(2) reduction reaction will contribute to mechanistic understandings and thus promote the design of catalysts with the desired activity, selectivity, and stability. Herein, we combined in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy and ab initio molecular dynamics calculations to investigate the CORR process on Cu single-crystal surfaces in various electrolytes. Competing redox pathways and coexistent intermediates of CO adsorption (*COatop and *CObridge), dimerization (protonated dimer *HOCCOH and its dehydrated *CCO), oxidation (*CO2- and *CO32-), and hydrogenation (*CHO), as well as Cu-Oad/Cu-OHad species at Cu-electrolyte interfaces, were simultaneously identified using in situ spectroscopy and further confirmed with isotope-labeling experiments. With AIMD simulations, we report accurate vibrational frequency assignments of these intermediates based on the calculated vibrational density of states and reveal the corresponding species in the electrochemical CO redox landscape on Cu surfaces. Our findings provide direct insights into key intermediates during the CO(2)RR and offer a full-spectroscopic tool (40-4,000 cm-1) for future mechanistic studies.
Collapse
Affiliation(s)
- Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jun Kit Wong
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Qi Hang Low
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574, Singapore
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Jingguo Li
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
94
|
Chen Z, Liu C, Sun L, Wang T. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province 310027, China
| | - Chunli Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
95
|
Vijay S, Kastlunger G, Gauthier JA, Patel A, Chan K. Force-Based Method to Determine the Potential Dependence in Electrochemical Barriers. J Phys Chem Lett 2022; 13:5719-5725. [PMID: 35713626 DOI: 10.1021/acs.jpclett.2c01367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Determining ab initio potential-dependent energetics is critical to the investigation of mechanisms for electrochemical reactions. While methodology for evaluating reaction thermodynamics is established, simulation techniques for the corresponding kinetics is still a major challenge owing to a lack of potential control, finite cell size effects, or computational expense. In this work, we develop a model that allows for computing electrochemical activation energies from just a handful of density functional theory (DFT) calculations. The sole input into the model are the atom-centered forces obtained from DFT calculations performed on a homogeneous grid composed of varying field strengths. We show that the activation energies as a function of the potential obtained from our model are consistent for different supercell sizes and proton concentrations for a range of electrochemical reactions.
Collapse
Affiliation(s)
- Sudarshan Vijay
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph A Gauthier
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720 Berkeley, California, United States
- Department of Chemical and Biomolecular Engineering, University of California, 94720 Berkeley, California, United States
| | - Anjli Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 94305 Stanford, California, United States
| | - Karen Chan
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
96
|
Shi Y, Sun K, Shan J, Li H, Gao J, Chen Z, Sun C, Shuai Y, Wang Z. Selective CO 2 Electromethanation on Surface-Modified Cu Catalyst by Local Microenvironment Modulation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaoxuan Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jingjing Shan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Huiyi Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianmin Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150001, China
| | - Chengyue Sun
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
97
|
Xia R, Overa S, Jiao F. Emerging Electrochemical Processes to Decarbonize the Chemical Industry. JACS AU 2022; 2:1054-1070. [PMID: 35647596 PMCID: PMC9131369 DOI: 10.1021/jacsau.2c00138] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 05/20/2023]
Abstract
Electrification is a potential approach to decarbonizing the chemical industry. Electrochemical processes, when they are powered by renewable electricity, have lower carbon footprints in comparison to conventional thermochemical routes. In this Perspective, we discuss the potential electrochemical routes for chemical production and provide our views on how electrochemical processes can be matured in academic research laboratories for future industrial applications. We first analyze the CO2 emission in the manufacturing industry and conduct a survey of state of the art electrosynthesis methods in the three most emission-intensive areas: petrochemical production, nitrogen compound production, and metal smelting. Then, we identify the technical bottlenecks in electrifying chemical productions from both chemistry and engineering perspectives and propose potential strategies to tackle these issues. Finally, we provide our views on how electrochemical manufacturing can reduce carbon emissions in the chemical industry with the hope to inspire more research efforts in electrifying chemical manufacturing.
Collapse
Affiliation(s)
- Rong Xia
- Center
for Catalytic Science and Technology, Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sean Overa
- Center
for Catalytic Science and Technology, Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center
for Catalytic Science and Technology, Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
- Email for F.J.:
| |
Collapse
|
98
|
Cao H, Zhang Z, Chen JW, Wang YG. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO 2 Reduction on Single Atom Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Cao
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jie-Wei Chen
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yang-Gang Wang
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
99
|
Fan QY, Liu JL, Gong FQ, Wang Y, Cheng J. Structural dynamics of Ru clusters during nitrogen dissociation in ammonia synthesis. Phys Chem Chem Phys 2022; 24:10820-10825. [PMID: 35482304 DOI: 10.1039/d2cp00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic evolution of catalyst structures greatly influences the reactivity, especially sub-nanometer clusters, exhibiting complex configurational fluctuation. In the present work, we study the structural dynamics of a Ru19 cluster during the dissociation of N2 and calculate the reaction free energies using ab initio molecular dynamics (AIMD). Our AIMD calculation predicts a peak-shaped reaction entropy curve due to the adsorption-induced phase transition of the Ru19 cluster. The low melting points of sub-nanometer clusters make it possible to activate N2 at low temperatures. This work demonstrates that the dynamic changes of cluster structures have a non-negligible effect on reaction free energy and offer an opportunity for achieving ammonia synthesis under mild conditions.
Collapse
Affiliation(s)
- Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jing-Li Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Fu-Qiang Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
100
|
Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly. SUSTAINABILITY 2022. [DOI: 10.3390/su14095579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electro-conversion of carbon dioxide (CO2) into valuable chemicals is an efficient method to deal with excessive CO2 in the atmosphere. However, undesirable CO2 reaction kinetics in the bulk solution strongly limit current density, and thus it is incompetent in market promotion. Flow cell technology provides an insight into uplifting current density. As an efficient flow cell configuration, membrane electrode assembly (MEA) has been proposed and proven as a viable technology for scalable CO2 electro-conversion, promoting current density to several hundred mA/cm2. In this review, we systematically reviewed recent perspectives and methods to put forward the utilization of state-of-the-art MEA to convert CO2 into valuable chemicals. Configuration design, catalysts nature, and flow media were discussed. At the end of this review, we also presented the current challenges and the potential directions for potent MEA design. We hope this review could offer some clear, timely, and valuable insights on the development of MEA for using wastewater-produced CO2.
Collapse
|