51
|
Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. PLANT & CELL PHYSIOLOGY 2014; 55:1080-95. [PMID: 24599390 DOI: 10.1093/pcp/pcu044] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
S-Nitrosoglutathione (GSNO) is a nitric oxide-derived molecule that can regulate protein function by a post-translational modification designated S-nitrosylation. GSNO has also been detected in different plant organs under physiological and stress conditions, and it can also modulate gene expression. Thirty-day-old Arabidopsis plants were grown under hydroponic conditions, and exogenous 1 mM GSNO was applied to the root systems for 3 h. Differential gene expression analyses were carried out both in roots and in leaves by RNA sequencing (RNA-seq). A total of 3,263 genes were identified as being modulated by GSNO. Most of the genes identified were associated with the mechanism of protection against stress situations, many of these having previously been identified as target genes of GSNO by array-based methods. However, new genes were identified, such as that for methionine sulfoxide reductase (MSR) in leaves or different miscellaneous RNA (miscRNA) genes in Arabidopsis roots. As a result, 1,945 GSNO-responsive genes expressed differently in leaves and roots were identified, and 114 of these corresponded exclusively to one of these organs. In summary, it is demonstrated that RNA-seq extends our knowledge of GSNO as a signaling molecule which differentially modulates gene expression in roots and leaves under non-stress conditions.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Francisco Luque
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - María O Leyva-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Marina Leterrier
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|
52
|
Abstract
ABSTRACT
During infection,
Mycobacterium tuberculosis
is exposed to a diverse array of microenvironments in the human host, each with its own unique set of redox conditions. Imbalances in the redox environment of the bacillus or the host environment serve as stimuli, which could regulate virulence. The ability of
M. tuberculosis
to evade the host immune response and cause disease is largely owing to the capacity of the mycobacterium to sense changes in its environment, such as host-generated gases, carbon sources, and pathological conditions, and alter its metabolism and redox balance accordingly for survival. In this article we discuss the redox sensors that are, to date, known to be present in
M. tuberculosis
, such as the Dos dormancy regulon, WhiB family, anti-σ factors, and MosR, in addition to the strategies present in the bacillus to neutralize free radicals, such as superoxide dismutases, catalase-peroxidase, thioredoxins, and methionine sulfoxide reductases, among others.
M. tuberculosis
is peculiar in that it appears to have a hierarchy of redox buffers, namely, mycothiol and ergothioneine. We discuss the current knowledge of their biosynthesis, function, and regulation. Ergothioneine is still an enigma, although it appears to have distinct and overlapping functions with mycothiol, which enable it to protect against a wide range of toxic metabolites and free radicals generated by the host. Developing approaches to quantify the intracellular redox status of the mycobacterium will enable us to determine how the redox balance is altered in response to signals and environments that mimic those encountered in the host.
Collapse
|
53
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
54
|
Kim G, Weiss SJ, Levine RL. Methionine oxidation and reduction in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:901-5. [PMID: 23648414 PMCID: PMC3766491 DOI: 10.1016/j.bbagen.2013.04.038] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cysteine and methionine are the two sulfur containing amino acids in proteins. While the roles of protein-bound cysteinyl residues as endogenous antioxidants are well appreciated, those of methionine remain largely unexplored. SCOPE We summarize the key roles of methionine residues in proteins. MAJOR CONCLUSION Recent studies establish that cysteine and methionine have remarkably similar functions. GENERAL SIGNIFICANCE Both cysteine and methionine serve as important cellular antioxidants, stabilize the structure of proteins, and can act as regulatory switches through reversible oxidation and reduction. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| | - Stephen J. Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
55
|
Drazic A, Winter J. The physiological role of reversible methionine oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1367-82. [PMID: 24418392 DOI: 10.1016/j.bbapap.2014.01.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023]
Abstract
Sulfur-containing amino acids such as cysteine and methionine are particularly vulnerable to oxidation. Oxidation of cysteine and methionine in their free amino acid form renders them unavailable for metabolic processes while their oxidation in the protein-bound state is a common post-translational modification in all organisms and usually alters the function of the protein. In the majority of cases, oxidation causes inactivation of proteins. Yet, an increasing number of examples have been described where reversible cysteine oxidation is part of a sophisticated mechanism to control protein function based on the redox state of the protein. While for methionine the dogma is still that its oxidation inhibits protein function, reversible methionine oxidation is now being recognized as a powerful means of triggering protein activity. This mode of regulation involves oxidation of methionine to methionine sulfoxide leading to activated protein function, and inactivation is accomplished by reduction of methionine sulfoxide back to methionine catalyzed by methionine sulfoxide reductases. Given the similarity to thiol-based redox-regulation of protein function, methionine oxidation is now established as a novel mode of redox-regulation of protein function. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Adrian Drazic
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany.
| |
Collapse
|
56
|
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
57
|
García-Santamarina S, Boronat S, Ayté J, Hidalgo E. Methionine sulphoxide reductases revisited: free methionine as a primary target of H₂O₂stress in auxotrophic fission yeast. Mol Microbiol 2013; 90:1113-24. [PMID: 24118096 DOI: 10.1111/mmi.12420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 11/26/2022]
Abstract
Amino acid methionine can suffer reversible oxidation to sulphoxide and further irreversible over-oxidation to methionine sulphone. As part of the cellular antioxidant scavenging activities are the methionine sulphoxide reductases (Msrs), with a reported role in methionine sulphoxide reduction, both free and in proteins. Three families of Msrs have been described, but the fission yeast genome only includes one representative for two of these families: MsrA/Mxr1 and MsrB/Mxr2. We have investigated their role in methionine reduction and H2 O2 sensitivity. We show here that MsrA/Mxr1 is able to reduce free oxidized methionine. Cells lacking each one of the genes are not significantly sensitive to different types of oxidative stresses, neither display altered life span. However, only when deletion of msrA/mxr1 is combined with deletion of met6, which confers methionine auxotrophy, the survival upon H2 O2 stress decreases by 100-fold. In fact, cells lacking only Met6, and which therefore require addition of methionine to the growth media, are extremely sensitive to H2 O2 stress. These and other evidences suggest that oxidation of free methionine is a primary target of peroxide toxicity in cells devoid of methionine biosynthetic capacity, and that an important role of Msrs is to recycle this oxidized free amino acid.
Collapse
Affiliation(s)
- Sarela García-Santamarina
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, E-08003, Barcelona, Spain
| | | | | | | |
Collapse
|
58
|
Zhou S, Narukami T, Masuo S, Shimizu M, Fujita T, Doi Y, Kamimura Y, Takaya N. NO-inducible nitrosothionein mediates NO removal in tandem with thioredoxin. Nat Chem Biol 2013; 9:657-63. [DOI: 10.1038/nchembio.1316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 11/09/2022]
|
59
|
Lim JC, Kim G, Levine RL. Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A. Free Radic Biol Med 2013; 61:257-64. [PMID: 23583331 PMCID: PMC3745524 DOI: 10.1016/j.freeradbiomed.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
Methionine sulfoxide reductase A has long been known to reduce S-methionine sulfoxide, both as a free amino acid and within proteins. Recently the enzyme was shown to be bidirectional, capable of oxidizing free methionine and methionine in proteins to S-methionine sulfoxide. A feasible mechanism for controlling the directionality has been proposed, raising the possibility that reversible oxidation and reduction of methionine residues within proteins is a redox-based mechanism for cellular regulation. We undertook studies aimed at identifying proteins that are subject to site-specific, stereospecific oxidation and reduction of methionine residues. We found that calmodulin, which has nine methionine residues, is such a substrate for methionine sulfoxide reductase A. When calmodulin is in its calcium-bound form, Met77 is oxidized to S-methionine sulfoxide by methionine sulfoxide reductase A. When methionine sulfoxide reductase A operates in the reducing direction, the oxidized calmodulin is fully reduced back to its native form. We conclude that reversible covalent modification of Met77 may regulate the interaction of calmodulin with one or more of its many targets.
Collapse
Affiliation(s)
- Jung Chae Lim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
60
|
Chang HL, Hsu YT, Kang CY, Lee TM. Nitric Oxide Down-Regulation of Carotenoid Synthesis and PSII Activity in Relation to Very High Light-Induced Singlet Oxygen Production and Oxidative Stress in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2013; 54:1296-315. [DOI: 10.1093/pcp/pct078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
61
|
Yu F, Li P, Wang B, Han K. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J Am Chem Soc 2013; 135:7674-80. [PMID: 23621710 DOI: 10.1021/ja401360a] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO(-) and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO(-) and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.
Collapse
Affiliation(s)
- Fabiao Yu
- State Key Laboratory of Moleclar Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China 116023
| | | | | | | |
Collapse
|
62
|
Tarrago L, Gladyshev VN. Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. BIOCHEMISTRY (MOSCOW) 2013; 77:1097-107. [PMID: 23157290 DOI: 10.1134/s0006297912100021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sulfur-containing amino acid methionine (Met) in its free and amino acid residue forms can be readily oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Methionine sulfoxide reductases A (MSRA) and B (MSRB) reduce MetO back to Met in a stereospecific manner, acting on the S and R forms, respectively. A third MSR type, fRMSR, reduces the R form of free MetO. MSRA and MSRB are spread across the three domains of life, whereas fRMSR is restricted to bacteria and unicellular eukaryotes. These enzymes protect against abiotic and biotic stresses and regulate lifespan. MSRs are thiol oxidoreductases containing catalytic redox-active cysteine or selenocysteine residues, which become oxidized by the substrate, requiring regeneration for the next catalytic cycle. These enzymes can be classified according to the number of redox-active cysteines (selenocysteines) and the strategies to regenerate their active forms by thioredoxin and glutaredoxin systems. For each MSR type, we review catalytic parameters for the reduction of free MetO, low molecular weight MetO-containing compounds, and oxidized proteins. Analysis of these data reinforces the concept that MSRAs reduce various types of MetO-containing substrates with similar efficiency, whereas MSRBs are specialized for the reduction of MetO in proteins.
Collapse
Affiliation(s)
- L Tarrago
- Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
63
|
Hu B, El Haj AJ. Methionine sulfoxide reductase A as a marker for isolating subpopulations of stem and progenitor cells used in regenerative medicine. Med Hypotheses 2013; 80:663-5. [DOI: 10.1016/j.mehy.2013.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
|
64
|
|
65
|
Wehr NB, Levine RL. Wanted and wanting: antibody against methionine sulfoxide. Free Radic Biol Med 2012; 53:1222-5. [PMID: 22771451 PMCID: PMC3437004 DOI: 10.1016/j.freeradbiomed.2012.06.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 06/20/2012] [Accepted: 06/26/2012] [Indexed: 11/17/2022]
Abstract
Methionine residues in protein can be oxidized by reactive oxygen or nitrogen species to generate methionine sulfoxide. This covalent modification has been implicated in processes ranging from normal cell signaling to neurodegenerative diseases. A general method for detecting methionine sulfoxide in proteins would be of great value in studying these processes, but development of a chemical or immunochemical technique has been elusive. Recently, an antiserum raised against an oxidized corn protein, DZS18, was reported to be specific for methionine sulfoxide in proteins (Arch. Biochem. Biophys. 485:35-40; 2009). However, data included in that report indicate that the antiserum is not specific. Utilizing well-characterized native and methionine-oxidized glutamine synthetase and aprotinin, we confirm that the antiserum does not possess specificity for methionine sulfoxide.
Collapse
Affiliation(s)
- Nancy B. Wehr
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
66
|
Lim JC, Gruschus JM, Kim G, Berlett BS, Tjandra N, Levine RL. A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. J Biol Chem 2012; 287:25596-601. [PMID: 22661719 DOI: 10.1074/jbc.m112.369116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine sulfoxide reductase A is an essential enzyme in the antioxidant system which scavenges reactive oxygen species through cyclic oxidation and reduction of methionine and methionine sulfoxide. Recently it has also been shown to catalyze the reverse reaction, oxidizing methionine residues to methionine sulfoxide. A cysteine at the active site of the enzyme is essential for both reductase and oxidase activities. This cysteine has been reported to have a pK(a) of 9.5 in the absence of substrate, decreasing to 5.7 upon binding of substrate. Using three independent methods, we show that the pK(a) of the active site cysteine of mouse methionine sulfoxide reductase is 7.2 even in the absence of substrate. The primary mechanism by which the pK(a) is lowered is hydrogen bonding of the active site Cys-72 to protonated Glu-115. The low pK(a) renders the active site cysteine susceptible to oxidation to sulfenic acid by micromolar concentrations of hydrogen peroxide. This characteristic supports a role for methionine sulfoxide reductase in redox signaling.
Collapse
Affiliation(s)
- Jung Chae Lim
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8012, USA
| | | | | | | | | | | |
Collapse
|
67
|
Jia Y, Li Y, Du S, Huang K. Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp Eye Res 2012; 100:7-16. [PMID: 22713178 DOI: 10.1016/j.exer.2012.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/23/2012] [Accepted: 04/19/2012] [Indexed: 01/21/2023]
Abstract
Methionine sulfoxide reductases (Msrs) in lens cells are important for the maintenance of lens cell viability and resistance to oxidative stress damage. Peroxynitrite (ONOO(-)), as a strong oxidizing and nitrating agent, occurred in diabetic retinopathy patients and diabetic model animal. In an attempt to shed light on the roles of MsrB1, known as selenoprotein R, in protecting human lens epithelial (HLE) cells against peroxynitrite damage, and contribution of loss of its normal activity to cataract, the influences of MsrB1 gene silencing on peroxynitrite-induced apoptosis in HLE cells were studied. The results showed that both exogenous peroxynitrite and MsrB1 gene silencing by short interfering RNA (siRNA) independently resulted in oxidative stress, endoplasmic reticulum (ER) stress, activation of caspase-3 as well as an increase of apoptosis in HLE cells; moreover, when MsrB1-gene-silenced cells were exposed to 300 μM peroxynitrite, these indexes were further aggravated at the same conditions and DNA strand breaks occurred. The results demonstrate that in HLE cells MsrB1 may play important roles in regulating redox balance and mitigating ER stress as induced by oxidative stress under physiological conditions; MsrB1 may also protect HLE cells against peroxynitrite-induced apoptosis by inhibiting the activation of caspase-3 and oxidative damage of DNA under pathological conditions. Our results imply that loss of its normal activity is likely to contribute to cataract.
Collapse
Affiliation(s)
- Yi Jia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China.
| | | | | | | |
Collapse
|
68
|
Zhao H, Kim G, Levine RL. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements. Arch Biochem Biophys 2012; 522:37-43. [PMID: 22521563 DOI: 10.1016/j.abb.2012.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
69
|
Abstract
Mycobacterium tuberculosis (Mtb) is a metabolically flexible pathogen
that has the extraordinary ability to sense and adapt to the continuously changing host
environment experienced during decades of persistent infection. Mtb is
continually exposed to endogenous reactive oxygen species (ROS) as part of normal aerobic
respiration, as well as exogenous ROS and reactive nitrogen species (RNS) generated by the
host immune system in response to infection. The magnitude of tuberculosis (TB) disease is
further amplified by exposure to xenobiotics from the environment such as cigarette smoke
and air pollution, causing disruption of the intracellular
prooxidant–antioxidant balance. Both oxidative and reductive stresses induce
redox cascades that alter Mtb signal transduction, DNA and RNA synthesis,
protein synthesis and antimycobacterial drug resistance. As reviewed in this article,
Mtb has evolved specific mechanisms to protect itself against
endogenously produced oxidants, as well as defend against host and environmental oxidants
and reductants found specifically within the microenvironments of the lung. Maintaining an
appropriate redox balance is critical to the clinical outcome because several
antimycobacterial prodrugs are only effective upon bioreductive activation. Proper
homeostasis of oxido-reductive systems is essential for Mtb survival,
persistence and subsequent reactivation. The progress and remaining deficiencies in
understanding Mtb redox homeostasis are also discussed.
Collapse
|
70
|
Denkel LA, Horst SA, Rouf SF, Kitowski V, Böhm OM, Rhen M, Jäger T, Bange FC. Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. PLoS One 2011; 6:e26974. [PMID: 22073230 PMCID: PMC3206869 DOI: 10.1371/journal.pone.0026974] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/06/2011] [Indexed: 12/24/2022] Open
Abstract
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.
Collapse
Affiliation(s)
- Luisa A. Denkel
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Sarah A. Horst
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Syed Fazle Rouf
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Vera Kitowski
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Oliver M. Böhm
- Molecular Links Sachsen-Anhalt Gesellschaft mit beschränkter Haftung, Magdeburg, Germany
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Timo Jäger
- Molecular Links Sachsen-Anhalt Gesellschaft mit beschränkter Haftung, Magdeburg, Germany
| | - Franz-Christoph Bange
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
71
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
72
|
Zhao H, Sun J, Deschamps AM, Kim G, Liu C, Murphy E, Levine RL. Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2011; 301:H1513-8. [PMID: 21841012 DOI: 10.1152/ajpheart.00441.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) catalytically scavenges reactive oxygen species and also repairs oxidized methionines in proteins. Increasing MsrA protects cells and organs from a variety of oxidative stresses while decreasing MsrA enhances damage, but the mechanisms of action have not been elucidated. A single gene encodes MsrA of which ∼25% is targeted to the mitochondria, a major site of reactive oxygen species production. The other ∼75% is targeted to the cytosol and is posttranslationally modified by myristoylation. To determine the relative importance of MsrA in each compartment in protecting against ischemia-reperfusion damage, we created a series of transgenic mice overexpressing MsrA targeted to the mitochondria or the cytosol. We used a Langendorff model of ischemia-reperfusion and assayed both the rate pressure product and infarct size following ischemia and reperfusion as measures of injury. While the mitochondrially targeted MsrA was expected to be protective, it was not. Notably, the cytosolic form was protective but only if myristoylated. The nonmyristoylated, cytosolic form offered no protection against injury. We conclude that cytosolic MsrA protects the heart from ischemia-reperfusion damage. The requirement for myristoylation suggests that MsrA must interact with a hydrophobic domain to provide protection.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: immune evasion, latency and reactivation. Immunobiology 2011; 217:363-74. [PMID: 21813205 DOI: 10.1016/j.imbio.2011.07.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/16/2011] [Accepted: 07/05/2011] [Indexed: 02/02/2023]
Abstract
One-third of the global human population harbours Mycobacterium tuberculosis in dormant form. This dormant or latent infection presents a major challenge for global efforts to eradicate tuberculosis, because it is a vast reservoir of potential reactivation and transmission. This article explains how the pathogen evades the host immune response to establish a latent infection, and how it emerges from a state of latency to cause reactivation disease. This review highlights the key factors responsible for immune evasion and reactivation. It concludes by identifying interesting candidates for drug or vaccine development, as well as identifying unresolved questions for the future research.
Collapse
Affiliation(s)
- Antima Gupta
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
74
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
75
|
Methionine sulfoxide reductase A is a stereospecific methionine oxidase. Proc Natl Acad Sci U S A 2011; 108:10472-7. [PMID: 21670260 DOI: 10.1073/pnas.1101275108] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductase A (MsrA) catalyzes the reduction of methionine sulfoxide to methionine and is specific for the S epimer of methionine sulfoxide. The enzyme participates in defense against oxidative stresses by reducing methionine sulfoxide residues in proteins back to methionine. Because oxidation of methionine residues is reversible, this covalent modification could also function as a mechanism for cellular regulation, provided there exists a stereospecific methionine oxidase. We show that MsrA itself is a stereospecific methionine oxidase, producing S-methionine sulfoxide as its product. MsrA catalyzes its own autooxidation as well as oxidation of free methionine and methionine residues in peptides and proteins. When functioning as a reductase, MsrA fully reverses the oxidations which it catalyzes.
Collapse
|
76
|
Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2011; 2:105. [PMID: 21734908 PMCID: PMC3119406 DOI: 10.3389/fmicb.2011.00105] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/27/2011] [Indexed: 02/06/2023] Open
Abstract
The bacteriostatic and bactericidal effects and the transcriptional response of Mycobacterium tuberculosis to representative oxidative and nitrosative stresses were investigated by growth and survival studies and whole genome expression analysis. The M. tuberculosis reaction to a range of hydrogen peroxide (H2O2) concentrations fell into three distinct categories: (1) low level exposure resulted in induction of a few highly sensitive H2O2-responsive genes, (2) intermediate exposure resulted in massive transcriptional changes without an effect on growth or survival, and (3) high exposure resulted in a muted transcriptional response and eventual death. M. tuberculosis appears highly resistant to DNA damage-dependent, mode-one killing caused by low millimolar levels of H2O2 and only succumbs to overwhelming levels of oxidative stress observed in mode-two killing. Nitric oxide (NO) exposure initiated much the same transcriptional response as H2O2. However, unlike H2O2 exposure, NO exposure induced dormancy-related genes and caused dose-dependent bacteriostatic activity without killing. Included in the large shared response to H2O2 and NO was the induction of genes encoding iron–sulfur cluster repair functions including iron acquisition. Stress regulons controlled by IdeR, Sigma H, Sigma E, and FurA comprised a large portion of the response to both stresses. Expression of several oxidative stress defense genes was constitutive, or increased moderately from an already elevated constitutive level, suggesting that bacilli are continually primed for oxidative stress defense.
Collapse
Affiliation(s)
- Martin I Voskuil
- Department of Microbiology, School of Medicine, University of Colorado Denver Aurora, CO, USA
| | | | | | | |
Collapse
|
77
|
Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 2011; 9:21-31. [PMID: 21238944 DOI: 10.1016/j.chom.2010.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/18/2010] [Accepted: 12/01/2010] [Indexed: 01/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) adapts to persist in a nutritionally limited macrophage compartment. Lipoamide dehydrogenase (Lpd), the third enzyme (E3) in Mtb's pyruvate dehydrogenase complex (PDH), also serves as E1 of peroxynitrite reductase/peroxidase (PNR/P), which helps Mtb resist host-reactive nitrogen intermediates. In contrast to Mtb lacking dihydrolipoamide acyltransferase (DlaT), the E2 of PDH and PNR/P, Lpd-deficient Mtb is severely attenuated in wild-type and immunodeficient mice. This suggests that Lpd has a function that DlaT does not share. When DlaT is absent, Mtb upregulates an Lpd-dependent branched-chain keto acid dehydrogenase (BCKADH) encoded by pdhA, pdhB, pdhC, and lpdC. Without Lpd, Mtb cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate. Mtb deficient in both DlaT and PdhC phenocopies Lpd-deficient Mtb. Thus, Mtb critically requires BCKADH along with PDH and PNR/P for pathogenesis. These findings position Lpd as a potential target for anti-infectives against Mtb.
Collapse
Affiliation(s)
- Aditya Venugopal
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Wink DA, Hines HB, Cheng RYS, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 2011; 89:873-91. [PMID: 21233414 DOI: 10.1189/jlb.1010550] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of redox molecules, such as NO and ROS, as key mediators of immunity has recently garnered renewed interest and appreciation. To regulate immune responses, these species trigger the eradication of pathogens on the one hand and modulate immunosuppression during tissue-restoration and wound-healing processes on the other. In the acidic environment of the phagosome, a variety of RNS and ROS is produced, thereby providing a cauldron of redox chemistry, which is the first line in fighting infection. Interestingly, fluctuations in the levels of these same reactive intermediates orchestrate other phases of the immune response. NO activates specific signal transduction pathways in tumor cells, endothelial cells, and monocytes in a concentration-dependent manner. As ROS can react directly with NO-forming RNS, NO bioavailability and therefore, NO response(s) are changed. The NO/ROS balance is also important during Th1 to Th2 transition. In this review, we discuss the chemistry of NO and ROS in the context of antipathogen activity and immune regulation and also discuss similarities and differences between murine and human production of these intermediates.
Collapse
Affiliation(s)
- David A Wink
- Radiation Biology Branch, National Cancer Institute/National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Arias DG, Cabeza MS, Erben ED, Carranza PG, Lujan HD, Téllez Iñón MT, Iglesias AA, Guerrero SA. Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Free Radic Biol Med 2011; 50:37-46. [PMID: 20969952 DOI: 10.1016/j.freeradbiomed.2010.10.695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/28/2010] [Accepted: 10/13/2010] [Indexed: 01/05/2023]
Abstract
Methionine is an amino acid susceptible to being oxidized to methionine sulfoxide (MetSO). The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase (MSR), an enzyme present in almost all organisms. In trypanosomatids, the study of antioxidant systems has been mainly focused on the involvement of trypanothione, a specific redox component in these organisms. However, no information is available concerning their mechanisms for repairing oxidized proteins, which would be relevant for the survival of these pathogens in the various stages of their life cycle. We report the molecular cloning of three genes encoding a putative A-type MSR in trypanosomatids. The genes were expressed in Escherichia coli, and the corresponding recombinant proteins were purified and functionally characterized. The enzymes were specific for L-Met(S)SO reduction, using Trypanosoma cruzi tryparedoxin I as the reducing substrate. Each enzyme migrated in electrophoresis with a particular profile reflecting the differences they exhibit in superficial charge. The in vivo presence of the enzymes was evidenced by immunological detection in replicative stages of T. cruzi and Trypanosoma brucei. The results support the occurrence of a metabolic pathway in Trypanosoma spp. involved in the critical function of repairing oxidized macromolecules.
Collapse
Affiliation(s)
- Diego G Arias
- Instituto de Agrobiotecnología del Litoral, UNL-CONICET, 3000 Santa Fe, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Bigelow DJ, Squier TC. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. MOLECULAR BIOSYSTEMS 2011; 7:2101-9. [DOI: 10.1039/c1mb05081h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
81
|
Ginsburg I, Kohen R, Koren E. Microbial and host cells acquire enhanced oxidant-scavenging abilities by binding polyphenols. Arch Biochem Biophys 2010; 506:12-23. [PMID: 21081104 DOI: 10.1016/j.abb.2010.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/14/2022]
Abstract
The dilemma whether supplementations of dietary antioxidants might prevent the adverse consequences of oxidative stress, the inadequacy of the analytical methods employed to quantify oxidant scavenging ability (OSA) levels in whole blood and the distribution and fate of polyphenols and their metabolites in various body compartments following oral consumption are discussed. While none-metabolized polyphenols might exert their antioxidant effects mainly in the oral cavity, metabolized polyphenols might be beneficial in the gastrointestinal tract to counteract the toxicity of oxidants and also of the sequelae of inflammatory processes. Although only micromolar amounts of polyphenols and their metabolites eventually reach the blood circulation, these may nevertheless still be highly effective as scavengers of reactive oxygen and nitrogen species because of their ability to synergize with plasma low molecular-weight antioxidants and with albumin. Polyphenols can avidly bind to surfaces of microorganisms and of blood cells to markedly enhance their OSA, therefore the routine quantifications of antioxidant levels conducted in clinical settings should always use catalase-rich whole blood but not as customary, plasma alone. In addition to their antioxidant and metal chelating properties, polyphenols may also act as signaling agents capable of affecting metabolic, inflammatory, autoimmune, carcinogenic and aging processes.
Collapse
Affiliation(s)
- Isaac Ginsburg
- The Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University, Hadassah Medical Center, P.O. Box 12065, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
82
|
Nan C, Li Y, Jean-Charles PY, Chen G, Kreymerman A, Prentice H, Weissbach H, Huang X. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses. Biochem Biophys Res Commun 2010; 402:608-13. [DOI: 10.1016/j.bbrc.2010.10.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/17/2010] [Indexed: 01/18/2023]
|
83
|
Zhao H, Kim G, Liu C, Levine RL. Transgenic mice overexpressing methionine sulfoxide reductase A: characterization of embryonic fibroblasts. Free Radic Biol Med 2010; 49:641-8. [PMID: 20510353 PMCID: PMC3391185 DOI: 10.1016/j.freeradbiomed.2010.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 01/09/2023]
Abstract
Methionine residues in protein can be oxidized by reactive oxygen species to generate methionine sulfoxide. Aerobic organisms have methionine sulfoxide reductases capable of reducing methionine sulfoxide back to methionine. Methionine sulfoxide reductase A acts on the S-epimer of methionine sulfoxide, and it is known that altering its cellular level by genetic ablation or overexpression has notable effects on resistance to oxidative stress and on life span in species from microorganisms to animals. In mammals, the enzyme is present in both the cytosol and the mitochondria, and this study was undertaken to assess the contribution of each subcellular compartment's reductase activity to resistance against oxidative stresses. Nontransgenic mouse embryonic fibroblasts lack methionine sulfoxide reductase A activity, providing a convenient cell type to determine the effects of expression of the enzyme in each compartment. We created transgenic mice with methionine sulfoxide reductase A targeted to the cytosol, mitochondria, or both and studied embryonic fibroblasts derived from each line. Unexpectedly, none of the transgenic cells gained resistance to a variety of oxidative stresses even though the expressed enzymes were catalytically active when assayed in vitro. Noting that activity in vivo requires thioredoxin and thioredoxin reductase, we determined the levels of these proteins in the fibroblasts and found that they were very low in both the nontransgenic and the transgenic cells. We conclude that overexpression of methionine sulfoxide reductase A did not confer resistance to oxidative stress because the cells lacked other proteins required to constitute a functional methionine sulfoxide reduction system.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Mouse Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
84
|
Antioxidant and Anticancer Properties and Mechanisms of Inorganic Selenium, Oxo-Sulfur, and Oxo-Selenium Compounds. Cell Biochem Biophys 2010; 58:1-23. [PMID: 20632128 DOI: 10.1007/s12013-010-9088-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Kim G, Cole NB, Lim JC, Zhao H, Levine RL. Dual sites of protein initiation control the localization and myristoylation of methionine sulfoxide reductase A. J Biol Chem 2010; 285:18085-94. [PMID: 20368336 PMCID: PMC2878569 DOI: 10.1074/jbc.m110.119701] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine sulfoxide reductase A is an essential enzyme in the antioxidant system, which scavenges reactive oxygen species through cyclic oxidation and reduction of methionine and methionine sulfoxide. In mammals, one gene encodes two forms of the reductase, one targeted to the cytosol and the other to mitochondria. The cytosolic form displays faster mobility than the mitochondrial form, suggesting a lower molecular weight for the former. The apparent size difference and targeting to two cellular compartments had been proposed to result from differential splicing of mRNA. We now show that differential targeting is effected by use of two initiation sites, one of which includes a mitochondrial targeting sequence, whereas the other does not. We also demonstrate that the mass of the cytosolic form is not less than that of the mitochondrial form; the faster mobility of cytosolic form is due to its myristoylation. Lipidation of methionine sulfoxide reductase A occurs in the mouse, in transfected tissue culture cells, and even in a cell-free protein synthesis system. The physiologic role of myristoylation of MsrA remains to be elucidated.
Collapse
Affiliation(s)
- Geumsoo Kim
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
86
|
Brunell D, Weissbach H, Hodder P, Brot N. A high-throughput screening compatible assay for activators and inhibitors of methionine sulfoxide reductase A. Assay Drug Dev Technol 2010; 8:615-20. [PMID: 20515413 DOI: 10.1089/adt.2009.0263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The methionine sulfoxide reductase (Msr) system has been shown to play an important role in protecting cells against oxidative damage. This family of enzymes can repair damage to proteins resulting from the oxidation of methionine residues to methionine sulfoxide, caused by reactive oxygen species. Previous genetic studies in animals have shown that increased levels of methionine sulfoxide reductase enzyme A (MsrA), an important member of the Msr family, can protect cells against oxidative damage and increase life span. A high-throughput screening (HTS) compatible assay has been developed to search for both activators and inhibitors of MsrA. The assay involves a coupled reaction in which the oxidation of NADPH is measured by either spectrophotometric or fluorometric analysis. Previous studies had shown that MsrA has a broad substrate specificity and can reduce a variety of methyl sulfoxide compounds, including dimethylsulfoxide (DMSO). Since the chemicals in the screening library are dissolved in DMSO, which would compete with any of the standard substrates used for the determination of MsrA activity, an assay has been developed that uses the DMSO that is the solvent for the compounds in the library as the substrate for the MsrA enzyme. A specific activator of MsrA could have important therapeutic value for diseases that involve oxidative damage, especially age-related diseases, whereas a specific inhibitor of MsrA would have value for a variety of research studies.
Collapse
Affiliation(s)
- David Brunell
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida, USA.
| | | | | | | |
Collapse
|
87
|
Trujillo M, Alvarez B, Souza JM, Romero N, Castro L, Thomson L, Radi R. Mechanisms and Biological Consequences of Peroxynitrite-Dependent Protein Oxidation and Nitration. Nitric Oxide 2010. [DOI: 10.1016/b978-0-12-373866-0.00003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Abstract
Infections with Mycobacterium tuberculosis remain a major cause of disease and death in humans. Among the factors that contribute to M. tuberculosis's success as a pathogen is its ability to withstand potentially bactericidal host defences and to resist elimination by an activated immune system. This resistance to killing by the host is in part due to the low permeability of the mycobacterial cell envelope for many toxic molecules. In addition, it depends upon the detoxification of reactive oxygen and reactive nitrogen molecules produced by the host, the repair of the damage these molecules cause and maintenance of a neutral intrabacterial pH within acidic environments. The latter three mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| | | |
Collapse
|
89
|
Abstract
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.
Collapse
Affiliation(s)
- Earl R Stadtman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Biochemistry and Biophysics Center, MSC-8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
90
|
Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009; 4:e5660. [PMID: 19543527 PMCID: PMC2694998 DOI: 10.1371/journal.pone.0005660] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/28/2009] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients.
Collapse
|
91
|
Abstract
Professional phagocytes have a vast and sophisticated arsenal of microbicidal features. They are capable of ingesting and destroying invading organisms, and can present microbial antigens on their surface, eliciting acquired immune responses. To survive this hostile response, certain bacterial species have developed evasive strategies that often involve the secretion of effectors to co-opt the cellular machinery of the host. In this Review, we present an overview of the antimicrobial defences of the host cell, with emphasis on macrophages, for which phagocytosis has been studied most extensively. In addition, using Mycobacterium tuberculosis, Listeria monocytogenes, Legionella pneumophila and Coxiella burnetii as examples, we describe some of the evasive strategies used by bacteria.
Collapse
|
92
|
Lee WL, Gold B, Darby C, Brot N, Jiang X, de Carvalho LPS, Wellner D, St John G, Jacobs WR, Nathan C. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 2009; 71:583-93. [PMID: 19040639 DOI: 10.1111/j.1365-2958.2008.06548.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methionine sulphoxide reductases (Msr) reduce methionine sulphoxide to methionine and protect bacteria against reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI). Many organisms express both MsrA, active against methionine-(S)-sulphoxide, and MsrB, active against methionine-(R)-sulphoxide. Mycobacterium tuberculosis (Mtb) expresses MsrA, which protects DeltamsrA-Escherichia coli from ROI and RNI. However, the function of MsrA in Mtb has not been defined, and it is unknown whether Mtb expresses MsrB. We identified MsrB as the protein encoded by Rv2674 in Mtb and confirmed the distinct stereospecificities of recombinant Mtb MsrA and MsrB. We generated strains of Mtb deficient in MsrA, MsrB or both and complemented the mutants. Lysates of singly deficient strains displayed half as much Msr activity as wild type against N-acetyl methionine sulphoxide. However, in contrast to other bacteria, single mutants were no more vulnerable than wild type to killing by ROI/RNI. Only Mtb lacking both MsrA and MsrB was more readily killed by nitrite or hypochlorite. Thus, MsrA and MsrB contribute to the enzymatic defences of Mtb against ROI and RNI.
Collapse
Affiliation(s)
- Warren L Lee
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
A strain-specific catalase mutation and mutation of the metal-binding transporter gene mntC attenuate Neisseria gonorrhoeae in vivo but not by increasing susceptibility to oxidative killing by phagocytes. Infect Immun 2008; 77:1091-102. [PMID: 19114548 DOI: 10.1128/iai.00825-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The hallmark of gonorrhea is an intense inflammatory response that is characterized by polymorphonuclear leukocytes (PMNs) with intracellular gonococci. A redundancy of defenses may protect Neisseria gonorrhoeae from phagocyte-derived reactive oxygen species. Here we showed that a gonococcal catalase (kat) mutant in strain MS11 was more sensitive to H(2)O(2) than mutants in cytochrome c peroxidase (ccp), methionine sulfoxide reductase (msrA), or the metal-binding protein (mntC) of the MntABC transporter. kat ccp and kat ccp mntC mutants were significantly more sensitive to H(2)O(2) than mutants in any single factor. None of the mutants showed increased susceptibility to murine PMNs. Recovery of the mntC and kat ccp mntC mutants from the lower genital tract of BALB/c mice, but not the kat or kat ccp mutants, was significantly reduced relative to wild-type bacteria. Interestingly, unlike the MS11 kat mutant, a kat mutant of strain FA1090 was attenuated during competitive infection with wild-type FA1090 bacteria. The FA1090 kat mutant and MS11 mntC mutant were also attenuated in mice that are unable to generate a phagocytic respiratory burst. We conclude that inactivation of three well-characterized antioxidant genes (kat, ccp, and mntC) does not increase gonococcal susceptibility to the phagocytic respiratory burst during infection and that gonococcal catalase and the MntC protein confer an unidentified advantage in vivo. In the case of catalase, this advantage is strain specific. Finally, we also showed that an msrA mutant of strain MS11 demonstrated delayed attenuation in BALB/c but not C57BL/6 mice. Therefore, MsrA/B also appears to play a role in infection that is dependent on host genetic background.
Collapse
|
94
|
Zhang XH, Weissbach H. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc 2008; 83:249-57. [PMID: 18557976 DOI: 10.1111/j.1469-185x.2008.00042.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The majority of extant life forms thrive in an O2-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.
Collapse
Affiliation(s)
- Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton 33431, USA.
| | | |
Collapse
|
95
|
Atack JM, Kelly DJ. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. MICROBIOLOGY-SGM 2008; 154:2219-2230. [PMID: 18667555 DOI: 10.1099/mic.0.2008/019711-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The microaerophilic food-borne pathogen Campylobacter jejuni is exposed to highly variable oxygen concentrations during its life cycle and employs a variety of protection mechanisms to resist oxidative stress. However, not all of the enzymes that mediate such protection have yet been identified. Two genes in strain NCTC 11168, Cj0637c and Cj1112c, are predicted to encode unrelated methionine sulphoxide reductases, which may repair oxidized methionine residues in proteins and thus contribute to oxidative stress defence. Cj0637 and Cj1112 were overexpressed, purified and shown by a coupled thioredoxin-thioredoxin reductase-NADPH assay to catalyse the stereospecific reduction of the S and R diastereoisomers, respectively, of the model compound methyl p-tolyl sulphoxide. Cj0637 is thus identified as MsrA and Cj1112 as MsrB. The contribution of these enzymes to oxidative and nitrosative stress resistance in C. jejuni was assessed by phenotypic analysis of a set of isogenic msrA, msrB and msrA/B insertion mutants. As RT-PCR data suggested a polar effect on Cj1111c in the msrB mutant, an msrB/msrB(+) merodiploid complementation strain was also constructed. The msrA/B strain was severely growth inhibited under standard microaerobic conditions, whereas the msrA and msrB strains grew normally. Agar plate disc diffusion assays showed that all mutants displayed increased sensitivity to hydrogen peroxide, organic peroxide, superoxide, and nitrosative and disulphide stress, but quantitative cell viability assays showed that the msrA/B double mutant was markedly more sensitive to both oxidative and nitrosative stress. All of the stress-sensitivity phenotypes observed for the msrB mutant were restored to wild-type in the msrB/msrB(+) merodiploid. It is concluded that MsrA and MsrB make a significant contribution to the protection of C. jejuni against oxidative and nitrosative stress.
Collapse
Affiliation(s)
- John M Atack
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
96
|
Abstract
A variety of reactive oxygen species react readily with methionine residues in proteins to form methionine sulfoxide, thus scavenging the reactive species. Most cells contain methionine sulfoxide reductases, which catalyze a thioredoxin-dependent reduction of methionine sulfoxide back to methionine. Thus, methionine residues may act as catalytic antioxidants, protecting both the protein where they are located and other macromolecules. To test this hypothesis directly, we replaced 40% of the methionine residues in Escherichia coli with norleucine, the carbon-containing analog, in which the sulfur of methionine is substituted by a methylene group (-CH2-). The intracellular free methionine and S-adenosylmethionine pools were not altered, nor was the specific activity of the key enzyme, glutamine synthetase. When unstressed, both control and norleucine-substituted cells survived equally well at stationary phase for at least 32 h. However, oxidative stress was more damaging to the norleucine-substituted cells. They died more rapidly than control cells when challenged by hypochlorite, hydrogen peroxide, or ionizing radiation. One of the most abundant proteins in the cell, elongation factor Tu, was found to be more oxidatively modified in norleucine-substituted cells, consistent with loss of the antioxidant defense provided by methionine residues. The results of these studies support the hypothesis that methionine in protein acts as an endogenous antioxidant in cells.
Collapse
Affiliation(s)
- Shen Luo
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
97
|
Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo. Infect Immun 2008; 76:4445-54. [PMID: 18625729 DOI: 10.1128/iai.00741-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium, a common enteric pathogen, possesses three NiFe uptake-type hydrogenases. The results from mouse infection studies suggest that the H(2) oxidation capacity provided by these hydrogenases is important for virulence. Since the three enzymes are similar in structure and function, it may be expected that they are utilized under different locations and times during an infection. A recombination-based method to examine promoter activity in vivo (RIVET) was used to determine hydrogenase gene expression in macrophages, polymorphonuclear leukocyte (PMN)-like cells, and a mouse model of salmonellosis. The hyd and hya promoters showed increased expression in both murine macrophages and human PMN-like cells compared to that in the medium-only controls. Quantitative reverse transcription-PCR results suggested that hyb is also expressed in phagocytes. A nonpolar hya mutant was compromised for survival in macrophages compared to the wild type. This may be due to lower tolerance to acid stress, since the hya mutant was much more acid sensitive than the wild type. In addition, hya mutant cells were internalized by macrophages the same as wild-type cells. Mouse studies (RIVET) indicate that hyd is highly expressed in the liver and spleen early during infection but is expressed poorly in the ileum in infected animals. Late in the infection, the hyd genes were expressed at high levels in the ileum as well as in the liver and spleen. The hya genes were expressed at low levels in all locations tested. These results suggest that the hydrogenases are used to oxidize hydrogen in different stages of an infection.
Collapse
|
98
|
Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta Gen Subj 2008; 1780:1170-200. [PMID: 18423382 DOI: 10.1016/j.bbagen.2008.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Center of Basic Research I-Biochemistry Division, Biomedical Research Foundation (BRFAA), Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
| |
Collapse
|
99
|
Prentice HM, Moench IA, Rickaway ZT, Dougherty CJ, Webster KA, Weissbach H. MsrA protects cardiac myocytes against hypoxia/reoxygenation induced cell death. Biochem Biophys Res Commun 2007; 366:775-8. [PMID: 18083115 DOI: 10.1016/j.bbrc.2007.12.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 01/30/2023]
Abstract
Reactive oxygen species (ROS) are critical in tissue responses to ischemia-reperfusion. The enzyme methionine sulfoxide reductase-A (MsrA) is capable of protecting cells against oxidative damage by reversing damage to proteins caused by methionine oxidation or by decreasing ROS through a scavenger mechanism. The current study employed adenovirus mediated over-expression of MsrA in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation in this tissue. Cells were transduced with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation. Apoptotic cell death was decreased by greater than 45% in cells over-expressing MsrA relative to cells transduced with a control virus. Likewise total cell death as determined by levels of LDH release was dramatically decreased by MsrA over-expression. These observations indicate that MsrA is protective against hypoxia/reoxygenation stress in cardiac myocytes and point to MsrA as an important therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- H M Prentice
- Florida Atlantic University, College of Biomedical Science, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | | | | | | | |
Collapse
|
100
|
Sasindran SJ, Saikolappan S, Dhandayuthapani S. Methionine sulfoxide reductases and virulence of bacterial pathogens. Future Microbiol 2007; 2:619-30. [DOI: 10.2217/17460913.2.6.619] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidation of methionine (Met) residues in proteins by reactive oxygen species and reactive nitrogen intermediates results in altered protein structures, which subsequently affect their functions. Oxidized Met (Met-O) residues are reduced to Met by the methionine sulfoxide reductase (Msr) system, which includes mainly MsrA and MsrB. MsrA and MsrB show no sequence and structural identity with each other but both reduce methionine sulfoxides. MsrA is specific to the reduction of methionine-S-sulfoxide, whereas MsrB is specific to the reduction of methionine-R-sulfoxide. Genes encoding the enzymes MsrA and MsrB exist in most living organisms including bacteria. In recent times, absence of these enzymes has been implicated in the virulence of bacterial pathogens. In particular, pathogens deficient in Msr have been reported to have reduced ability to adhere with eukaryotic cells, to survive inside hosts and to resist in vitro oxidative stress. Bacterial proteins that are susceptible to Met oxidation, in the absence of Msr, have also been identified. This review discusses the current knowledge on the role of Msr in bacterial virulence.
Collapse
Affiliation(s)
- Smitha J Sasindran
- University of Texas Health Science Center at San Antonio, Regional Academic Health Center & Department of Microbiology & Immunology, 1214 West Schunior Street, Edinburg, TX 78541, USA
| | - Sankaralingam Saikolappan
- University of Texas Health Science Center at San Antonio, Regional Academic Health Center & Department of Microbiology & Immunology, 1214 West Schunior Street, Edinburg, TX 78541, USA
| | - Subramanian Dhandayuthapani
- University of Texas Health Science Center at San Antonio, Regional Academic Health Center & Department of Microbiology & Immunology, 1214 West Schunior Street, Edinburg, TX 78541, USA
| |
Collapse
|