51
|
The evolutionary roots of belief. Curr Biol 2020. [DOI: 10.1016/j.cub.2020.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
52
|
Pargeter J, Khreisheh N, Shea JJ, Stout D. Knowledge vs. know-how? Dissecting the foundations of stone knapping skill. J Hum Evol 2020; 145:102807. [DOI: 10.1016/j.jhevol.2020.102807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
53
|
Stankova EP, Kruchinina OV, Shepovalnikov AN, Galperina EI. Evolution of the Central Mechanisms
of Oral Speech. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
54
|
Wilkins J. Learner-driven innovation in the stone tool technology of early Homo sapiens. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e40. [PMID: 37588390 PMCID: PMC10427492 DOI: 10.1017/ehs.2020.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current perspectives of stone tool technology tend to emphasize homogeneity in tool forms and core reduction strategies across time and space. This homogeneity is understood to represent shared cultural traditions that are passed down through the generations. This represents a top-down perspective on how and why stone tools are manufactured that largely restricts technological agency to experts, adults and teachers. However, just as bottom-up processes driven by children and youth influence technological innovation today, they are likely to have played a role in the past. This paper considers evidence from the archaeological record of early Homo sapiens' lithic technology in Africa that may attest to our long history of bottom-up social learning processes and learner-driven innovation. This evidence includes the role of emulative social learning in generating assemblages with diverse reduction strategies, a high degree of technological fragmentation across southern Africa during some time periods, and technological convergence through the Pleistocene. Counter to some perspectives on the uniqueness of our species, our ability to learn independently, to 'break the rules' and to play, as opposed to conforming to top-down influences, may also account for our technological success.
Collapse
Affiliation(s)
- Jayne Wilkins
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, QLD4111, Australia; and Human Evolution Research Institute, University of Cape Town, South Africa
| |
Collapse
|
55
|
Abstract
A defining feature of human culture is that knowledge and technology continually improve over time. Such cumulative cultural evolution (CCE) probably depends far more heavily on how reliably information is preserved than on how efficiently it is refined. Therefore, one possible reason that CCE appears diminished or absent in other species is that it requires accurate but specialized forms of social learning at which humans are uniquely adept. Here, we develop a Bayesian model to contrast the evolution of high-fidelity social learning, which supports CCE, against low-fidelity social learning, which does not. We find that high-fidelity transmission evolves when (1) social and (2) individual learning are inexpensive, (3) traits are complex, (4) individual learning is abundant, (5) adaptive problems are difficult and (6) behaviour is flexible. Low-fidelity transmission differs in many respects. It not only evolves when (2) individual learning is costly and (4) infrequent but also proves more robust when (3) traits are simple and (5) adaptive problems are easy. If conditions favouring the evolution of high-fidelity transmission are stricter (3 and 5) or harder to meet (2 and 4), this could explain why social learning is common, but CCE is rare.
Collapse
Affiliation(s)
- Marcel Montrey
- Department of Psychology, McGill University, Montreal, Canada
| | - Thomas R Shultz
- School of Computer Science, McGill University, Montreal, Canada
| |
Collapse
|
56
|
Osiurak F, Lesourd M, Navarro J, Reynaud E. Technition: When Tools Come Out of the Closet. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 15:880-897. [DOI: 10.1177/1745691620902145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
People are ambivalently enthusiastic and anxious about how far technology can go. Therefore, understanding the neurocognitive bases of the human technical mind should be a major topic of the cognitive sciences. Surprisingly, however, scientists are not interested in this topic or address it only marginally in other mainstream domains (e.g., motor control, action observation, social cognition). In fact, this lack of interest may hinder our understanding of the necessary neurocognitive skills underlying our appetence for transforming our physical environment. Here, we develop the thesis that our technical mind originates in perhaps uniquely human neurocognitive skills, namely, technical-reasoning skills involving the area PF within the left inferior parietal lobe. This thesis creates an epistemological rupture with the state of the art that justifies the emergence of a new field in the cognitive sciences (i.e., technition) dedicated to the intelligence hidden behind tools and other forms of technologies, including constructions.
Collapse
Affiliation(s)
- François Osiurak
- Laboratoire d’Etude des Mécanismes Cognitifs, Université de Lyon
- Institut Universitaire de France
| | - Mathieu Lesourd
- Laboratoire de Psychologie, Université de Bourgogne Franche-Comté
| | - Jordan Navarro
- Laboratoire d’Etude des Mécanismes Cognitifs, Université de Lyon
- Institut Universitaire de France
| | | |
Collapse
|
57
|
Roles of Technical Reasoning, Theory of Mind, Creativity, and Fluid Cognition in Cumulative Technological Culture. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2020; 30:326-340. [PMID: 31332720 DOI: 10.1007/s12110-019-09349-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cumulative technological culture can be defined as the progressive diversification, complexification, and enhancement of technological traits through generations. An outstanding issue is to specify the cognitive bases of this phenomenon. Based on the literature, we identified four potential cognitive factors: namely, theory-of-mind, technical-reasoning, creativity, and fluid-cognitive skills. The goal of the present study was to test which of these factors-or a combination thereof-best predicted the cumulative performance in two experimental, micro-society conditions (Communication and Observation conditions; n = 100 each) differing in the nature of the interaction (verbal, visual) allowed between participants. The task was to build the highest possible tower. Participants were also assessed on the four aforementioned cognitive factors in order to predict cumulative performance (tower height) and attractiveness. Our findings indicate that technical-reasoning skills are the best predictor of cumulative performance (tower height), even if their role may be restricted to the specific technological domain. Theory-of-mind skills may have a facilitator role, particularly in the Communication condition. Creativity can also help in the generation of novel ideas, but it is not sufficient to support innovation. Finally, fluid cognition is not involved in cumulative technological culture. Taken together, these findings suggest that domain-specific knowledge (i.e., technical-reasoning skills) remains critical for explaining cumulative technological culture.
Collapse
|
58
|
Abstract
Human culture is unique among animals in its complexity, variability, and cumulative quality. This article describes the development and diversity of cumulative cultural learning. Children inhabit cultural ecologies that consist of group-specific knowledge, practices, and technologies that are inherited and modified over generations. The learning processes that enable cultural acquisition and transmission are universal but are sufficiently flexible to accommodate the highly diverse cultural repertoires of human populations. Children learn culture in several complementary ways, including through exploration, observation, participation, imitation, and instruction. These methods of learning vary in frequency and kind within and between populations due to variation in socialization values and practices associated with specific educational institutions, skill sets, and knowledge systems. The processes by which children acquire and transmit the cumulative culture of their communities provide unique insight into the evolution and ontogeny of human cognition and culture.
Collapse
Affiliation(s)
- Cristine H Legare
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
59
|
Abstract
Cumulative technological culture (CTC) refers to the increase in the efficiency and complexity of tools and techniques in human populations over generations. A fascinating question is to understand the cognitive origins of this phenomenon. Because CTC is definitely a social phenomenon, most accounts have suggested a series of cognitive mechanisms oriented toward the social dimension (e.g., teaching, imitation, theory of mind, and metacognition), thereby minimizing the technical dimension and the potential influence of non-social, cognitive skills. What if we have failed to see the elephant in the room? What if social cognitive mechanisms were only catalyzing factors and not the sufficient and necessary conditions for the emergence of CTC? In this article, we offer an alternative, unified cognitive approach to this phenomenon by assuming that CTC originates in non-social cognitive skills, namely technical-reasoning skills which enable humans to develop the technical potential necessary to constantly acquire and improve technical information. This leads us to discuss how theory of mind and metacognition, in concert with technical reasoning, can help boost CTC. The cognitive approach developed here opens up promising new avenues for reinterpreting classical issues (e.g., innovation, emulation vs. imitation, social vs. asocial learning, cooperation, teaching, and overimitation) in a field that has so far been largely dominated by other disciplines, such as evolutionary biology, mathematics, anthropology, archeology, economics, and philosophy.
Collapse
|
60
|
Abstract
Abstract
Responding to commentaries from psychologists, neuroscientists, philosophers, and anthropologists, I clarify a central purpose of Cognitive Gadgets – to overcome “cognition blindness” in research on human evolution. I defend this purpose against Brunerian, extended mind, and niche construction critiques of computationalism – that is, views prioritising meaning over information, or asserting that behaviour and objects can be intrinsic parts of a thinking process. I argue that empirical evidence from cognitive science is needed to locate distinctively human cognitive mechanisms on the continuum between gadgets and instincts. Focussing on that requirement, I also address specific challenges, and applaud extensions and refinements, of the evidence surveyed in my book. It has been said that “a writer's idea of sound criticism is ten thousand words of closely reasoned adulation.” I cannot disagree with this untraceable wag, but the 30 commentators on Cognitive Gadgets provided some 30,000 words of criticism that are of much greater scientific value than adulation. I am grateful to them all. The response that follows is V-shaped. It starts with the broadest conceptual and methodological issues and funnels down to matters arising from specific empirical studies.
Collapse
|
61
|
Evolutionary divergence of neuroanatomical organization and related genes in chimpanzees and bonobos. Cortex 2019; 118:154-164. [DOI: 10.1016/j.cortex.2018.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/09/2018] [Accepted: 09/23/2018] [Indexed: 11/22/2022]
|
62
|
Ardesch DJ, Scholtens LH, van den Heuvel MP. The human connectome from an evolutionary perspective. PROGRESS IN BRAIN RESEARCH 2019; 250:129-151. [PMID: 31703899 DOI: 10.1016/bs.pbr.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The connectome describes the comprehensive set of neuronal connections of a species' central nervous system. Identifying the network characteristics of the human macroscale connectome and comparing these features with connectomes of other species provides insight into the evolution of human brain connectivity and its role in brain function. Several network properties of the human connectome are conserved across species, with emerging evidence also indicating potential human-specific adaptations of connectome topology. This review describes the human macroscale structural and functional connectome, focusing on common themes of brain wiring in the animal kingdom and network adaptations that may underlie human brain function. Evidence is drawn from comparative studies across a wide range of animal species, and from research comparing human brain wiring with that of non-human primates. Approaching the human connectome from a comparative perspective paves the way for network-level insights into the evolution of human brain structure and function.
Collapse
Affiliation(s)
- Dirk Jan Ardesch
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Lianne H Scholtens
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
63
|
Pargeter J, Khreisheh N, Stout D. Understanding stone tool-making skill acquisition: Experimental methods and evolutionary implications. J Hum Evol 2019; 133:146-166. [PMID: 31358178 DOI: 10.1016/j.jhevol.2019.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
Despite its theoretical importance, the process of stone tool-making skill acquisition remains understudied and poorly understood. The challenges and costs of skill learning constitute an oft-neglected factor in the evaluation of alternative adaptive strategies and a potential source of bias in cultural transmission. Similarly, theory and data indicate that the most salient neural and cognitive demands of stone tool-making should occur during learning rather than expert performance. Unfortunately, the behavioral complexity and extensive learning requirements that make stone knapping skill acquisition an interesting object of study are the very features that make it so challenging to investigate experimentally. Here we present results from a multidisciplinary study of Late Acheulean handaxe-making skill acquisition involving twenty-six naïve participants and up to 90 hours training over several months, accompanied by a battery of psychometric, behavioral, and neuroimaging assessments. In this initial report, we derive a robust quantitative skill metric for the experimental handaxes using machine learning algorithms, reconstruct a group-level learning curve, and explore sources of individual variation in learning outcomes. Results identify particular cognitive targets of selection on the efficiency or reliability of tool-making skill acquisition, quantify learning costs, highlight the likely importance of social support, motivation, persistence, and self-control in knapping skill acquisition, and illustrate methods for reliably reconstructing ancient learning processes from archaeological evidence.
Collapse
Affiliation(s)
- Justin Pargeter
- Department of Anthropology, Emory University, Atlanta, GA, USA; Rock Art Research Institute, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| | | | - Dietrich Stout
- Department of Anthropology, Emory University, Atlanta, GA, USA
| |
Collapse
|
64
|
Vandervert L. The evolution of theory of mind (ToM) within the evolution of cerebellar sequence detection in stone-tool making and language: implications for studies of higher-level cognitive functions in degenerative cerebellar atrophy. CEREBELLUM & ATAXIAS 2019; 6:1. [PMID: 31293790 PMCID: PMC6591877 DOI: 10.1186/s40673-019-0101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/16/2019] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Within the context of Clausi, Olivito, Lupo, Siciliano, Bozzali and Leggio's (Cell Neurosci 12:510, 2019) insightful study of how prediction of theory of mind (ToM) is compromised in degenerative cerebellar atrophy, this article describes how prediction can also be understood as the cerebro-cerebellar system's capacity to rapidly shift attention to manipulate cause-and-effect relationships embedded in language. METHOD The evolution of the capacity of ToM is described within the evolution of stone-tool making, language, and the origin of the phonological loop in verbal working memory. Specifically, it is argued that this evolutionary framework offers a way to get further inside the prediction process by illuminating how sub-vocal speech evolved during stone-tool evolution due to its adaptive refinement of early human ability to manipulate and hold in memory progressively more detailed cause-and-effect relationships in the origin of verbal working memory. CONCLUSION The addition of sub-vocal speech/cause-and-effect relationship to the analysis of prediction provides an evolutionary model of the mechanisms of ToM, which, in turn, brings forward additional cerebro-cerebellar mechanisms which can (1) further support Clausi, Olivito, Lupo et al's findings and (2) shed light on additional mechanisms that might further clarify what might be behind cerebellar dysfunction in the construction of ToM. Problems encountered by cerebellar degenerative atrophy patients with the Faux pas test and Advanced ToM task with unexpected events may stem from a combination of an inability (1) of their cerebellar internal models to rapidly switch attention among cause-and-effect elements of the stories and (2) to extend cerebellar internal models to the prediction of the resulting similar but unexpected events. That is, with both (1) and (2) occurring at the same time, alternative meanings of causes and effects might be missed in both automatic and consciously manipulated sub-vocal verbal working memory. A method to measure sub-vocal speech in this context is suggested.
Collapse
Affiliation(s)
- Larry Vandervert
- American Nonlinear Systems, 1529 W. Courtland Avenue Spokane, Spokane, WA 99205-2608 USA
| |
Collapse
|
65
|
Tramacere A, Wada K, Okanoya K, Iriki A, Ferrari PF. Auditory-Motor Matching in Vocal Recognition and Imitative Learning. Neuroscience 2019; 409:222-234. [PMID: 30742962 DOI: 10.1016/j.neuroscience.2019.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Songbirds possess mirror neurons (MNs) activating during the perception and execution of specific features of songs. These neurons are located in high vocal center (HVC), a premotor nucleus implicated in song perception, production and learning, making worth to inquire their properties and functions in vocal recognition and imitative learning. By integrating a body of brain and behavioral data, we discuss neurophysiology, anatomical, computational properties and possible functions of songbird MNs. We state that the neurophysiological properties of songbird MNs depends on sensorimotor regions that are outside the auditory neural system. Interestingly, songbirds MNs can be the result of the specific type of song representation possessed by some songbird species. At the functional level, we discuss whether songbird MNs are involved in others' song recognition, by dissecting the function of recognition in various different but possible overlapping processes: action-oriented perception, discriminative-oriented perception and identification of the signaler. We conclude that songbird MNs may be involved in recognizing other singer's vocalizations, while their role in imitative learning still require to solve how auditory feedback are used to correct own vocal performance to match the tutor song. Finally, we compare songbird and human mirror responses, hypothesizing a case of convergent evolution, and proposing new experimental directions.
Collapse
Affiliation(s)
- Antonella Tramacere
- Max Planck for the Science of Human History, DLCE Department, Jena, Kahlaische Str 10, 07745, Germany.
| | - Kazuhiro Wada
- Faculty of Science, Department of Biological Sciences, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Atsushi Iriki
- RIKEN Center for Brain Science, 351-0106 Saitama Prefecture, Wako, Hirosawa, Japan
| | - Pier F Ferrari
- Department of Medicine and Surgery, University of Parma, via Volturno, 43125, Italy; Institut des Sciences Cognitives Marc Jannerod, CNRS/Universite' Claude Bernard Lyon, 67 Pd Pinel 69675, Bron Cedex, France
| |
Collapse
|
66
|
Stout D, Rogers MJ, Jaeggi AV, Semaw S. Archaeology and the Origins of Human Cumulative Culture: A Case Study from the Earliest Oldowan at Gona, Ethiopia. CURRENT ANTHROPOLOGY 2019. [DOI: 10.1086/703173] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
67
|
|
68
|
Vandervert L. How Prediction Based on Sequence Detection in the Cerebellum Led to the Origins of Stone Tools, Language, and Culture and, Thereby, to the Rise of Homo sapiens. Front Cell Neurosci 2018; 12:408. [PMID: 30483059 PMCID: PMC6243095 DOI: 10.3389/fncel.2018.00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 12/04/2022] Open
Abstract
This article extends Leiner et al.'s watershed position that cerebellar mechanisms played prominent roles in the evolution of the manipulation and refinement of ideas and language. First it is shown how cerebellar mechanism of sequence-detection may lead to the foundational learning of a predictive working memory in the infant. Second, it is argued how this same cerebellar mechanism may have led to the adaptive selection toward the progressively predictive phonological loop in the evolution of working memory of pre-humans. Within these contexts, cerebellar sequence detection is then applied to an analysis of leading anthropologists Stout and Hecht's cerebral cortex-based explanation of the evolution of culture and language through the repetitious rigors of stone-tool knapping. It is argued that Stout and Hecht's focus on the roles of areas of the brain's cerebral cortex is seriously lacking, because it can be readily shown that cerebellar sequence detection importantly (perhaps predominantly) provides more fundamental explanations for the origins of culture and language. It is shown that the cerebellum does this in the following ways: (1) through prediction-enhancing silent speech in working memory, (2) through prediction in observational learning, and (3) through prediction leading to accuracy in stone-tool knapping. It is concluded, in agreement with Leiner et al. that the more recently proposed mechanism of cerebellar sequence-detection has played a prominent role in the evolution of culture, language, and stone-tool technology, the earmarks of Homo sapiens. It is further concluded that through these same mechanisms the cerebellum continues to play a prominent role in the relentless advancement of culture.
Collapse
|
69
|
Asano R, Seifert U. Commentary: The Evolution of Musicality: What Can Be Learned from Language Evolution Research? Front Neurosci 2018; 12:640. [PMID: 30283293 PMCID: PMC6156452 DOI: 10.3389/fnins.2018.00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Cologne, Germany
| | | |
Collapse
|
70
|
Worthman CM, Trang K. Dynamics of body time, social time and life history at adolescence. Nature 2018; 554:451-457. [PMID: 29469099 DOI: 10.1038/nature25750] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
Recent opposing trends towards earlier physical maturation and later social maturation present a conundrum of apparent biological-social mismatch. Here we use life history analysis from evolutionary ecology to identify forces that drive these shifts. Together with findings in developmental science, our life history analysis indicates that adolescence is a distinctive period for biological embedding of culture. Ethnographic evidence shows that mass education is a novel feature of the globalizing cultural configurations of adolescence, which are driven by transformations in labour, livelihood and lifestyle. Evaluation of the life history trade-offs and sociocultural ecologies that are experienced by adolescents may offer a practical basis for enhancing their development.
Collapse
Affiliation(s)
- Carol M Worthman
- 1Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA
| | - Kathy Trang
- 1Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
71
|
Kendal RL, Boogert NJ, Rendell L, Laland KN, Webster M, Jones PL. Social Learning Strategies: Bridge-Building between Fields. Trends Cogn Sci 2018; 22:651-665. [PMID: 29759889 DOI: 10.1016/j.tics.2018.04.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023]
Abstract
While social learning is widespread, indiscriminate copying of others is rarely beneficial. Theory suggests that individuals should be selective in what, when, and whom they copy, by following 'social learning strategies' (SLSs). The SLS concept has stimulated extensive experimental work, integrated theory, and empirical findings, and created impetus to the social learning and cultural evolution fields. However, the SLS concept needs updating to accommodate recent findings that individuals switch between strategies flexibly, that multiple strategies are deployed simultaneously, and that there is no one-to-one correspondence between psychological heuristics deployed and resulting population-level patterns. The field would also benefit from the simultaneous study of mechanism and function. SLSs provide a useful vehicle for bridge-building between cognitive psychology, neuroscience, and evolutionary biology.
Collapse
Affiliation(s)
- Rachel L Kendal
- Centre for Coevolution of Biology & Culture, Durham University, Anthropology Department, Durham, DH1 3LE, UK.
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9EZ, UK
| | - Luke Rendell
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Kevin N Laland
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Mike Webster
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Patricia L Jones
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
72
|
Zaidel DW. Culture and art: Importance of art practice, not aesthetics, to early human culture. PROGRESS IN BRAIN RESEARCH 2018; 237:25-40. [PMID: 29779738 DOI: 10.1016/bs.pbr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Art is expressed in multiple formats in today's human cultures. Physical traces of stone tools and other archaeological landmarks suggest early nonart cultural behavior and symbolic cognition in the early Homo sapiens (HS) who emerged ~300,000-200,000 years ago in Africa. Fundamental to art expression is the neural underpinning for symbolic cognition, and material art is considered its prime example. However, prior to producing material art, HS could have exploited symbolically through art-rooted biological neural pathways for social purpose, namely, those controlling interpersonal motoric coordination and sound codependence. Aesthetics would not have been the primary purpose; arguments for group dance and rhythmical musical sounds are offered here. In addition, triggers for symbolic body painting are discussed. These cultural art formats could well have preceded material art and would have enhanced unity, inclusiveness, and cooperative behavior, contributing significantly to already existing nonart cultural practices.
Collapse
Affiliation(s)
- Dahlia W Zaidel
- Department of Psychology and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
73
|
Kolodny O, Feldman MW, Creanza N. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170048. [PMID: 29440515 PMCID: PMC5812962 DOI: 10.1098/rstb.2017.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'.
Collapse
Affiliation(s)
- Oren Kolodny
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
74
|
Aboitiz F. A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing. Front Neurosci 2018; 12:174. [PMID: 29636657 PMCID: PMC5880940 DOI: 10.3389/fnins.2018.00174] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/05/2018] [Indexed: 12/27/2022] Open
Abstract
In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
75
|
Whiten A, Ayala FJ, Feldman MW, Laland KN. The extension of biology through culture. Proc Natl Acad Sci U S A 2017; 114:7775-7781. [PMID: 28739924 PMCID: PMC5544333 DOI: 10.1073/pnas.1707630114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew Whiten
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, United Kingdom;
| | - Francisco J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | | | - Kevin N Laland
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews, St. Andrews KY16 9JP, United Kingdom
| |
Collapse
|
76
|
Abstract
The complexity and variability of human culture is unmatched by any other species. Humans live in culturally constructed niches filled with artifacts, skills, beliefs, and practices that have been inherited, accumulated, and modified over generations. A causal account of the complexity of human culture must explain its distinguishing characteristics: It is cumulative and highly variable within and across populations. I propose that the psychological adaptations supporting cumulative cultural transmission are universal but are sufficiently flexible to support the acquisition of highly variable behavioral repertoires. This paper describes variation in the transmission practices (teaching) and acquisition strategies (imitation) that support cumulative cultural learning in childhood. Examining flexibility and variation in caregiver socialization and children's learning extends our understanding of evolution in living systems by providing insight into the psychological foundations of cumulative cultural transmission-the cornerstone of human cultural diversity.
Collapse
|
77
|
The evolution of cognitive mechanisms in response to cultural innovations. Proc Natl Acad Sci U S A 2017; 114:7915-7922. [PMID: 28739938 DOI: 10.1073/pnas.1620742114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
When humans and other animals make cultural innovations, they also change their environment, thereby imposing new selective pressures that can modify their biological traits. For example, there is evidence that dairy farming by humans favored alleles for adult lactose tolerance. Similarly, the invention of cooking possibly affected the evolution of jaw and tooth morphology. However, when it comes to cognitive traits and learning mechanisms, it is much more difficult to determine whether and how their evolution was affected by culture or by their use in cultural transmission. Here we argue that, excluding very recent cultural innovations, the assumption that culture shaped the evolution of cognition is both more parsimonious and more productive than assuming the opposite. In considering how culture shapes cognition, we suggest that a process-level model of cognitive evolution is necessary and offer such a model. The model employs relatively simple coevolving mechanisms of learning and data acquisition that jointly construct a complex network of a type previously shown to be capable of supporting a range of cognitive abilities. The evolution of cognition, and thus the effect of culture on cognitive evolution, is captured through small modifications of these coevolving learning and data-acquisition mechanisms, whose coordinated action is critical for building an effective network. We use the model to show how these mechanisms are likely to evolve in response to cultural phenomena, such as language and tool-making, which are associated with major changes in data patterns and with new computational and statistical challenges.
Collapse
|
78
|
Identifying early modern human ecological niche expansions and associated cultural dynamics in the South African Middle Stone Age. Proc Natl Acad Sci U S A 2017; 114:7869-7876. [PMID: 28739910 DOI: 10.1073/pnas.1620752114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The archaeological record shows that typically human cultural traits emerged at different times, in different parts of the world, and among different hominin taxa. This pattern suggests that their emergence is the outcome of complex and nonlinear evolutionary trajectories, influenced by environmental, demographic, and social factors, that need to be understood and traced at regional scales. The application of predictive algorithms using archaeological and paleoenvironmental data allows one to estimate the ecological niches occupied by past human populations and identify niche changes through time, thus providing the possibility of investigating relationships between cultural innovations and possible niche shifts. By using such methods to examine two key southern Africa archaeological cultures, the Still Bay [76-71 thousand years before present (ka)] and the Howiesons Poort (HP; 66-59 ka), we identify a niche shift characterized by a significant expansion in the breadth of the HP ecological niche. This expansion is coincident with aridification occurring across Marine Isotope Stage 4 (ca. 72-60 ka) and especially pronounced at 60 ka. We argue that this niche shift was made possible by the development of a flexible technological system, reliant on composite tools and cultural transmission strategies based more on "product copying" rather than "process copying." These results counter the one niche/one human taxon equation. They indicate that what makes our cultures, and probably the cultures of other members of our lineage, unique is their flexibility and ability to produce innovations that allow a population to shift its ecological niche.
Collapse
|
79
|
Synchronized practice helps bearded capuchin monkeys learn to extend attention while learning a tradition. Proc Natl Acad Sci U S A 2017; 114:7798-7805. [PMID: 28739944 DOI: 10.1073/pnas.1621071114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Culture extends biology in that the setting of development shapes the traditions that individuals learn, and over time, traditions evolve as occasional variations are learned by others. In humans, interactions with others impact the development of cognitive processes, such as sustained attention, that shape how individuals learn as well as what they learn. Thus, learning itself is impacted by culture. Here, we explore how social partners might shape the development of psychological processes impacting learning a tradition. We studied bearded capuchin monkeys learning a traditional tool-using skill, cracking nuts using stone hammers. Young monkeys practice components of cracking nuts with stones for years before achieving proficiency. We examined the time course of young monkeys' activity with nuts before, during, and following others' cracking nuts. Results demonstrate that the onset of others' cracking nuts immediately prompts young monkeys to start handling and percussing nuts, and they continue these activities while others are cracking. When others stop cracking nuts, young monkeys sustain the uncommon actions of percussing and striking nuts for shorter periods than the more common actions of handling nuts. We conclude that nut-cracking by adults can promote the development of sustained attention for the critical but less common actions that young monkeys must practice to learn this traditional skill. This work suggests that in nonhuman species, as in humans, socially specified settings of development impact learning processes as well as learning outcomes. Nonhumans, like humans, may be culturally variable learners.
Collapse
|