51
|
Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun 2020; 11:5235. [PMID: 33067437 PMCID: PMC7568565 DOI: 10.1038/s41467-020-19016-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is an iconic example of a successful intracellular bacterium. Despite its importance as a manipulator of invertebrate biology, its evolutionary dynamics have been poorly studied from a genomic viewpoint. To expand the number of Wolbachia genomes, we screen over 30,000 publicly available shotgun DNA sequencing samples from 500 hosts. By assembling over 1000 Wolbachia genomes, we provide a substantial increase in host representation. Our phylogenies based on both core-genome and gene content provide a robust reference for future studies, support new strains in model organisms, and reveal recent horizontal transfers amongst distantly related hosts. We find various instances of gene function gains and losses in different super-groups and in cytoplasmic incompatibility inducing strains. Our Wolbachia-host co-phylogenies indicate that horizontal transmission is widespread at the host intraspecific level and that there is no support for a general Wolbachia-mitochondrial synchronous divergence. By greatly expanding the number of assembled genomes for Wolbachia (a group of intracellular bacteria) and constructing robust phylogenies, this study finds strong rate heterogeneity among Wolbachiapopulations and no support for synchronous divergence between Wolbachia and host mitochondria.
Collapse
|
52
|
Ghirotto S, Vizzari MT, Tassi F, Barbujani G, Benazzo A. Distinguishing among complex evolutionary models using unphased whole-genome data through random forest approximate Bayesian computation. Mol Ecol Resour 2020; 21:2614-2628. [PMID: 33000507 DOI: 10.1111/1755-0998.13263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 01/25/2023]
Abstract
Inferring past demographic histories is crucial in population genetics, and the amount of complete genomes now available should in principle facilitate this inference. In practice, however, the available inferential methods suffer from severe limitations. Although hundreds complete genomes can be simultaneously analysed, complex demographic processes can easily exceed computational constraints, and the procedures to evaluate the reliability of the estimates contribute to increase the computational effort. Here we present an approximate Bayesian computation framework based on the random forest algorithm (ABC-RF), to infer complex past population processes using complete genomes. To this aim, we propose to summarize the data by the full genomic distribution of the four mutually exclusive categories of segregating sites (FDSS), a statistic fast to compute from unphased genome data and that does not require the ancestral state of alleles to be known. We constructed an efficient ABC pipeline and tested how accurately it allows one to recognize the true model among models of increasing complexity, using simulated data and taking into account different sampling strategies in terms of number of individuals analysed, number and size of the genetic loci considered. We also compared the FDSS with the unfolded and folded site frequency spectrum (SFS), and for these statistics we highlighted the experimental conditions maximizing the inferential power of the ABC-RF procedure. We finally analysed real data sets, testing models on the dispersal of anatomically modern humans out of Africa and exploring the evolutionary relationships of the three species of Orangutan inhabiting Borneo and Sumatra.
Collapse
Affiliation(s)
- Silvia Ghirotto
- Department of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy
| | - Maria Teresa Vizzari
- Department of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
53
|
Brealey JC, Leitão HG, van der Valk T, Xu W, Bougiouri K, Dalén L, Guschanski K. Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome. Mol Biol Evol 2020; 37:3003-3022. [PMID: 32467975 PMCID: PMC7530607 DOI: 10.1093/molbev/msaa135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Henrique G Leitão
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tom van der Valk
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Wenbo Xu
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Katia Bougiouri
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
54
|
Ferchaud AL, Leitwein M, Laporte M, Boivin-Delisle D, Bougas B, Hernandez C, Normandeau É, Thibault I, Bernatchez L. Adaptive and maladaptive genetic diversity in small populations: Insights from the Brook Charr (Salvelinus fontinalis) case study. Mol Ecol 2020; 29:3429-3445. [PMID: 33463857 DOI: 10.1111/mec.15566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Investigating the relative importance of neutral versus selective processes governing the accumulation of genetic variants is a key goal in both evolutionary and conservation biology. This is particularly true in the context of small populations, where genetic drift can counteract the effect of selection. Using Brook Charr (Salvelinus fontinalis) from Québec, Canada, as a case study, we investigated the importance of demographic versus selective processes governing the accumulation of both adaptive and maladaptive mutations in closed versus open and connected populations to assess gene flow effect. This was achieved by using 14,779 high-quality filtered SNPs genotyped among 1,416 fish representing 50 populations from three life history types: lacustrine (closed populations), riverine and anadromous (connected populations). Using the PROVEAN algorithm, we observed a considerable accumulation of putative deleterious mutations across populations. The absence of correlation between the occurrence of putatively beneficial or deleterious mutations and local recombination rate supports the hypothesis that genetic drift might be the main driver of the accumulation of such variants. However, despite a lower genetic diversity observed in lacustrine than in riverine or anadromous populations, lacustrine populations do not exhibit more deleterious mutations than the two other history types, suggesting that the negative effect of genetic drift in lacustrine populations may be mitigated by that of relaxed purifying selection. Moreover, we also identified genomic regions associated with anadromy, as well as an overrepresentation of transposable elements associated with variation in environmental variables, thus supporting the importance of transposable elements in adaptation.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Maeva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Damien Boivin-Delisle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Bérénice Bougas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Cécilia Hernandez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise Sur la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
55
|
Samaniego Castruita JA, Westbury MV, Lorenzen ED. Analyses of key genes involved in Arctic adaptation in polar bears suggest selection on both standing variation and de novo mutations played an important role. BMC Genomics 2020; 21:543. [PMID: 32758141 PMCID: PMC7430819 DOI: 10.1186/s12864-020-06940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polar bears are uniquely adapted to an Arctic existence. Since their relatively recent divergence from their closest living relative, brown bears, less than 500,000 years ago, the species has evolved an array of novel traits suited to its Arctic lifestyle. Previous studies sought to uncover the genomic underpinnings of these unique characteristics, and disclosed the genes showing the strongest signal of positive selection in the polar bear lineage. Here, we survey a comprehensive dataset of 109 polar bear and 33 brown bear genomes to investigate the genomic variants within these top genes present in each species. Specifically, we investigate whether fixed homozygous variants in polar bears derived from selection on standing variation in the ancestral gene pool or on de novo mutation in the polar bear lineage. RESULTS We find that a large number of sites fixed in polar bears are biallelic in brown bears, suggesting selection on standing variation. Moreover, we uncover sites in which polar bears are fixed for a derived allele while brown bears are fixed for the ancestral allele, which we suggest may be a signal of de novo mutation in the polar bear lineage. CONCLUSIONS Our findings suggest that, among other mechanisms, natural selection acting on changes in genes derived from a combination of variation already in the ancestral gene pool, and from de novo missense mutations in the polar bear lineage, may have enabled the rapid adaptation of polar bears to their new Arctic environment.
Collapse
|
56
|
Ochoa A, Broe M, Moriarty Lemmon E, Lemmon AR, Rokyta DR, Gibbs HL. Drift, selection and adaptive variation in small populations of a threatened rattlesnake. Mol Ecol 2020; 29:2612-2625. [PMID: 32557885 DOI: 10.1111/mec.15517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/22/2023]
Abstract
An important goal of conservation genetics is to determine if the viability of small populations is reduced by a loss of adaptive variation due to genetic drift. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the eastern massasauga rattlesnake (Sistrurus catenatus), a threatened reptile that exists in small isolated populations. We estimated levels of individual polymorphism in 46 toxin loci and 1,467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation of S. catenatus and its closest relative, the western massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long- and short-term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that pre-date the effects of recent drift, and that functional variation in these loci persists despite small short-term effective sizes. This suggests that much of the adaptive variation present in populations may represent an example of "drift debt," a nonequilibrium state where present-day levels of variation overestimate the amount of functional genetic diversity present in future populations.
Collapse
Affiliation(s)
- Alexander Ochoa
- Ohio Biodiversity Conservation Partnership and Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Michael Broe
- Ohio Biodiversity Conservation Partnership and Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Lisle Gibbs
- Ohio Biodiversity Conservation Partnership and Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
57
|
Chen Z, Ai F, Zhang J, Ma X, Yang W, Wang W, Su Y, Wang M, Yang Y, Mao K, Wang Q, Lascoux M, Liu J, Ma T. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (Populus ilicifolia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:430-442. [PMID: 32168389 DOI: 10.1111/tpj.14744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 05/16/2023]
Abstract
Species are becoming extinct at unprecedented rates as a consequence of human activity. Hence it is important to understand the evolutionary dynamics of species with already small population sizes. Populus ilicifolia is a vulnerable poplar species that is isolated from other poplar species and is uniquely adapted to the Tropics. It has a very limited size, reproduces partly clonally and is therefore an excellent case study for conservation genomics. We present here the first annotated draft genome of P. ilicifolia, characterize genome-wide patterns of polymorphisms and compare those to other poplar species with larger natural ranges. P. ilicifolia experienced a more prolonged and severe decline of effective population size (Ne ) and signs of genetic erosion than any other poplar species with which it was compared. At present, the species has the lowest genome-wide genetic diversity, the highest abundance of long runs of homozygosity, high inbreeding levels as well as a high overall accumulation of deleterious variants. However, more effective purging of severely deleterious variants and adaptation to the Tropics may have contributed to its survival. Hence, in spite of its limited genetic variation, it is certainly worth pursuing the conservation efforts of this unique species.
Collapse
Affiliation(s)
- Zeyuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Fandi Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Junlin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yutao Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, 18D 75326, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
58
|
Zhu C, Xu W, Li J, Liu C, Hu M, Yuan Y, Yuan K, Zhang Y, Song X, Han J, Cui X. Draft Genome Assembly for the Tibetan Black Bear ( Ursus thibetanus thibetanus). Front Genet 2020; 11:231. [PMID: 32300354 PMCID: PMC7142260 DOI: 10.3389/fgene.2020.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianchuan Li
- Department of Animal Resources, Tibet Plateau Institute of Biology, Lhasa, China
| | - Chang Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Ke Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yijiuling Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xingzhi Song
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jin Han
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xinxin Cui
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
59
|
Yoshida K, Ravinet M, Makino T, Toyoda A, Kokita T, Mori S, Kitano J. Accumulation of Deleterious Mutations in Landlocked Threespine Stickleback Populations. Genome Biol Evol 2020; 12:479-492. [PMID: 32232440 PMCID: PMC7197494 DOI: 10.1093/gbe/evaa065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Colonization of new habitats often reduces population sizes and may result in the accumulation of deleterious mutations by genetic drift. Compared with the genomic basis for adaptation to new environments, genome-wide analysis of deleterious mutations in isolated populations remains limited. In the present study, we investigated the accumulation of deleterious mutations in five endangered freshwater populations of threespine stickleback (Gasterosteus aculeatus) in the central part of the mainland of Japan. Using whole-genome resequencing data, we first conducted phylogenomic analysis and confirmed at least two independent freshwater colonization events in the central mainland from ancestral marine ecotypes. Next, analyses of single nucleotide polymorphisms showed a substantial reduction of heterozygosity in freshwater populations compared with marine populations. Reduction in heterozygosity was more apparent at the center of each chromosome than the peripheries and on X chromosomes compared with autosomes. Third, bioinformatic analysis of deleterious mutations showed increased accumulation of putatively deleterious mutations in the landlocked freshwater populations compared with marine populations. For the majority of populations examined, the frequencies of putatively deleterious mutations were higher on X chromosomes than on autosomes. The interpopulation comparison indicated that the majority of putatively deleterious mutations may have accumulated independently. Thus, whole-genome resequencing of endangered populations can help to estimate the accumulation of deleterious mutations and inform us of which populations are the most severely endangered. Furthermore, analysis of variation among chromosomes can give insights into whether any particular chromosomes are likely to accumulate deleterious mutations.
Collapse
Affiliation(s)
- Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Mark Ravinet
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway.,School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Seiichi Mori
- Biological Laboratories, Gifu-kyoritsu University, Ogaki, Gifu, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
60
|
Lucena-Perez M, Marmesat E, Kleinman-Ruiz D, Martínez-Cruz B, Węcek K, Saveljev AP, Seryodkin IV, Okhlopkov I, Dvornikov MG, Ozolins J, Galsandorj N, Paunovic M, Ratkiewicz M, Schmidt K, Godoy JA. Genomic patterns in the widespread Eurasian lynx shaped by Late Quaternary climatic fluctuations and anthropogenic impacts. Mol Ecol 2020; 29:812-828. [PMID: 31995648 PMCID: PMC7064982 DOI: 10.1111/mec.15366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Disentangling the contribution of long-term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Here, we used 80 whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long-term isolation and/or more recent human-driven changes. Our results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov, maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long-term isolation argue for the restoration of lost population connectivity.
Collapse
Affiliation(s)
- Maria Lucena-Perez
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Elena Marmesat
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Daniel Kleinman-Ruiz
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Begoña Martínez-Cruz
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Karolina Węcek
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia.,Biological Faculty of Moscow State University, Moscow, Russia
| | - Ivan V Seryodkin
- Laboratory of Ecology and Conservation of Animals, Pacific Institute of Geography of Far East Branch of Russian Academy of Sciences, Vladivostok, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | - Innokentiy Okhlopkov
- Institute for Biological Problems of Cryolithozone, Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia
| | - Mikhail G Dvornikov
- Department of Hunting Resources, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Janis Ozolins
- Department of Hunting and Wildlife Management, Latvijas Valsts mežzinātnes institūts "Silava", Salaspils, Latvia
| | - Naranbaatar Galsandorj
- Institute of General and Experimental Biology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | | | | | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - José A Godoy
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| |
Collapse
|
61
|
Gregório I, Barros T, Pando D, Morante J, Fonseca C, Ferreira E. Paths for colonization or exodus? New insights from the brown bear (Ursus arctos) population of the Cantabrian Mountains. PLoS One 2020; 15:e0227302. [PMID: 32004321 PMCID: PMC6996475 DOI: 10.1371/journal.pone.0227302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/16/2019] [Indexed: 01/30/2023] Open
Abstract
Over the centuries, the geographical distribution of brown bear (Ursus arctos) across the Iberian Peninsula has been decreasing, with the species currently confined to North Iberia. The Cantabrian brown bear population is one of the smallest in Europe and is structured into two subpopulations, positioned along an east-west axis. Given the current critically endangered status of this population, it is essential to have a clear picture of its within-population genetic patterns and processes. We use a set of three molecular markers (mitochondrial DNA, autosomal microsatellites and sex markers) to clarify the genetic origins and assess the migration patterns and gene flow of the Cantabrian brown bear population. Our results reveal the presence of two different mitochondrial (matrilineal) haplotypes in the Cantabrian population, both belonging to European brown bear clade 1a. The two haplotypes are geographically structured between Eastern (haplotype CanE) and Western Cantabrian (haplotype CanW) subpopulations, which is consistent with the genetic structure previously identified using nuclear markers. Additionally, we show that CanE is closer to the historical Pyrenean (Pyr) haplotype than to CanW. Despite strong structuring at the levels of mtDNA and nuclear loci, there is evidence of bidirectional gene flow and admixture among subpopulations. Gene flow is asymmetrical and significantly more intense from the Eastern to the Western Cantabrian subpopulation. In fact, we only detected first generation male migrants from the Eastern to the Western Cantabrian subpopulation. These results suggest more intense migration from the smaller and more vulnerable Eastern Cantabrian subpopulation towards the larger and more stable Western Cantabrian subpopulation. These new insights are relevant for assessments of on-going conservation measures, namely the role of dispersal corridors and enhanced connectivity. We discuss the importance of complementary conservation measures, such as human-wildlife conflict mitigation and habitat improvement, for the conservation of a viable Cantabrian brown bear population.
Collapse
Affiliation(s)
- Inês Gregório
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tânia Barros
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Doriana Pando
- Fondo para la Protección de los Animales Salvajes, Santo Adriano, Asturias, Spain
| | - Joaquín Morante
- Fondo para la Protección de los Animales Salvajes, Santo Adriano, Asturias, Spain
| | - Carlos Fonseca
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Eduardo Ferreira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
62
|
Barlow A, Hartmann S, Gonzalez J, Hofreiter M, Paijmans JLA. Consensify: A Method for Generating Pseudohaploid Genome Sequences from Palaeogenomic Datasets with Reduced Error Rates. Genes (Basel) 2020; 11:E50. [PMID: 31906474 PMCID: PMC7017230 DOI: 10.3390/genes11010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.
Collapse
|
63
|
Glutamate receptors in domestication and modern human evolution. Neurosci Biobehav Rev 2020; 108:341-357. [DOI: 10.1016/j.neubiorev.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
|
64
|
Miller ML, Kronenberger JA, Fitzpatrick SW. Recent evolutionary history predicts population but not ecosystem-level patterns. Ecol Evol 2019; 9:14442-14452. [PMID: 31938531 PMCID: PMC6953670 DOI: 10.1002/ece3.5879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the face of rapid anthropogenic environmental change, it is increasingly important to understand how ecological and evolutionary interactions affect the persistence of natural populations. Augmented gene flow has emerged as a potentially effective management strategy to counteract negative consequences of genetic drift and inbreeding depression in small and isolated populations. However, questions remain about the long-term impacts of augmented gene flow and whether changes in individual and population fitness are reflected in ecosystem structure, potentiating eco-evolutionary feedbacks. In this study, we used Trinidadian guppies (Poecilia reticulata) in experimental outdoor mesocosms to assess how populations with different recent evolutionary histories responded to a scenario of severe population size reduction followed by expansion in a high-quality environment. We also investigated how variation in evolutionary history of the focal species affected ecosystem dynamics. We found that evolutionary history (i.e., gene flow vs. no gene flow) consistently predicted variation in individual growth. In addition, gene flow led to faster population growth in populations from one of the two drainages, but did not have measurable impacts on the ecosystem variables we measured: zooplankton density, algal growth, and decomposition rates. Our results suggest that benefits of gene flow may be long-term and environment-dependent. Although small in replication and duration, our study highlights the importance of eco-evolutionary interactions in determining population persistence and sets the stage for future work in this area.
Collapse
Affiliation(s)
- Madison L. Miller
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
| | - John A. Kronenberger
- National Genomics Center for Wildlife and Fish ConservationUSDA Forest ServiceMissoulaMTUSA
| | - Sarah W. Fitzpatrick
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
- Department of Integrative BiologyMichigan State UniversityHickory CornersMIUSA
| |
Collapse
|
65
|
Yates MC, Bowles E, Fraser DJ. Small population size and low genomic diversity have no effect on fitness in experimental translocations of a wild fish. Proc Biol Sci 2019; 286:20191989. [PMID: 31771476 DOI: 10.1098/rspb.2019.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Little empirical work in nature has quantified how wild populations with varying effective population sizes and genetic diversity perform when exposed to a gradient of ecologically important environmental conditions. To achieve this, juvenile brook trout from 12 isolated populations or closed metapopulations that differ substantially in population size and genetic diversity were transplanted to previously fishless ponds spanning a wide gradient of ecologically important variables. We evaluated the effect of genome-wide variation, effective population size (Ne), pond habitat, and initial body size on two fitness correlates (survival and growth). Genetic variables had no effect on either fitness correlate, which was determined primarily by habitat (pond temperature, depth, and pH) and initial body size. These results suggest that some vertebrate populations with low genomic diversity, low Ne, and long-term isolation can represent important sources of variation and are capable of maintaining fitness in, and ultimately persisting and adapting to, changing environments. Our results also reinforce the paramount importance of improving available habitat and slowing habitat degradation for species conservation.
Collapse
Affiliation(s)
- M C Yates
- Department of Biology, UQAM, Montreal, QC, Canada H3C 3P8.,Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL), Montreal, QC, Canada H3C 3J7
| | - E Bowles
- Department of Biology, Concordia University, Montreal, QC, Canada H4B 1R6
| | - D J Fraser
- Department of Biology, Concordia University, Montreal, QC, Canada H4B 1R6.,Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL), Montreal, QC, Canada H3C 3J7
| |
Collapse
|
66
|
Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte J, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas CG, Close M, Crispo E. Conservation through the lens of (mal)adaptation: Concepts and meta-analysis. Evol Appl 2019; 12:1287-1304. [PMID: 31417615 PMCID: PMC6691223 DOI: 10.1111/eva.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
Collapse
Affiliation(s)
- Alison Margaret Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
| | - Dylan J. Fraser
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Biology DepartmentConcordia UniversityMontrealQuebecCanada
| | - Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Louis Astorg
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | - Gillian K. Martin
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | | | - Antoine Paccard
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rowan D. H. Barrett
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lauren J. Chapman
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jeffrey E. Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Marissa Close
- Department of BiologyPace UniversityNew YorkNew York
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNew York
| |
Collapse
|
67
|
Fraser DJ, Walker L, Yates MC, Marin K, Wood JLA, Bernos TA, Zastavniouk C. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol Appl 2019; 12:1305-1317. [PMID: 31417616 PMCID: PMC6691219 DOI: 10.1111/eva.12649] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding the extent to which captivity generates maladaptation in wild species can inform species recovery programs and elucidate wild population responses to novel environmental change. Although rarely quantified, effective population size (N e ) and genetic diversity should influence the magnitude of plastic and genetic changes manifested in captivity that reduce wild fitness. Sexually dimorphic traits might also mediate consequences of captivity. To evaluate these relationships, we generated >600 full- and half-sibling families from nine wild brook trout populations, reared them for one generation under common, captive environmental conditions and contrasted several fitness-related traits in wild versus captive lines. We found substantial variation in lifetime success (lifetime survival and reproductive success) and life history traits among wild populations after just one captive generation (fourteen- and threefold ranges across populations, respectively). Populations with lower heterozygosity showed lower captive lifetime success, suggesting that captivity generates maladaptation within one generation. Greater male-biased mortality in captivity occurred in populations having disproportionately higher growth rates in males than females. Wild population N e and allelic diversity had little or no influence on captive trait expression and lifetime success. Our results have four conservation implications: (i) Trait values and lifetime success were highly variable across populations following one generation of captivity. (ii) Maladaptation induced by captive breeding might be particularly intense for the very populations practitioners are most interested in conserving, such as those with low heterozygosity. (iii) Maladaptive sex differences in captivity might be associated with population-dependent growth costs of reproduction. (iv) Heterozygosity can be a good indicator of short-term, intraspecific responses to novel environmental change.
Collapse
Affiliation(s)
| | - Lisa Walker
- Institute of ParasitologyMcGill UniversityMontrealQCCanada
| | | | - Kia Marin
- Golder Associés LtéeMontréalQCCanada
| | | | - Thais A. Bernos
- Professionals for Fair DevelopmentProtected Areas ProgramParisFrance
| | | |
Collapse
|
68
|
Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ, Joseph A, Abi-Rached L, Benazzo A, Rasteiro R, Mathieson I, Topf M, Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. eLife 2019; 8:41517. [PMID: 31159924 PMCID: PMC6548504 DOI: 10.7554/elife.41517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/01/2019] [Indexed: 01/29/2023] Open
Abstract
CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Stephane M Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Alice Burke
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Marine D Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul J Norman
- Division of Bioinformatics and Personalized Medicine, University of Colorado, Aurora, United States.,Department of Microbiology and Immunology, University of Colorado, Aurora, United States
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Laurent Abi-Rached
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, CNRS, Marseille, France
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rita Rasteiro
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| |
Collapse
|
69
|
Robinson JA, Räikkönen J, Vucetich LM, Vucetich JA, Peterson RO, Lohmueller KE, Wayne RK. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. SCIENCE ADVANCES 2019; 5:eaau0757. [PMID: 31149628 PMCID: PMC6541468 DOI: 10.1126/sciadv.aau0757] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 04/23/2019] [Indexed: 05/08/2023]
Abstract
The observation that small isolated populations often suffer reduced fitness from inbreeding depression has guided conservation theory and practice for decades. However, investigating the genome-wide dynamics associated with inbreeding depression in natural populations is only now feasible with relatively inexpensive sequencing technology and annotated reference genomes. To characterize the genome-wide effects of intense inbreeding and isolation, we performed whole-genome sequencing and morphological analysis of an iconic inbred population, the gray wolves (Canis lupus) of Isle Royale. Through population genetic simulations and comparison with wolf genomes from a variety of demographic histories, we find evidence that severe inbreeding depression in this population is due to increased homozygosity of strongly deleterious recessive mutations. Our results have particular relevance in light of the recent translocation of wolves from the mainland to Isle Royale, as well as broader implications for management of genetic variation in the fragmented landscape of the modern world.
Collapse
Affiliation(s)
- Jacqueline A. Robinson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Corresponding author.
| | - Jannikke Räikkönen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Leah M. Vucetich
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - John A. Vucetich
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Rolf O. Peterson
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
70
|
Glikman JA, Ciucci P, Marino A, Davis EO, Bath AJ, Boitani L. Local attitudes toward Apennine brown bears: Insights for conservation issues. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.25] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jenny A. Glikman
- Community EngagementInstitute for Conservation Research San Diego California
- Geography DepartmentMemorial University St. John's Newfoundland and Labrador
| | - Paolo Ciucci
- Department of Biology and BiotechnologyUniversity of Rome Rome Italy
| | - Agnese Marino
- Institute of ZoologyRegent's Park London UK
- Department of AnthropologyUniversity College London London UK
| | - Elizabeth O. Davis
- Community EngagementInstitute for Conservation Research San Diego California
- Department of Archaeology and AnthropologyUniversity of Bristol Bristol UK
| | - Alistair J. Bath
- Geography DepartmentMemorial University St. John's Newfoundland and Labrador
| | - Luigi Boitani
- Department of Biology and BiotechnologyUniversity of Rome Rome Italy
| |
Collapse
|
71
|
The intrepid urban coyote: a comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci Rep 2019; 9:2104. [PMID: 30765777 PMCID: PMC6376053 DOI: 10.1038/s41598-019-38543-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/28/2018] [Indexed: 01/16/2023] Open
Abstract
Coyotes (Canis latrans) are highly adaptable, medium-sized carnivores that now inhabit nearly every large city in the United States and Canada. To help understand how coyotes have adapted to living in urban environments, we compared two ecologically and evolutionarily important behavioral traits (i.e., bold-shy and exploration-avoidance behavior) in two contrasting environments (i.e., rural and urban). Boldness is an individual’s reaction to a risky situation and exploration is an individual’s willingness to explore novel situations. Our results from both tests indicate that urban coyotes are bolder and more exploratory than rural coyotes and that within both populations there are individuals that vary across both spectrums. Bolder behavior in urban coyotes emerged over several decades and we speculate on possible processes (e.g., learning and selection) and site differences that could be playing a role in this behavioral adaptation. We hypothesize that an important factor is how people treat coyotes; in the rural area coyotes were regularly persecuted whereas in the urban area coyotes were rarely persecuted and sometimes positively rewarded to be in close proximity of people. Negative consequences of this behavioral adaptation are coyotes that become bold enough to occasionally prey on pets or attack humans.
Collapse
|
72
|
Matosiuk M, Śmietana W, Czajkowska M, Paule L, Štofik J, Krajmerová D, Bashta A, Jakimiuk S, Ratkiewicz M. Genetic differentiation and asymmetric gene flow among Carpathian brown bear ( Ursus arctos) populations-Implications for conservation of transboundary populations. Ecol Evol 2019; 9:1501-1511. [PMID: 30805177 PMCID: PMC6374679 DOI: 10.1002/ece3.4872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
The abundance and distribution of large carnivores in Europe have been historically reduced. Their recovery requires multilevel coordination, especially regarding transboundary populations. Here, we apply nuclear and mitochondrial genetic markers to test for admixture level and its impact on population genetic structure of contemporary brown bears (Ursus arctos) from the Eastern, Southern, and Western Carpathians. Carpathian Mountains (Europe). Nearly 400 noninvasive brown bear DNA samples from the Western (Poland) and Eastern Carpathians (Bieszczady Mountains in Poland, Slovakia, Ukraine) were collected. Together with DNA isolates from Slovakia and Romania, they were analyzed using the set of eight microsatellite loci and two mtDNA regions (control region and cytochrome b). A set of 113 individuals with complete genotypes was used to investigate genetic differentiation across national boundaries, genetic structuring within and between populations, and movement between populations. Transboundary brown bear subpopulations (Slovakia and Poland) did not show significant internal genetic structure, and thus were treated as cohesive units. All brown bears from the Western Carpathians carried mitochondrial haplotypes from the Eastern lineage, while the Western lineage prevailed in the brown bears from the Bieszczady Mountains. Despite similar levels of microsatellite variability, we documented significant differentiation among the studied populations for nuclear markers and mtDNA. We also detected male-biased and asymmetrical movement into the Bieszczady Mountains population from the Western Carpathians. Our findings suggest initial colonization of the Western Carpathians by brown bears possessing mtDNA from the Eastern lineage. Genetic structuring among populations at microsatellite loci could be a result of human-mediated alterations. Detected asymmetric gene flow suggests ongoing expansion from more abundant populations into the Bieszczady Mountains and thus supports a metapopulation model. The knowledge concerning this complex pattern can be implemented in a joint Carpathian brown bear management plan that should allow population mixing by dispersing males.
Collapse
Affiliation(s)
| | - Wojciech Śmietana
- Institute of Nature Conservation PASKrakówPoland
- Present address:
KRAMEKOKrakówPoland
| | | | | | | | | | - Andriy‐Taras Bashta
- Institute of Ecology of the CarpathiansNational Academy of Sciences of UkraineLvivUkraine
| | | | | |
Collapse
|
73
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
74
|
Robinson JA, Brown C, Kim BY, Lohmueller KE, Wayne RK. Purging of Strongly Deleterious Mutations Explains Long-Term Persistence and Absence of Inbreeding Depression in Island Foxes. Curr Biol 2018; 28:3487-3494.e4. [PMID: 30415705 PMCID: PMC6462144 DOI: 10.1016/j.cub.2018.08.066] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/03/2018] [Accepted: 08/31/2018] [Indexed: 11/19/2022]
Abstract
The recovery and persistence of rare and endangered species are often threatened by genetic factors, such as the accumulation of deleterious mutations, loss of adaptive potential, and inbreeding depression [1]. Island foxes (Urocyon littoralis), the dwarfed descendants of mainland gray foxes (Urocyon cinereoargenteus), have inhabited California's Channel Islands for >9,000 years [2-4]. Previous genomic analyses revealed that island foxes have exceptionally low levels of diversity and elevated levels of putatively deleterious variation [5]. Nonetheless, all six populations have persisted for thousands of generations, and several populations rebounded rapidly after recent severe bottlenecks [6, 7]. Here, we combine morphological and genomic data with population-genetic simulations to determine the mechanism underlying the enigmatic persistence of these foxes. First, through analysis of genomes from 1929 to 2009, we show that island foxes have remained at small population sizes with low diversity for many generations. Second, we present morphological data indicating an absence of inbreeding depression in island foxes, confirming that they are not afflicted with congenital defects common to other small and inbred populations. Lastly, our population-genetic simulations suggest that long-term small population size results in a reduced burden of strongly deleterious recessive alleles, providing a mechanism for the absence of inbreeding depression in island foxes. Importantly, the island fox illustrates a scenario in which genetic restoration through human-assisted gene flow could be a counterproductive or even harmful conservation strategy. Our study sheds light on the puzzle of island fox persistence, a unique success story that provides a model for the preservation of small populations.
Collapse
Affiliation(s)
- Jacqueline A Robinson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Caitlin Brown
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
75
|
McFarlane S, Manseau M, Flasko A, Horn RL, Arnason N, Neufeld L, Bradley M, Wilson P. Genetic influences on male and female variance in reproductive success and implications for the recovery of severely endangered mountain caribou. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
76
|
Ferchaud A, Laporte M, Perrier C, Bernatchez L. Impact of supplementation on deleterious mutation distribution in an exploited salmonid. Evol Appl 2018; 11:1053-1065. [PMID: 30026797 PMCID: PMC6050184 DOI: 10.1111/eva.12660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/03/2023] Open
Abstract
Deleterious mutations have important implications for the evolutionary trajectories of populations. While several studies recently investigated the dynamics of deleterious mutations in wild populations, no study has yet explored the fate of deleterious mutations in a context of populations managed by supplementation. Here, based on a dataset of nine wild and 15 supplemented Lake Trout populations genotyped at 4,982 single nucleotide polymorphisms (SNP)s by means of genotype by sequencing (GBS), we explored the effect of supplementation on the frequency of putatively deleterious variants. Three main findings are consequential for the management of fish populations. First, an increase in neutral genetic diversity in stocked populations compared with unstocked ones was observed. Second, putatively deleterious mutations were more likely to be found in unstocked than in stocked populations, suggesting a lower efficiency to purge deleterious mutations in unstocked lakes. Third, a population currently used as a major source for supplementation is characterized by several fixed putatively deleterious alleles. Therefore, other source populations with lower abundance of putatively deleterious mutations should be favored as sources of supplementation. We discuss management implications of our results, especially pertaining to the joint identification of neutral and deleterious mutations that could help refining the choice of source and sink populations for supplementation in order to maximize their evolutionary potential and to limit their mutation load.
Collapse
Affiliation(s)
- Anne‐Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Charles Perrier
- Centre d’Écologie Fonctionnelle et ÉvolutiveUnité Mixte de Recherche CNRS 5175Montpellier Cedex 5France
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| |
Collapse
|
77
|
Caniglia R, Fabbri E, Hulva P, Bolfíková BČ, Jindřichová M, Stronen AV, Dykyy I, Camatta A, Carnier P, Randi E, Galaverni M. Wolf outside, dog inside? The genomic make-up of the Czechoslovakian Wolfdog. BMC Genomics 2018; 19:533. [PMID: 30005602 PMCID: PMC6043967 DOI: 10.1186/s12864-018-4916-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genomic methods can provide extraordinary tools to explore the genetic background of wild species and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly popular across Europe. RESULTS Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300 genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene, which has been described as a candidate gene for the latter trait in dogs. CONCLUSIONS In this study we successfully applied genome-wide procedures to reconstruct the history of the Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with wolves and uncontrolled trades of recent and undeclared wolfdog hybrids.
Collapse
Affiliation(s)
- Romolo Caniglia
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell’Emilia, Bologna, Italy
| | - Elena Fabbri
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell’Emilia, Bologna, Italy
| | - Pavel Hulva
- Department of Zoology, Charles University in Prague, Prague, Czech Republic
- Department of Biology and Ecology, Ostrava University, Ostrava, Czech Republic
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Milena Jindřichová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg Øst, Denmark
| | - Ihor Dykyy
- Department of Zoology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | | | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Ettore Randi
- Dipartimento BIGEA, Università di Bologna, Bologna, Italy
- Department 18/ Section of Environmental Engineering, Aalborg University, Aalborg Øst, Denmark
| | - Marco Galaverni
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell’Emilia, Bologna, Italy
- Area Conservazione, WWF Italia, Rome, Italy
| |
Collapse
|
78
|
O'Regan HJ. The presence of the brown bearUrsus arctosin Holocene Britain: a review of the evidence. Mamm Rev 2018. [DOI: 10.1111/mam.12127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hannah J. O'Regan
- Department of Classics and Archaeology; University of Nottingham; Humanities Building, University Park Nottingham NG7 2RD UK
| |
Collapse
|
79
|
Martínez‐Abraín A, Jiménez J, Oro D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim Conserv 2018. [DOI: 10.1111/acv.12429] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - J. Jiménez
- Servicio de Vida Silvestre Generalitat Valenciana Valencia Spain
| | - D. Oro
- Instituto Mediterráneo de Estudios Avanzados (CSIC‐UIB) Esporles Spain
- Centro de Estudios Avanzados de Blanes (CSIC) Girona Spain
| |
Collapse
|
80
|
Gervasi V, Ciucci P. Demographic projections of the Apennine brown bear population Ursus arctos marsicanus (Mammalia: Ursidae) under alternative management scenarios. THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1478003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- V. Gervasi
- Department of Biology and Biotechnologies, La Sapienza University of Rome, Italy
| | - P. Ciucci
- Department of Biology and Biotechnologies, La Sapienza University of Rome, Italy
| |
Collapse
|