51
|
Wiatr K, Marczak Ł, Pérot JB, Brouillet E, Flament J, Figiel M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front Mol Neurosci 2021; 14:658339. [PMID: 34220448 PMCID: PMC8248683 DOI: 10.3389/fnmol.2021.658339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
52
|
Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN, Goldman SA. Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Rep 2021; 31:107658. [PMID: 32433967 DOI: 10.1016/j.celrep.2020.107658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatally transplanted human glial progenitor cells (hGPCs) can myelinate the brains of myelin-deficient shiverer mice, rescuing their phenotype and survival. Yet, it has been unclear whether implanted hGPCs are similarly able to remyelinate the diffusely demyelinated adult CNS. We, therefore, ask if hGPCs could remyelinate both congenitally hypomyelinated adult shiverers and normal adult mice after cuprizone demyelination. In adult shiverers, hGPCs broadly disperse and differentiate as myelinating oligodendrocytes after subcortical injection, improving both host callosal conduction and ambulation. Implanted hGPCs similarly remyelinate denuded axons after cuprizone demyelination, whether delivered before or after demyelination. RNA sequencing (RNA-seq) of hGPCs back from cuprizone-demyelinated brains reveals their transcriptional activation of oligodendrocyte differentiation programs, while distinguishing them from hGPCs not previously exposed to demyelination. These data indicate the ability of transplanted hGPCs to disperse throughout the adult CNS, to broadly myelinate regions of dysmyelination, and also to be recruited as myelinogenic oligodendrocytes later in life, upon demyelination-associated demand.
Collapse
Affiliation(s)
- Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa Zou
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Lu
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
53
|
In Vivo Expression of Reprogramming Factor OCT4 Ameliorates Myelination Deficits and Induces Striatal Neuroprotection in Huntington's Disease. Genes (Basel) 2021; 12:genes12050712. [PMID: 34068799 PMCID: PMC8150572 DOI: 10.3390/genes12050712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022] Open
Abstract
White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.
Collapse
|
54
|
Onur TS, Laitman A, Zhao H, Keyho R, Kim H, Wang J, Mair M, Wang H, Li L, Perez A, de Haro M, Wan YW, Allen G, Lu B, Al-Ramahi I, Liu Z, Botas J. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis. eLife 2021; 10:64564. [PMID: 33871358 PMCID: PMC8149125 DOI: 10.7554/elife.64564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington's disease (HD), we profiled the gene expression alterations of Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high-throughput behavioral assay and found that downregulation of genes involved in synapse assembly mitigated pathogenesis and behavioral deficits. To our surprise, reducing dNRXN3 function in glia was sufficient to improve the phenotype of flies expressing mHTT in neurons, suggesting that mHTT's toxic effects in glia ramify throughout the brain. This supports a model in which dampening synaptic function is protective because it attenuates the excitotoxicity that characterizes HD. When a neuron dies, through injury or disease, the body loses all communication that passes through it. The brain compensates by rerouting the flow of information through other neurons in the network. Eventually, if the loss of neurons becomes too great, compensation becomes impossible. This process happens in Alzheimer's, Parkinson's, and Huntington's disease. In the case of Huntington's disease, the cause is mutation to a single gene known as huntingtin. The mutation is present in every cell in the body but causes particular damage to parts of the brain involved in mood, thinking and movement. Neurons and other cells respond to mutations in the huntingtin gene by turning the activities of other genes up or down, but it is not clear whether all of these changes contribute to the damage seen in Huntington's disease. In fact, it is possible that some of the changes are a result of the brain trying to protect itself. So far, most research on this subject has focused on neurons because the huntingtin gene plays a role in maintaining healthy neuronal connections. But, given that all cells carry the mutated gene, it is likely that other cells are also involved. The glia are a diverse group of cells that support the brain, providing care and sustenance to neurons. These cells have a known role in maintaining the connections between neurons and may also have play a role in either causing or correcting the damage seen in Huntington's disease. The aim of Onur et al. was to find out which genes are affected by having a mutant huntingtin gene in neurons or glia, and whether severity of Huntington’s disease improved or worsened when the activity of these genes changed. First, Onur et al. identified genes affected by mutant huntingtin by comparing healthy human brains to the brains of people with Huntington's disease. Repeating the same comparison in mice and fruit flies identified genes affected in the same way across all three species, revealing that, in Huntington's disease, the brain dials down glial cell genes involved in maintaining neuronal connections. To find out how these changes in gene activity affect disease severity and progression, Onur et al. manipulated the activity of each of the genes they had identified in fruit flies that carried mutant versions of huntingtin either in neurons, in glial cells or in both cell types. They then filmed the flies to see the effects of the manipulation on movement behaviors, which are affected by Huntington’s disease. This revealed that purposely lowering the activity of the glial genes involved in maintaining connections between neurons improved the symptoms of the disease, but only in flies who had mutant huntingtin in their glial cells. This indicates that the drop in activity of these genes observed in Huntington’s disease is the brain trying to protect itself. This work suggests that it is important to include glial cells in studies of neurological disorders. It also highlights the fact that changes in gene expression as a result of a disease are not always bad. Many alterations are compensatory, and try to either make up for or protect cells affected by the disease. Therefore, it may be important to consider whether drugs designed to treat a condition by changing levels of gene activity might undo some of the body's natural protection. Working out which changes drive disease and which changes are protective will be essential for designing effective treatments.
Collapse
Affiliation(s)
- Tarik Seref Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States
| | - Andrew Laitman
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - He Zhao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Ryan Keyho
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Hyemin Kim
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Jennifer Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Megan Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States
| | - Huilan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Lifang Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Alma Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Genevera Allen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States
| |
Collapse
|
55
|
Casella C, Kleban E, Rosser AE, Coulthard E, Rickards H, Fasano F, Metzler-Baddeley C, Jones DK. Multi-compartment analysis of the complex gradient-echo signal quantifies myelin breakdown in premanifest Huntington's disease. Neuroimage Clin 2021; 30:102658. [PMID: 33865029 PMCID: PMC8079666 DOI: 10.1016/j.nicl.2021.102658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022]
Abstract
White matter (WM) alterations have been identified as a relevant pathological feature of Huntington's disease (HD). Increasing evidence suggests that WM changes in this disorder are due to alterations in myelin-associated biological processes. Multi-compartmental analysis of the complex gradient-echo MRI signal evolution in WM has been shown to quantify myelin in vivo, therefore pointing to the potential of this technique for the study of WM myelin changes in health and disease. This study first characterized the reproducibility of metrics derived from the complex multi-echo gradient-recalled echo (mGRE) signal across the corpus callosum in healthy participants, finding highest reproducibility in the posterior callosal segment. Subsequently, the same analysis pipeline was applied in this callosal region in a sample of premanifest HD patients (n = 19) and age, sex and education matched healthy controls (n = 21). In particular, we focused on two myelin-associated derivatives: i. the myelin water signal fraction (fm), a parameter dependent on myelin content; and ii. The difference in frequency between myelin and intra-axonal water pools (Δω), a parameter dependent on the ratio between the inner and the outer axonal radii. fm was found to be lower in HD patients (β = -0.13, p = 0.03), while Δω did not show a group effect. Performance in tests of working memory, executive function, social cognition and movement was also assessed, and a greater age-related decline in executive function was detected in HD patients (β = -0.06, p = 0.006), replicating previous evidence of executive dysfunction in HD. Finally, the correlation between fm, executive function, and proximity to disease onset was explored in patients, and a positive correlation between executive function and fm was detected (r = 0.542; p = 0.02). This study emphasises the potential of complex mGRE signal analysis for aiding understanding of HD pathogenesis and progression. Moreover, expanding on evidence from pathology and animal studies, it provides novel in vivo evidence supporting myelin breakdown as an early feature of HD.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Anne E Rosser
- Department of Neurology and Psychological Medicine, Hayden Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation Trust, 50 Summer Hill Road, Birmingham B1 3RB, UK; Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK; Siemens Healthcare GmbH, Erlangen, Germany
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| |
Collapse
|
56
|
Bøstrand SMK, Williams A. Oligodendroglial Heterogeneity in Neuropsychiatric Disease. Life (Basel) 2021; 11:life11020125. [PMID: 33562031 PMCID: PMC7914430 DOI: 10.3390/life11020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Oligodendroglia interact with neurons to support their health and maintain the normal functioning of the central nervous system (CNS). Human oligodendroglia are a highly heterogeneous population characterised by distinct developmental origins and regional differences, as well as variation in cellular states, as evidenced by recent analysis at single-nuclei resolution. Increasingly, there is evidence to suggest that the highly heterogeneous nature of oligodendroglia might underpin their role in a range of CNS disorders, including those with neuropsychiatric symptoms. Understanding the role of oligodendroglial heterogeneity in this group of disorders might pave the way for novel approaches to identify biomarkers and develop treatments.
Collapse
|
57
|
Estevez-Fraga C, Scahill R, Rees G, Tabrizi SJ, Gregory S. Diffusion imaging in Huntington's disease: comprehensive review. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-324377. [PMID: 33033167 PMCID: PMC7803908 DOI: 10.1136/jnnp-2020-324377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a monogenic disorder with 100% penetrance. With the advent of genetic testing in adults, disease-related, structural brain changes can be investigated from the earliest, premorbid stages of HD. While examining macrostructural change characterises global neuronal damage, investigating microstructural alterations provides information regarding brain organisation and its underlying biological properties. Diffusion MRI can be used to track the progression of microstructural anomalies in HD decades prior to clinical disease onset, providing a greater understanding of neurodegeneration. Multiple approaches, including voxelwise, region of interest and tractography, have been used in HD cohorts, showing a centrifugal pattern of white matter (WM) degeneration starting from deep brain areas, which is consistent with neuropathological studies. The corpus callosum, longer WM tracts and areas that are more densely connected, in particular the sensorimotor network, also tend to be affected early during premanifest stages. Recent evidence supports the routine inclusion of diffusion analyses within clinical trials principally as an additional measure to improve understanding of treatment effects, while the advent of novel techniques such as multitissue compartment models and connectomics can help characterise the underpinnings of progressive functional decline in HD.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
58
|
Abstract
The central nervous system is simply divided into two distinct anatomical regions based on the color of tissues, i.e. the gray and white matter. The gray matter is composed of neuronal cell bodies, glial cells, dendrites, immune cells, and the vascular system, while the white matter is composed of concentrated myelinated axonal fibers extending from neuronal soma and glial cells, such as oligodendrocyte precursor cells (OPCs), oligodendrocytes, astrocytes, and microglia. As neuronal cell bodies are located in the gray matter, great attention has been focused mainly on the gray matter regarding the understanding of the functions of the brain throughout the neurophysiological areas, leading to a scenario in which the function of the white matter is relatively underestimated or has not received much attention. However, increasing evidence shows that the white matter plays highly significant and pivotal functions in the brain based on the fact that its abnormalities are associated with numerous neurological diseases. In this review, we will broadly discuss the pathways and functions of myelination, which is one of the main processes that modulate the functions of the white matter, as well as the manner in which its abnormalities are related to neurological disorders.
Collapse
|
59
|
Barker RA, Fujimaki M, Rogers P, Rubinsztein DC. Huntingtin-lowering strategies for Huntington's disease. Expert Opin Investig Drugs 2020; 29:1125-1132. [PMID: 32745442 DOI: 10.1080/13543784.2020.1804552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an incurable, autosomal dominant neurodegenerative disease caused by an abnormally long polyglutamine tract in the huntingtin protein. Because this mutation causes disease via gain-of-function, lowering huntingtin levels represents a rational therapeutic strategy. AREAS COVERED We searched MEDLINE, CENTRAL, and other trial databases, and relevant company and HD funding websites for press releases until April 2020 to review strategies for huntingtin lowering, including autophagy and PROTACs, which have been studied in preclinical models. We focussed our analyses on oligonucleotide (ASOs) and miRNA approaches, which have entered or are about to enter clinical trials. EXPERT OPINION ASO and mRNA approaches for lowering mutant huntingtin protein production and strategies for increasing mutant huntingtin clearance are attractive because they target the cause of disease. However, questions concerning the optimal mode of delivery and associated safety issues remain. It is unclear if the human CNS coverage with intrathecal or intraparenchymal delivery will be sufficient for efficacy. The extent that one must lower mutant huntingtin levels for it to be therapeutic is uncertain and the extent to which CNS lowering of wild-type huntingtin is safe is unclear. Polypharmacy may be an effective approach for ameliorating signs and symptoms and for preventing/delaying onset and progression.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge , Cambridge, UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research , Cambridge, UK.,UK Dementia Research Institute , Cambridge, UK
| | - Priya Rogers
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge , Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research , Cambridge, UK.,UK Dementia Research Institute , Cambridge, UK
| |
Collapse
|
60
|
King AC, Wood TE, Rodriguez E, Parpura V, Gray M. Differential effects of SNARE-dependent gliotransmission on behavioral phenotypes in a mouse model of Huntington's disease. Exp Neurol 2020; 330:113358. [PMID: 32387649 PMCID: PMC7313419 DOI: 10.1016/j.expneurol.2020.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine expansion in the widely expressed huntingtin protein. Multiple studies have indicated the importance of mutant huntingtin (mHTT) in astrocytes to HD pathogenesis. Astrocytes exhibit SNARE-dependent exocytosis and gliotransmission, which can be hampered by transgenic expression of dominant negative SNARE (dnSNARE) in these glial cells. We used BACHD mice and crossed them with the dnSNARE model to determine if pan-astrocytic SNARE-dependent exocytosis plays an important role in vivo in the progression of HD behavioral phenotypes. We assessed motor and neuropsychiatric behaviors in these mice. At 12 months of age there was a significant improvement in motor coordination (rotarod test) in BACHD/dnSNARE mice when compared to BACHD mice. Analyses of open field performance revealed significant worsening of center entry (at 9 and 12 months), but not distance traveled in BACHD/dnSNARE when compared to BACHD mice, and variable/inconclusive results on vertical plane entry. While no differences between BACHD and BACHD/dnSNARE mice at 12 months of age in the forced swim test were found, we did observe a significant decrease in performance of BACHD/dnSNARE mice in the light-dark box paradigm. Thus, reduction of astrocytic SNARE-dependent exocytosis has differential effects on the psychiatric-like and motor phenotypes observed in BACHD mice. These data suggest broadly targeting SNARE-dependent exocytosis in astrocytes throughout the brain as a means to modulate gliotransmission in HD may contribute to worsening of specific behavioral deficits and perhaps a brain-region specific approach would be required.
Collapse
Affiliation(s)
- Annesha C King
- Graduate Biomedical Sciences Neuroscience Theme, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | - Tara E Wood
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | - Efrain Rodriguez
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
61
|
Wilton DK, Stevens B. The contribution of glial cells to Huntington's disease pathogenesis. Neurobiol Dis 2020; 143:104963. [PMID: 32593752 DOI: 10.1016/j.nbd.2020.104963] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glial cells play critical roles in the normal development and function of neural circuits, but in many neurodegenerative diseases, they become dysregulated and may contribute to the development of brain pathology. In Huntington's disease (HD), glial cells both lose normal functions and gain neuropathic phenotypes. In addition, cell-autonomous dysfunction elicited by mutant huntingtin (mHTT) expression in specific glial cell types is sufficient to induce both pathology and Huntington's disease-related impairments in motor and cognitive performance, suggesting that these cells may drive the development of certain aspects of Huntington's disease pathogenesis. In support of this imaging studies in pre-symptomatic HD patients and work on mouse models have suggested that glial cell dysfunction occurs at a very early stage of the disease, prior to the onset of motor and cognitive deficits. Furthermore, selectively ablating mHTT from specific glial cells or correcting for HD-induced changes in their transcriptional profile rescues some HD-related phenotypes, demonstrating the potential of targeting these cells for therapeutic intervention. Here we review emerging research focused on understanding the involvement of different glial cell types in specific aspects of HD pathogenesis. This work is providing new insight into how HD impacts biological functions of glial cells in the healthy brain as well as how HD induced dysfunction in these cells might change the way they integrate into biological circuits.
Collapse
Affiliation(s)
- Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center, Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Gatto EM, Rojas NG, Persi G, Etcheverry JL, Cesarini ME, Perandones C. Huntington disease: Advances in the understanding of its mechanisms. Clin Park Relat Disord 2020; 3:100056. [PMID: 34316639 PMCID: PMC8298812 DOI: 10.1016/j.prdoa.2020.100056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/01/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
Huntington disease (HD) is a devastating monogenic autosomal dominant disorder. HD is caused by a CAG expansion in exon 1 of the gene coding for huntingtin, placed in the short arm of chromosome 4. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Also, we present a modern view on the molecular biology of HD as a representative of the group of polyglutamine diseases, with an emphasis on conformational changes of mutant huntingtin, disturbances in its cellular processing, and proteolytic stress in degenerating neurons. The main pathogenetic mechanisms of neurodegeneration in HD are discussed in detail, such as autophagy, impaired mitochondrial biogenesis, lysosomal dysfunction, organelle and protein transport, inflammation, oxidative stress, and transcription factor modulation. However, other unraveling mechanisms are still unknown. This practical and brief review summarizes some of the currently known functions of the wild-type huntingtin protein and the recent findings related to the mechanisms involved in HD pathogenesis.
Collapse
Affiliation(s)
- Emilia M Gatto
- Institute of Neuroscience Buenos Aires (INEBA), Argentina.,Sanatorio de la Trinidad Mitre, Argentina
| | | | - Gabriel Persi
- Institute of Neuroscience Buenos Aires (INEBA), Argentina.,Sanatorio de la Trinidad Mitre, Argentina
| | | | | | - Claudia Perandones
- National Administration of Laboratories and Institutes of Health, ANLIS, Dr. Carlos G. Malbrán, Argentina
| |
Collapse
|
63
|
Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, Anderson LM, Ko S, Zhu X, van Deventer SJ, Evers MM, Konstantinova P, Hayden MR. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 2020; 48:36-54. [PMID: 31745548 PMCID: PMC7145682 DOI: 10.1093/nar/gkz976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cynthia C Brouwers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sander J van Deventer
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
64
|
McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 2020; 134:104635. [PMID: 31669734 PMCID: PMC6980715 DOI: 10.1016/j.nbd.2019.104635] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.
Collapse
Affiliation(s)
| | - Lauren R Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
65
|
Altinoz MA, Ozpinar A, Ozpinar A, Hacker E. Erucic acid, a nutritional PPARδ-ligand may influence Huntington's disease pathogenesis. Metab Brain Dis 2020; 35:1-9. [PMID: 31625071 DOI: 10.1007/s11011-019-00500-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Increasing recent evidence suggests a key role of oligodendroglial injury and demyelination in the pathophysiology of Huntington's Disease (HD) and the transcription factor PPARδ is critical for oligodendroglial regeneration and myelination. PPARδ directly involves in the pathogenesis of HD and treatment with a brain-permeable PPARδ-agonist (KD3010) alleviates its severity in mice. Erucic acid (EA) is also a PPARδ-ligand ω9 fatty acid which is highly consumed in Asian countries through ingesting cruciferous vegetables such as rapeseed (Brassica napus) and indian mustard (Brassica juncea). EA is also an ingredient of Lorenzo's oil employed in the medical treatment of adrenoleukodystrophy and can be converted to nervonic acid, a component of myelin. HD pathogenesis also involves oxidative and inflammatory injury and EA exerts antioxidative and antiinflammatory efficacies including inhibition of thrombin and elastase. Consumption of rapeseed, indian mustard, and Canola oils (containing EA) improves cognitive parameters in animal models, as well as treatment with pure EA. Moreover, erucamide, an endogenous EA-amide derivative regulating angiogenesis and water balance, exerts antidepressive and anxiolytic effects in mice. Hitherto, no study has investigated the therapeutic potential of EA in HD and we believe that it strongly merits to be studied in animal models of HD as a potential therapeutic.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem (Mehmet Ali Aydinlar) University, Istanbul, Turkey.
- Department of Psychiatry, Maastricht University, Maastricht, Netherlands.
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem (Mehmet Ali Aydinlar) University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, Pittsburgh University, Pittsburgh, PA, USA
| | - Emily Hacker
- Department of Neurosurgery, Pittsburgh University, Pittsburgh, PA, USA
| |
Collapse
|
66
|
Naphade S, Tshilenge KT, Ellerby LM. Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics 2019; 16:979-998. [PMID: 31792895 PMCID: PMC6985408 DOI: 10.1007/s13311-019-00810-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyglutamine expansion disorders, which include Huntington's disease, have expanded CAG repeats that result in polyglutamine expansions in affected proteins. How this specific feature leads to distinct neuropathies in 11 different diseases is a fascinating area of investigation. Most proteins affected by polyglutamine expansions are ubiquitously expressed, yet their mechanisms of selective neurotoxicity are unknown. Induced pluripotent stem cells have emerged as a valuable tool to model diseases, understand molecular mechanisms, and generate relevant human neural and glia subtypes, cocultures, and organoids. Ideally, this tool will generate specific neuronal populations that faithfully recapitulate specific polyglutamine expansion disorder phenotypes and mimic the selective vulnerability of a given disease. Here, we review how induced pluripotent technology is used to understand the effects of the disease-causing polyglutamine protein on cell function, identify new therapeutic targets, and determine how polyglutamine expansion affects human neurodevelopment and disease. We will discuss ongoing challenges and limitations in our use of induced pluripotent stem cells to model polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Swati Naphade
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
67
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|