51
|
Aviel-Shekler K, Hamshawi Y, Sirhan W, Getselter D, Srikanth KD, Malka A, Piran R, Elliott E. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Transl Psychiatry 2020; 10:412. [PMID: 33239620 PMCID: PMC7688640 DOI: 10.1038/s41398-020-01096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
The etiology of Autism Spectrum Disorders (ASD) includes a strong genetic component and a complicated environmental component. Recent evidence indicates that maternal diabetes, including gestational diabetes, is associated with an increased prevalence of ASD. While previous studies have looked into possible roles for maternal diabetes in neurodevelopment, there are few studies into how gestational diabetes, with no previous diabetic or metabolic phenotype, may affect neurodevelopment. In this study, we have specifically induced gestational diabetes in mice, followed by behavioral and molecular phenotyping of the mice offspring. Pregnant mice were injected with STZ a day after initiation of pregnancy. Glucose levels increased to diabetic levels between E7 and E14 in pregnancy in a subset of the pregnant animals. Male offspring of Gestational Diabetic mothers displayed increased repetitive behaviors with no dysregulation in the three-chambered social interaction test. RNA-seq analysis revealed a dysregulation in genes related to forebrain development in the frontal cortex and a dysregulation of a network of neurodevelopment and immune related genes in the striatum. Together, these results give evidence that gestational diabetes can induce changes in adulthood behavior and gene transcription in the brain.
Collapse
Affiliation(s)
- Keren Aviel-Shekler
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Yara Hamshawi
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Worood Sirhan
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Dmitriy Getselter
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Kolluru D. Srikanth
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Assaf Malka
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ron Piran
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
52
|
Zyśk M, Pikul P, Kowalski R, Lewandowski K, Sakowicz-Burkiewicz M, Pawełczyk T. Neither Excessive Nitric Oxide Accumulation nor Acute Hyperglycemia Affects the N-Acetylaspartate Network in Wistar Rat Brain Cells. Int J Mol Sci 2020; 21:ijms21228541. [PMID: 33198375 PMCID: PMC7697070 DOI: 10.3390/ijms21228541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The N-acetylaspartate network begins in neurons with N-acetylaspartate production catalyzed by aspartate N-acetyltransferase from acetyl-CoA and aspartate. Clinical studies reported a significant depletion in N-acetylaspartate brain level in type 1 diabetic patients. The main goal of this study was to establish the impact of either hyperglycemia or oxidative stress on the N-acetylaspartate network. For the in vitro part of the study, embryonic rat primary neurons were treated by using a nitric oxide generator for 24 h followed by 6 days of post-treatment culture, while the neural stem cells were cultured in media with 25–75 mM glucose. For the in vivo part, male adult Wistar rats were injected with streptozotocin (65 mg/kg body weight, ip) to induce hyperglycemia (diabetes model) and euthanized 2 or 8 weeks later. Finally, the biochemical profile, NAT8L protein/Nat8l mRNA levels and enzymatic activity were analyzed. Ongoing oxidative stress processes significantly affected energy metabolism and cholinergic neurotransmission. However, the applied factors did not affect the N-acetylaspartate network. This study shows that reduced N-acetylaspartate level in type 1 diabetes is not related to oxidative stress and that does not trigger N-acetylaspartate network fragility. To reveal why N-acetylaspartate is reduced in this pathology, other processes should be considered.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
- Correspondence: ; Tel.: +48-58-349-2770
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Polish Academy of Science, 80-308 Gdansk, Poland; (P.P.); (R.K.)
| | - Robert Kowalski
- Laboratory of Molecular and Cellular Nephrology, Polish Academy of Science, 80-308 Gdansk, Poland; (P.P.); (R.K.)
| | | | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| | - Tadeusz Pawełczyk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| |
Collapse
|
53
|
Fitzgerald E, Hor K, Drake AJ. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum Dev 2020; 150:105190. [PMID: 32948364 PMCID: PMC7481314 DOI: 10.1016/j.earlhumdev.2020.105190] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kahyee Hor
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
54
|
Wang H, He H, Yu Y, Su X, Li F, Li J. Maternal diabetes and the risk of feeding and eating disorders in offspring: a national population-based cohort study. BMJ Open Diabetes Res Care 2020; 8:8/1/e001738. [PMID: 33077476 PMCID: PMC7574887 DOI: 10.1136/bmjdrc-2020-001738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Previous studies have suggested that maternal diabetes may have programming effect on fetal brain development. However, little is known about the association between maternal diabetes and neurodevelopmental disorders in offspring that mainly manifest in infancy or early childhood. We aimed to examine the association between maternal diabetes before or during pregnancy and feeding and eating disorders (FED) in offspring. RESEARCH DESIGN AND METHODS This population-based cohort study included 1 193 891 singletons born in Denmark during 1996-2015. These children were followed from birth until the onset of FED, the sixth birthday, death, emigration, or 31 December 2016, whichever came first. Relative risk of FED was estimated by HRs using Cox proportional hazards model. RESULTS A total of 40 867 (3.4%) children were born to mothers with diabetes (20 887 with pregestational diabetes and 19 980 with gestational diabetes). The incidence rates of FED were 6.8, 4.6 and 2.9 per 10 000 person-years among children of mothers with pregestational diabetes, gestational diabetes and no diabetes, respectively. Offspring of mothers with diabetes had a 64% increased risk of FED (HR 1.64; 95% CI 1.36 to 1.99; p<0.001). The HR for maternal pregestational diabetes and gestational diabetes was 2.01 (95% CI 1.59 to 2.56; p<0.001) and 1.28 (95% CI 0.95 to 1.72; p=0.097), respectively. The increased risk was more pronounced among offspring of mothers with diabetic complications (HR 2.97; 95% CI 1.54 to 5.72; p=0.001). CONCLUSIONS Maternal diabetes was associated with an increased risk of FED in offspring in infancy and early childhood. Our findings can inform clinical decisions for better management of maternal diabetes, in particular before pregnancy, which can reduce early neurodevelopmental problems in the offspring.
Collapse
Affiliation(s)
- Hui Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua He
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Developmental and Behavioural Pediatric Department & Child Primary Care Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfu Yu
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Xiujuan Su
- Clinical Research Center, Shanghai First Maternity and Infant Hospital Affiliated to Tongji University, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Developmental and Behavioural Pediatric Department & Child Primary Care Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- School of Global Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Xiang D, Lu J, Wei C, Cai X, Wang Y, Liang Y, Xu M, Wang Z, Liu M, Wang M, Liang X, Li L, Yao P. Berberine Ameliorates Prenatal Dihydrotestosterone Exposure-Induced Autism-Like Behavior by Suppression of Androgen Receptor. Front Cell Neurosci 2020; 14:87. [PMID: 32327976 PMCID: PMC7161090 DOI: 10.3389/fncel.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 01/03/2023] Open
Abstract
Many epidemiology studies have shown that maternal polycystic ovary syndrome (PCOS) results in a greater risk of autism spectrum disorders (ASD) development, although the detailed mechanism remains unclear. In this study, we aimed to investigate the potential mechanism and provide a possible treatment for PCOS-mediated ASD through three experiments: Experiment 1: real-time PCR and western blots were employed to measure gene expression in human neurons, and the luciferase reporter assay and chromatin immunoprecipitation (ChIP) was used to map the responsive elements on related gene promoters. Experiment 2: pregnant dams were prenatally exposed to dihydrotestosterone (DHT), androgen receptor (AR) knockdown (shAR) in the amygdala, or berberine (BBR), and the subsequent male offspring were used for autism-like behavior (ALB) assay followed by biomedical analysis, including gene expression, oxidative stress, and mitochondrial function. Experiment 3: the male offspring from prenatal DHT exposed dams were postnatally treated by either shAR or BBR, and the offspring were used for ALB assay followed by biomedical analysis. Our findings showed that DHT treatment suppresses the expression of estrogen receptor β (ERβ) and superoxide dismutase 2 (SOD2) through AR-mediated hypermethylation on the ERβ promoter, and BBR treatment suppresses AR expression through hypermethylation on the AR promoter. Prenatal DHT treatment induces ERβ suppression, oxidative stress and mitochondria dysfunction in the amygdala with subsequent ALB behavior in male offspring, and AR knockdown partly diminishes this effect. Furthermore, both prenatal and postnatal treatment of BBR partly restores prenatal DHT exposure-mediated ALB. In conclusion, DHT suppresses ERβ expression through the AR signaling pathway by hypermethylation on the ERβ promoter, and BBR restores this effect through AR suppression. Prenatal DHT exposure induces ALB in offspring through AR-mediated ERβ suppression, and both prenatal and postnatal treatment of BBR ameliorates this effect. We conclude that BBR ameliorates prenatal DHT exposure-induced ALB through AR suppression, this study may help elucidate the potential mechanism and identify a potential treatment through using BBR for PCOS-mediated ASD.
Collapse
Affiliation(s)
- Dongfang Xiang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Chongxia Wei
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xiaofan Cai
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Yongxia Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Mingtao Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Min Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xuefang Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Li
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China.,Hainan Maternal and Child Health Hospital, Haikou, China
| |
Collapse
|
56
|
Lu J, Xiao M, Guo X, Liang Y, Wang M, Xu J, Liu L, Wang Z, Zeng G, Liu K, Li L, Yao P. Maternal Diabetes Induces Immune Dysfunction in Autistic Offspring Through Oxidative Stress in Hematopoietic Stem Cells. Front Psychiatry 2020; 11:576367. [PMID: 33101089 PMCID: PMC7495463 DOI: 10.3389/fpsyt.2020.576367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorders (ASD) have been found to be associated with immune dysfunction and elevated cytokines, although the detailed mechanism remains unknown. In this study, we aim to investigate the potential mechanisms through a maternal diabetes-induced autistic mouse model. We found that maternal diabetes-induced autistic offspring have epigenetic changes on the superoxide dismutase 2 (SOD2) promoter with subsequent SOD2 suppression in both hematopoietic stem cells (HSC) and peripheral blood mononuclear cells (PBMC). Bone marrow transplantation of normal HSC to maternal diabetes-induced autistic offspring transferred epigenetic modifications to PBMC and significantly reversed SOD2 suppression and oxidative stress and elevated inflammatory cytokine levels. Further, in vivo human study showed that SOD2 mRNA expression from PBMC in the ASD group was reduced to ~12% compared to typically developing group, and the SOD2 mRNA level-based ROC (Receiver Operating Characteristic) curve shows a very high sensitivity and specificity for ASD patients. We conclude that maternal diabetes induces immune dysfunction in autistic offspring through SOD2 suppression and oxidative stress in HSC. SOD2 mRNA expression in PBMC may be a good biomarker for ASD diagnosis.
Collapse
Affiliation(s)
- Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Meifang Xiao
- Hainan Women and Children's Medical Center, Haikou, China
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, China
| | - Jianchang Xu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Liyan Liu
- Hainan Women and Children's Medical Center, Haikou, China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Gang Zeng
- Hainan Women and Children's Medical Center, Haikou, China
| | - Kelly Liu
- Hainan Women and Children's Medical Center, Haikou, China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China.,Hainan Women and Children's Medical Center, Haikou, China
| |
Collapse
|
57
|
Xiang D, Zhao M, Cai X, Wang Y, Zhang L, Yao H, Liu M, Yang H, Xu M, Li H, Peng H, Wang M, Liang X, Li L, Yao P. Betulinic Acid Inhibits Endometriosis Through Suppression of Estrogen Receptor β Signaling Pathway. Front Endocrinol (Lausanne) 2020; 11:604648. [PMID: 33362719 PMCID: PMC7759155 DOI: 10.3389/fendo.2020.604648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is an inflammatory gynecological disorder characterized by endometrial tissue growth located outside of the uterine cavity in addition to chronic pelvic pain and infertility. In this study, we aim to develop a potential therapeutic treatment based on the pathogenesis and mechanism of Endometriosis. Our preliminary data showed that the expression of estrogen receptor β (ERβ) was significantly increased, while ERα was significantly decreased, in endometriotic cells compared to normal endometrial cells. Further investigation showed that betulinic acid (BA) treatment suppressed ERβ expression through epigenetic modification on the ERβ promoter, while had no effect on ERα expression. In addition, BA treatment suppresses ERβ target genes, including superoxide dismutase 2 (SOD2), nuclear respiratory factor-1 (NRF1), cyclooxygenase 2 (COX2), and matrix metalloproteinase-1 (MMP1), subsequently increasing oxidative stress, triggering mitochondrial dysfunction, decreasing elevated proinflammatory cytokines, and eventually suppressing endometriotic cell proliferation, mimicking the effect of ERβ knockdown. On the other hand, gain of ERβ by lentivirus infection in normal endometrial cells resulted in increased cell proliferation and proinflammatory cytokine release, while BA treatment diminished this effect through ERβ suppression with subsequent oxidative stress and apoptosis. Our results indicate that ERβ may be a major driving force for the development of endometriosis, while BA inhibits Endometriosis through specific suppression of the ERβ signaling pathway. This study provides a novel therapeutic strategy for endometriosis treatment through BA-mediated ERβ suppression.
Collapse
Affiliation(s)
- Dongfang Xiang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhao
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiaofan Cai
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Yongxia Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Helen Yao
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Min Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Yang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Mingtao Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huilin Li
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Huijuan Peng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xuefang Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Paul Yao, ; Ling Li, ; Xuefang Liang,
| | - Ling Li
- Hainan Maternal and Child Health Hospital, Haikou, China
- *Correspondence: Paul Yao, ; Ling Li, ; Xuefang Liang,
| | - Paul Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Hainan Maternal and Child Health Hospital, Haikou, China
- *Correspondence: Paul Yao, ; Ling Li, ; Xuefang Liang,
| |
Collapse
|