51
|
Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry. J Virol 2016; 90:6097-6111. [PMID: 27122575 DOI: 10.1128/jvi.00100-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion-TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. IMPORTANCE With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor.
Collapse
|
52
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem Int Ed Engl 2016; 55:7048-67. [PMID: 27258759 DOI: 10.1002/anie.201509782] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Engineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell-instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain.
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
53
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- oder α5β1-Integrin-selektive Peptidmimetika für die Oberflächenbeschichtung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
54
|
Gilad Y, Firer M, Gellerman G. Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells. Biomedicines 2016; 4:E11. [PMID: 28536378 PMCID: PMC5344250 DOI: 10.3390/biomedicines4020011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Targeted delivery of chemotherapeutics and diagnostic agents conjugated to carrier ligands has made significant progress in recent years, both in regards to the structural design of the conjugates and their biological effectiveness. The goal of targeting specific cell surface receptors through structural compatibility has encouraged the use of peptides as highly specific carriers as short peptides are usually non-antigenic, are structurally simple and synthetically diverse. Recent years have seen many developments in the field of peptide based drug conjugates (PDCs), particularly for cancer therapy, as their use aims to bypass off-target side-effects, reducing the morbidity common to conventional chemotherapy. However, no PDCs have as yet obtained regulatory approval. In this review, we describe the evolution of the peptide-based strategy for targeted delivery of chemotherapeutics and discuss recent innovations in the arena that should lead in the near future to their clinical application.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Michael Firer
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
55
|
Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers 2016; 106:160-171. [PMID: 26715008 DOI: 10.1002/bip.22800] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
Abstract
To enhance the efficacy of targeted drug delivery, four new peptide-ligand conjugates were synthesized, each consisting of a cyclic RGDfK penta-peptide loaded with two anticancer drugs. The drug release profiles in different media of these new compounds and their cytotoxic activity against melanoma and non-small lung cancer cell lines were evaluated and compared with those of their singly loaded analogs. The cyclic RGDfK penta-peptide was selected as a targeting moiety because of its high affinity and selectivity to the αv β3 integrin receptor, which is frequently over-expressed in various types of cancer cells. The peptide's core was modified at the side chain of its Lys residue by coupling it with a sixth amino acid (AA) - either Lys (5a) or Ser (5b) (Lys/Ser splitter), resulting in two functional sites which enabled the loading of two therapeutic equivalents onto a single targeting carrier. Using Lys as a splitter resulted in two primary amines. Consequently, conjugates 1a and 1b were synthesized by coupling of 2 Chlorambucils (CLBs) or 2 Camptothecins (CPTs), respectively, to the primary amines of 5a. Conjugate 1c was synthesized from 5b by loading two equivalents of CLB on the amine and the hydroxyl of the Ser splitter, resulting in a homodimeric system with two distinct conjugation sites - amide and ester. The heterodimeric conjugate 1d of CLB and CPT was synthesized by loading each one of the primary amines of 5a with two different drugs - CLB and CPT. The doubling of drug equivalents loaded onto the targeting peptide correlated with enhanced cytotoxic efficacy of the conjugates towards cancer cells. The versatility of chemical linkages of the drugs to the peptides resulted in conjugates with different drug release profiles. Molecular dynamics simulations performed on conjugate 1d demonstrated that this compound occupies a conformational space similar to the bio-active conformation of an integrin-bound cyclic RGD peptide reference peptide (c(RGDf(NMe)V). The modified position in 1d (relative to the reference peptide) points away from the integrin, leading us to hypothesize that this peptide binds the integrin in a manner similar to that of the reference peptide thereby fulfilling a crucial requirement for targeted delivery. The strategy of dual drug loading on a single peptide carrier, gives rise to drugs with different mechanisms of action and release profiles, thus substantially increasing the efficacy of selective killing of tumor cells and while reducing the risk of the development of drug resistance. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 160-171, 2016.
Collapse
Affiliation(s)
- Y Gilad
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel.,The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - E Noy
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - H Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - A Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - M A Firer
- Department of Chemical Engineering, Ariel University, Ariel, 40700, Israel
| | - G Gellerman
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
56
|
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1168-1180. [DOI: 10.1016/j.msec.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
|
57
|
Beauvais S, Drevelle O, Lauzon MA, Daviau A, Faucheux N. Modulation of MAPK signalling by immobilized adhesive peptides: Effect on stem cell response to BMP-9-derived peptides. Acta Biomater 2016; 31:241-251. [PMID: 26675130 DOI: 10.1016/j.actbio.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
Biomimetic materials were developed to regulate stem cell behaviour. We have analyzed the influence of polycaprolactone (PCL) films, functionalized with adhesive peptides derived from fibronectin (pFibro) or bone sialoprotein (pBSP), on the response of murine multipotent C3H10T1/2 cells to bone morphogenetic protein-9 (BMP-9) and its derived peptides (pBMP-9 and SpBMP-9). PCL-pFibro promoted better cell cytoskeleton organization and faster focal adhesion kinase activation than did PCL-pBSP. PCL-pFibro also promoted MAPK signalling to improve the cell response to BMP-9 by inactivating ERK1/2 and stimulating p38 and JNK. BMP-9, pBMP-9 and SpBMP-9 induced greater phosphorylation of Smad1/5/8 in cells attached to PCL-pFibro than in cells on PCL-pBSP. These phosphorylated Smad1/5/8 were translocated to the nucleus. BMP-9 and its derived peptides restored the phosphorylation of JNK in cells on PCL-pBSP, but it remained less phosphorylated than in cells on PCL-pFibro stimulated with pBMP-9 and SpBMP-9. Cells attached to PCL-pFibro contained more Runx2, essential for stem cell commitment to become osteoblasts, than did cells on PCL-pBSP when incubated with BMP-9 and its derived peptides. Runx2 was no longer detected when the cells were pre-treated with JNK inhibitor. Therefore pFibro plus BMP-9 and its derived peptides may be a promising strategy to develop biomimetic materials. STATEMENT OF SIGNIFICANCE Biomaterials functionalized with adhesive peptides to favour bone repair have generated a great interest over the past decade. However, the effect of these materials on the ability of cells to respond to growth factors remains poorly known. One major growth factor subfamily involved in bone formation is the bone morphogenetic protein (BMP). However, these BMPs are expensive. We therefore developed less costly derived molecules. We showed how adhesive peptides derived from bone matrix proteins grafted onto polymer films affect the intracellular signalling and thus the ability of stem cells to be activated by BMP and its derived molecules. We have therefore identified a combination of bioactive polymers and BMP molecules that direct the stem cells towards bone forming cells.
Collapse
|
58
|
Withofs N, Hustinx R. Integrin αvβ3 and RGD-based radiopharmaceuticals. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2015.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
59
|
Deford P, Brown K, Richards RL, King A, Newburn K, Westover K, Albig AR. MAGP2 controls Notch via interactions with RGD binding integrins: Identification of a novel ECM-integrin-Notch signaling axis. Exp Cell Res 2016; 341:84-91. [PMID: 26808411 DOI: 10.1016/j.yexcr.2016.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/01/2023]
Abstract
Canonical Notch signaling involves Notch receptor activation via interaction with cell surface bound Notch ligand. Recent findings also indicate that Notch signaling may be modulated by cross-talk with other signaling mechanisms. The ECM protein MAGP2 was previously shown to regulate Notch in a cell type dependent manner, although the molecular details of this interaction have not been dissected. Here, we report that MAGP2 cell type specific control of Notch is independent of individual Notch receptor-ligand combinations but dependent on interaction with RGD binding integrins. Overexpressed MAGP2 was found to suppress transcriptional activity from the Notch responsive Hes1 promoter activity in endothelial cells, while overexpression of a RGD→RGE MAGP2 mutant increased Notch signaling in the same cell type. This effect was not unique to MAGP2 since the RGD domain of the ECM protein EGFL7 was also found to be an important modulator of Hes1 promoter activity. Independently of MAGP2 or EGFL7, inhibition of RGD-binding integrins with soluble RGD peptides also increased accumulation of active N1ICD fragments and Notch responsive promoter activity independently of changes in Notch1, Jag1, or Dll4 expression. Finally, β1 or β3 integrin blocking antibodies also enhanced Notch signaling. Collectively, these results answer the question of how MAGP2 controls cell type dependent Notch signaling, but more importantly uncover a new mechanism to understand how extracellular matrices and cellular environments impact Notch signaling.
Collapse
Affiliation(s)
- Peter Deford
- Department of Biology, Boise State University, Boise, ID 83725, United States
| | - Kasey Brown
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Rae Lee Richards
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Aric King
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Kristin Newburn
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Katherine Westover
- Department of Biology, Boise State University, Boise, ID 83725, United States
| | - Allan R Albig
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, United States; Department of Biology, Boise State University, Boise, ID 83725, United States.
| |
Collapse
|
60
|
Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Synthesis, biological studies and molecular dynamics of new anticancer RGD-based peptide conjugates for targeted drug delivery. Bioorg Med Chem 2015; 24:294-303. [PMID: 26719208 DOI: 10.1016/j.bmc.2015.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023]
Abstract
New cyclic RGD peptide-anticancer agent conjugates, with different chemical functionalities attached to the parent peptide were synthesized in order to evaluate their biological activities and to provide a comparative study of their drug release profiles. The Integrin binding c(RGDfK) penta-peptide was used for the synthesis of Camptothecin (CPT) carbamate and Chlorambucil (CLB) amide conjugates. Substitution of the amino acid Lys with Ser resulted in a modified c(RGDfS) with a new attachment site, which enabled the synthesis of an ester CLB conjugate. Functional versatility of the conjugates was reflected in the variability of their drug release profiles, while the conserved RGD sequence of a selective binding to the αv integrin family, likely preserved their recognition by the Integrin and consequently their favorable toxicity towards targeted cancer cells. This hypothesis was supported by a computational analysis suggesting that all conjugates occupy conformational spaces similar to that of the Integrin bound bio-active parent peptide.
Collapse
Affiliation(s)
- Y Gilad
- Department of Biological Chemistry, Ariel University, Ariel 40700, Israel; The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - E Noy
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - H Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - A Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - M A Firer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | - G Gellerman
- Department of Biological Chemistry, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
61
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
62
|
Musilkova J, Kotelnikov I, Novotna K, Pop-Georgievski O, Rypacek F, Bacakova L, Proks V. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:253. [PMID: 26449443 PMCID: PMC4598348 DOI: 10.1007/s10856-015-5583-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/21/2015] [Indexed: 05/16/2023]
Abstract
Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.
Collapse
Affiliation(s)
- Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic
| | - Ilya Kotelnikov
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic
| | - Katarina Novotna
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic
| | - Frantisek Rypacek
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic.
| | - Vladimir Proks
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic.
| |
Collapse
|
63
|
Webber MJ, Tongers J, Renault MA, Roncalli JG, Losordo DW, Stupp SI. Reprint of: Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 2015; 23 Suppl:S42-51. [PMID: 26235345 DOI: 10.1016/j.actbio.2015.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/25/2009] [Accepted: 07/21/2009] [Indexed: 12/19/2022]
Abstract
There is great clinical interest in cell-based therapies for ischemic tissue repair in cardiovascular disease. However, the regenerative potential of these therapies is limited due to poor cell viability and minimal retention following application. We report here the development of bioactive peptide amphiphile nanofibers displaying the fibronectin-derived RGDS cell adhesion epitope as a scaffold for therapeutic delivery of bone marrow derived stem and progenitor cells. When grown on flat substrates, a binary peptide amphiphile system consisting of 10 wt.% RGDS-containing molecules and 90 wt.% negatively charged diluent molecules was found to promote optimal cell adhesion. This binary system enhanced adhesion 1.4-fold relative to substrates composed of only the non-bioactive diluent. Additionally, no enhancement was found upon scrambling the epitope and adhesion was no longer enhanced upon adding soluble RGDS to the cell media, indicating RGDS-specific adhesion. When encapsulated within self-assembled scaffolds of the binary RGDS nanofibers in vitro, cells were found to be viable and proliferative, increasing in number by 5.5 times after only 5 days, an effect again lost upon adding soluble RGDS. Cells encapsulated within a non-bioactive scaffold and those within a binary scaffold with scrambled epitope showed minimal viability and no proliferation. Cells encapsulated within this RGDS nanofiber gel also increase in endothelial character, evident by a decrease in the expression of CD34 paired with an increase in the expression of endothelial-specific markers VE-Cadherin, VEGFR2 and eNOS after 5days. In an in vivo study, nanofibers and luciferase-expressing cells were co-injected subcutaneously in a mouse model. The binary RGDS material supported these cells in vivo, evident by a 3.2-fold increase in bioluminescent signal attributable to viable cells; this suggests the material has an anti-apoptotic and/or proliferative effect on the transplanted bone marrow cells. We conclude that the binary RGDS-presenting nanofibers developed here demonstrate enhanced viability, proliferation and adhesion of associated bone marrow derived stem and progenitor cells. This study suggests potential for this material as a scaffold to overcome current limitations of stem cell therapies for ischemic diseases.
Collapse
Affiliation(s)
- Matthew J Webber
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA; Feinberg School of Medicine, Institute for Bionanotechnology in Medicine, Chicago, IL 60611, USA
| | - Jörn Tongers
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Marie-Ange Renault
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Jerome G Roncalli
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Douglas W Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Feinberg School of Medicine, Institute for Bionanotechnology in Medicine, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Evanston, IL 60208, USA; Department of Chemistry, Evanston, IL 60208, USA.
| |
Collapse
|
64
|
Tsimbouri PM. Adult Stem Cell Responses to Nanostimuli. J Funct Biomater 2015; 6:598-622. [PMID: 26193326 PMCID: PMC4598673 DOI: 10.3390/jfb6030598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.
Collapse
Affiliation(s)
- Penelope M Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
65
|
Brösicke N, Sallouh M, Prior LM, Job A, Weberskirch R, Faissner A. Extracellular Matrix Glycoprotein-Derived Synthetic Peptides Differentially Modulate Glioma and Sarcoma Cell Migration. Cell Mol Neurobiol 2015; 35:741-53. [PMID: 25783630 DOI: 10.1007/s10571-015-0170-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Glycoproteins of the extracellular matrix (ECM) regulate proliferation, migration, and differentiation in numerous cell lineages. ECM functions are initiated by small peptide sequences embedded in large constituents that are recognized by specific cellular receptors. In this study, we have investigated the biological effects of peptides derived from collagen type IV and tenascin-C compared to the well-known RGD peptide originally discovered in fibronectin. The influence of glycoproteins and corresponding peptides on the migration of the glioma cell lines U-251-MG and U-373-MG and the sarcoma line S-117 was studied. When the cell lines were tested in a modified Boyden chamber assay on filters coated with the ECM glycoproteins, glioma cells showed a strong migration response on tenascin-C and the basal lamina constituent collagen IV, in contrast to S-117 cells. In order to identify relevant stimulatory motifs, peptides derived from fibronectin (6NHX-GRGDSF), tenascin-C (TN-C, VSWRAPTA), and collagen type IV (MNYYSNS) were compared, either applied in solution in combination with ECM glycoprotein substrates, in solution in the presence of untreated membranes, or coated on the filters of the Boyden chambers. Using this strategy, we could identify the novel tenascin-C-derived peptide motif VSWRAPTA as a migration stimulus for glioma cells. Furthermore, while kin peptides generally blocked the effects of the respective homologous ECM proteins, unexpected effects were observed in heterologous situations. There, in several cases, addition of soluble peptides strongly boosted the response to the coated ECM proteins. We propose that peptides may synergize or antagonize each other by stimulating different signaling pathways.
Collapse
Affiliation(s)
- Nicole Brösicke
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
The biophysical, mechanical and chemical characteristics of extracellular matrixes influence many cellular functions to control tissue homoeostasis and drive progression of cancer and inflammatory diseases. To maintain normal tissue function, fibronectin-rich matrixes are subject to dynamic cell-mediated structural and chemical modification. In this article, we discuss how localized application of mechanical force, heterodimer-specific integrin engagement and matrix proteolysis regulate fibronectin assembly and turnover. We also speculate that recently identified integrin trafficking, syndecan signalling and adhesion receptor–growth factor receptor cross-talk mechanisms might dynamically control the function, assembly and mechanical properties of a viable, and mechanoresponsive, fibronectin network.
Collapse
|
67
|
Svobodová J, Proks V, Karabiyik Ö, Çalıkoğlu Koyuncu AC, Torun Köse G, Rypáček F, Studenovská H. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering. J Tissue Eng Regen Med 2015; 11:831-842. [DOI: 10.1002/term.1982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 08/07/2014] [Accepted: 11/28/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jana Svobodová
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Square 2 162 06 Prague 6 Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Square 2 162 06 Prague 6 Czech Republic
| | - Özge Karabiyik
- Yeditepe University; Department of Genetics and Bioengineering; 34755 Istanbul Turkey
| | | | - Gamze Torun Köse
- Yeditepe University; Department of Genetics and Bioengineering; 34755 Istanbul Turkey
- BIOMATEN Centre of Excellence in Biomaterials and Tissue Engineering; METU; Ankara Turkey
| | - František Rypáček
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Square 2 162 06 Prague 6 Czech Republic
| | - Hana Studenovská
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Square 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
68
|
Zheng J, Kontoveros D, Lin F, Hua G, Reneker DH, Becker ML, Willits RK. Enhanced Schwann cell attachment and alignment using one-pot "dual click" GRGDS and YIGSR derivatized nanofibers. Biomacromolecules 2015; 16:357-63. [PMID: 25479181 PMCID: PMC5953569 DOI: 10.1021/bm501552t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using metal-free click chemistry and oxime condensation methodologies, GRGDS and YIGSR peptides were coupled to random and aligned degradable nanofiber networks postelectrospinning in a one-pot reaction. The bound peptides are bioactive, as demonstrated by Schwann cell attachment and proliferation, and the inclusion of YIGSR with GRGDS alters the expression of the receptor for YIGSR. Additionally, aligned nanofibers act as a potential guidance cue by increasing the aspect ratio and aligning the actin filaments, which suggest that peptide-functionalized scaffolds would be useful to direct SCs for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jukuan Zheng
- Departments of ‡Polymer Science and §Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | | | |
Collapse
|
69
|
Li B, Lin Z, Mitsi M, Zhang Y, Vogel V. Heparin-induced conformational changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation. Biomater Sci 2015. [DOI: 10.1039/c3bm60326a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heparin switches the conformation of relaxed fibrillar fibronectin. This conformation upregulates osteogenic differentiation of hMSCs, but only when locked-in by fixation.
Collapse
Affiliation(s)
- Bojun Li
- Department of Health Sciences and Technology
- ETH Zurich
- Ch-8093 Zurich
- Switzerland
| | - Zhe Lin
- Department of Health Sciences and Technology
- ETH Zurich
- Ch-8093 Zurich
- Switzerland
| | - Maria Mitsi
- Department of Health Sciences and Technology
- ETH Zurich
- Ch-8093 Zurich
- Switzerland
| | - Yang Zhang
- Department of Health Sciences and Technology
- ETH Zurich
- Ch-8093 Zurich
- Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technology
- ETH Zurich
- Ch-8093 Zurich
- Switzerland
| |
Collapse
|
70
|
Kim SG, Lee DS, Lee S, Jang JH. Osteocalcin/fibronectin-functionalized collagen matrices for bone tissue engineering. J Biomed Mater Res A 2014; 103:2133-40. [PMID: 25346429 DOI: 10.1002/jbm.a.35351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 02/04/2023]
Abstract
Collagen is the most abundant protein found in the extracellular matrix and is widely used to build scaffolds for biomedical applications which are the result of its biocompatibility and biodegradability. In the present study, we constructed a rhOCN/FNIII9-10 fusion protein and rhOCN/FNIII9-10-functionalized collagen matrices and investigated the potential value for bone tissue engineering. In vitro studies carried out with preosteoblastic MC3T3-E1 cells showed that rhOCN/FNIII9-10 fusion protein promoted cell adhesion and the mRNA levels of osteogenic markers including osteocalcin, runt-related transcription factor 2, alkaline phosphatase (ALP), and collagen type I. In addition, rhOCN/FNIII9-10-functionalized collagen matrices showed significant induction of the ALP activity more than rhFNIII9-10-functionalized collagen matrices or collagen matrices alone. These results suggested that rhOCN/FNIII9-10-functionalized collagen matrices have potential for bone tissue engineering.
Collapse
Affiliation(s)
- S G Kim
- Department of Biochemistry, Inha University School of Medicine, Incheon, 400-712, Republic of Korea
| | | | | | | |
Collapse
|
71
|
Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering. Colloids Surf B Biointerfaces 2014; 122:439-446. [DOI: 10.1016/j.colsurfb.2014.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
72
|
Maghdouri-White Y, Bowlin GL, Lemmon CA, Dréau D. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin–collagen type I electrospun scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:37-44. [DOI: 10.1016/j.msec.2014.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 12/16/2022]
|
73
|
Wang X, Gobbo P, Suchy M, Workentin MS, Hudson RHE. Peptide-decorated gold nanoparticles via strain-promoted azide–alkyne cycloaddition and post assembly deprotection. RSC Adv 2014. [DOI: 10.1039/c4ra07574a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
74
|
Shao Z, Zhang X, Pi Y, Yin L, Li L, Chen H, Zhou C, Ao Y. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. J Biomed Mater Res A 2014; 103:318-29. [PMID: 24659568 DOI: 10.1002/jbm.a.35177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022]
Abstract
Synovium-derived mesenchymal stem cells (SMSC) have been studied for over a decade since first being successfully isolated in 2001. These cells demonstrate the most promising therapeutic efficacy for musculoskeletal regeneration of the MSC family, particularly for cartilage regeneration. However, the mobilization and transfer of MSCs to defective or damaged tissues and organs in vivo with high accuracy and efficiency has been a major problem in tissue engineering (TE). In the present study, we identified a seven amino acid peptide sequence [SMSCs-affinity peptide (LTHPRWP; L7)] through phage display technology that has a high specific affinity to SMSCs. Our analysis suggested that L7 efficiently and specifically interacted with SMSCs without any species specificity. Thereafter, L7 was covalently conjugated onto both polycaprolactone (PCL) electrospun meshes and human decalcified bone scaffolds (hDBSc) to investigate its TE applications. After 24 h coculture with human SMSCs (hSMSCs), L7-conjugated PCL electrospun meshes had significantly more adherent hSMSCs than the control group, and the cells expanded well. Similar results were obtained using hDBSs. These results suggest that the novel L7 peptide sequence has a high specific affinity to SMSCs. Covalently conjugating this peptide to either artificial polymer material (PCL mesh) or natural material (hDBS) significantly enhances the adhesion of SMSCs. This method is applicable to a wide range of potential SMSC-based TE applications, particularly to cartilage regeneration, via surface modification on various type of materials.
Collapse
Affiliation(s)
- Zhenxing Shao
- Institute of Sports Medicine, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Hogerheyde TA, Suzuki S, Stephenson SA, Richardson NA, Chirila TV, Harkin DG, Bray LJ. Assessment of freestanding membranes prepared from Antheraea pernyi silk fibroin as a potential vehicle for corneal epithelial cell transplantation. Biomed Mater 2014; 9:025016. [PMID: 24565906 DOI: 10.1088/1748-6041/9/2/025016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Freestanding membranes created from Bombyx mori silk fibroin (BMSF) offer a potential vehicle for corneal cell transplantation since they are transparent and support the growth of human corneal epithelial (HCE) cells. Fibroin derived from the wild silkworm Antheraea pernyi (APSF) might provide a superior material by virtue of containing putative cell-attachment sites that are absent from BMSF. Thus we have investigated the feasibility of producing transparent, freestanding membranes from APSF and have analysed the behaviour of HCE cells on this material. No significant differences in cell numbers or phenotype were observed in short term HCE cell cultures established on either fibroin. Production of transparent freestanding APSF membranes, however, proved to be problematic as cast solutions of APSF were more prone to becoming opaque, displayed significantly lower permeability and were more brittle than BMSF-membranes. Cultures of HCE cells established on either membrane developed a normal stratified morphology with cytokeratin pair 3/12 being immuno-localized to the superficial layers. We conclude that while it is feasible to produce transparent freestanding membranes from APSF, the technical difficulties associated with this biomaterial, along with an absence of enhanced cell growth, currently favour the continued development of BMSF as a preferred vehicle for corneal cell transplantation. Nevertheless, it remains possible that refinement of techniques for processing APSF might yet lead to improvements in the handling properties and performance of this material.
Collapse
Affiliation(s)
- Thomas A Hogerheyde
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001, Australia. Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia. Queensland Eye Institute, South Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
76
|
Mesenchymal stem cells exploit extracellular matrix as mechanotransducer. Sci Rep 2014; 3:2425. [PMID: 23939587 PMCID: PMC3741624 DOI: 10.1038/srep02425] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/25/2013] [Indexed: 01/10/2023] Open
Abstract
While stem cells can sense and respond to physical properties of their environment, the molecular aspects how physical information is translated into biochemical signals remain unknown. Here we show that human mesenchymal stem cells (hMSCs) harvest and assemble plasma fibronectin into their extracellular matrix (ECM) fibrils within 24 hours. hMSCs pro-actively pull on newly assembled fibronectin ECM fibrils, and the fibers are more stretched on rigid than on soft fibronectin-coated polyacrylamide gels. Culturing hMSCs on single stretched fibronectin fibers upregulates hMSC osteogenesis. Osteogenesis was increased when αvβ3 integrins were blocked on relaxed fibronectin fibers, and decreased when α5β1 integrins were blocked or when epidermal growth factor (EGF) receptor signaling was inhibited on stretched fibronectin fibers. This suggests that hMSCs utilize their own contractile forces to translate environmental cues into differential biochemical signals by stretching fibronectin fibrils. Mechanoregulation of fibronectin fibrils may thus serve as check point to regulate hMSC osteogenesis.
Collapse
|
77
|
Copper-free azide–alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake. Biomaterials 2014; 35:1257-66. [DOI: 10.1016/j.biomaterials.2013.10.065] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/22/2013] [Indexed: 01/07/2023]
|
78
|
Chatakun P, Núñez-Toldrà R, Díaz López EJ, Gil-Recio C, Martínez-Sarrà E, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 2014; 71:113-42. [PMID: 23568025 PMCID: PMC11113514 DOI: 10.1007/s00018-013-1326-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/04/2023]
Abstract
Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.
Collapse
Affiliation(s)
- P. Chatakun
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Police General Hospital, Bangkok, Thailand
| | - R. Núñez-Toldrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. J. Díaz López
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - C. Gil-Recio
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Martínez-Sarrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - F. Hernández-Alfaro
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Ferrés-Padró
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
- Oral and Maxillofacial Surgery Department, Fundacio Hospital de Nens de Barcelona, Barcelona, Spain
| | - L. Giner-Tarrida
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M. Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
79
|
He B, Yuan X, Jiang D. Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair. RSC Adv 2014. [DOI: 10.1039/c4ra01826e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The particular features render ionic self-complementary peptide-formed and peptide amphiphile-formed nanofiber scaffolds to be compelling biomaterial substrates for nerve repair.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing, China
| | - Xiao Yuan
- Department of Cardiology
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing, China
| | - Dianming Jiang
- Department of Orthopedics
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing, China
| |
Collapse
|
80
|
Zeltz C, Orgel J, Gullberg D. Molecular composition and function of integrin-based collagen glues-introducing COLINBRIs. Biochim Biophys Acta Gen Subj 2013; 1840:2533-48. [PMID: 24361615 DOI: 10.1016/j.bbagen.2013.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite detailed knowledge about the structure and signaling properties of individual collagen receptors, much remains to be learned about how these receptors participate in linking cells to fibrillar collagen matrices in tissues. In addition to collagen-binding integrins, a group of proteins with affinity both for fibrillar collagens and integrins link these two protein families together. We have introduced the name COLINBRI (COLlagen INtegrin BRIdging) for this set of molecules. Whereas collagens are the major building blocks in tissues and defects in these structural proteins have severe consequences for tissue integrity, the mild phenotypes of the integrin type of collagen receptors have raised questions about their importance in tissue biology and pathology. SCOPE OF REVIEW We will discuss the two types of cell linkages to fibrillar collagen (direct- versus indirect COLINBRI-mediated) and discuss how the parallel existence of direct and indirect linkages to collagens may ensure tissue integrity. MAJOR CONCLUSIONS The observed mild phenotypes of mice deficient in collagen-binding integrins and the relatively restricted availability of integrin-binding sequences in mature fibrillar collagen matrices support the existence of indirect collagen-binding mechanisms in parallel with direct collagen binding in vivo. GENERAL SIGNIFICANCE A continued focus on understanding the molecular details of cell adhesion mechanisms to collagens will be important and will benefit our understanding of diseases like tissue- and tumor fibrosis where collagen dynamics are disturbed. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Joseph Orgel
- Departments of Biology, Physics and Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
81
|
Molecular docking of heparin oligosaccharides with Hep-II heparin-binding domain of fibronectin reveals an interplay between the different positions of sulfate groups. Glycoconj J 2013; 31:161-9. [DOI: 10.1007/s10719-013-9512-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
|
82
|
McNichols C, Wilkins J, Kubota A, Shiu YT, Aouadi SM, Kohli P. Investigating surface topology and cyclic-RGD peptide functionalization on vascular endothelialization. J Biomed Mater Res A 2013; 102:532-9. [PMID: 23505215 DOI: 10.1002/jbm.a.34700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
The advantages of endothelialization of a stent surface in comparison with the bare metal and drug-eluting stents used today include reduced late-stent restenosis and in-stent thrombosis. In this article, we study the effect of surface topology and functionalization of tantalum (Ta) with cyclic-(arginine-glycine-aspartic acid-d-phenylalanine-lysine) (cRGDfK) on the attachment, spreading, and growth of vascular endothelial cells. Self-assembled nanodimpling on Ta surfaces was performed using a one-step electropolishing technique. Next, cRGDfK was covalently bonded onto the surface using silane chemistry. Our results suggest that nanotexturing alone was sufficient to enhance cell spreading, but the combination of a nanodimpled surfaces along with the cRGDfK peptide may produce a better endothelialization coating on the surface in terms of higher cell density, better cell spreading, and more cell-cell interactions, when compared to using cRGDfK peptide functionalization alone or nanotexturing alone. We believe that future research should look into how to implement both modifications (topographic and chemical modifications) to optimize the stent surface for endothelialization.
Collapse
Affiliation(s)
- Colton McNichols
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois
| | | | | | | | | | | |
Collapse
|
83
|
Webber MJ, Berns EJ, Stupp SI. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine. Isr J Chem 2013; 53:530-554. [PMID: 24532851 PMCID: PMC3922220 DOI: 10.1002/ijch.201300046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems.
Collapse
Affiliation(s)
- Matthew J. Webber
- Northwestern University Department of Biomedical Engineering, Evanston, Illinois, 60208 USA
- Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA
| | - Eric J. Berns
- Northwestern University Department of Biomedical Engineering, Evanston, Illinois, 60208 USA
- Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA
| | - Samuel I. Stupp
- Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208 USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 USA
- Department of Medicine, Northwestern University, Chicago, Illinois, 60611 USA
| |
Collapse
|
84
|
Huh JB, Lee JY, Jeon YC, Shin SW, Ahn JS, Ryu JJ. Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation. J Adv Prosthodont 2013; 5:84-91. [PMID: 23755331 PMCID: PMC3675298 DOI: 10.4047/jap.2013.5.2.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. MATERIALS AND METHODS Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (α=0.05). RESULTS Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). CONCLUSION The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.
Collapse
Affiliation(s)
- Jung-Bo Huh
- Department of Prosthodontics, School of Dentistry, Dental Hospital, Dental Research Institute, Pusan National University, Yangsan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
During angiogenesis, αv integrins are overexpressed on the endothelial cell surface to facilitate the growth and survival of newly forming vessels. Accordingly, blocking αv integrin function by disrupting ligand binding can produce an antiangiogenic effect. Although the integrin ectodomain regulates ligand binding specificity, the short cytoplasmic tail facilitates intracellular signaling pathways through the recruitment and activation of specific kinases and signaling intermediates. This in turn controls endothelial cell adhesion, morphology, migration, invasion, proliferation, and survival. These same integrin-mediated signaling pathways are exploited in cancer to promote the invasiveness and survival of tumor cells and to manipulate the host microenvironment to provide ample blood vessel and stromal resources to support tumor growth and metastatic spread. Because expression of αv integrins on distinct cell types contributes to cancer growth, αv integrin antagonists have the potential to disrupt multiple aspects of disease progression.
Collapse
Affiliation(s)
- Sara M Weis
- Moores UCSD Cancer Center, and University of California, San Diego, La Jolla, California 92093-0803, USA; Department of Pathology, University of California, San Diego, La Jolla, California 92093-0803, USA
| | | |
Collapse
|
86
|
Zhang H, Liu J. Electrospun poly(lactic-co-glycolic acid)/wool keratin fibrous composite scaffolds potential for bone tissue engineering applications. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911512472565] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocomposite scaffolds consist of poly(lactic- co-glycolic acid) and wool keratin were obtained by an electrospinning process. Scanning electron microscopy images showed that the poly(lactic- co-glycolic acid)/wool keratin fibers had relatively rougher surfaces and smaller diameters. Thermogravimetric analysis showed higher thermal stabilities of the developed biocomposites compared to neat poly(lactic- co-glycolic acid). Mechanical tests showed that when the wool keratin content increased from 0% to 0.5% w/v, the tensile strength and elongation at break of the poly(lactic- co-glycolic acid)/0.5% wool keratin scaffolds increased with maxima of 6.59 MPa and 104.44%, respectively, which was an increase of 8.2% and 570% over the poly(lactic- co-glycolic acid) scaffold. The biological response of bone mesenchymal stem cells to the poly(lactic- co-glycolic acid)/1.5% wool keratin biocomposites was superior when compared to pure poly(lactic- co-glycolic acid) scaffold in terms of improved cell attachment and higher proliferation. These observations suggest that the addition of wool keratin to a poly(lactic- co-glycolic acid) matrix can improve several properties of the electrospun poly(lactic- co-glycolic acid) fibers, and the poly(lactic- co-glycolic acid)/wool keratin biocomposites could make excellent materials for tissue engineering applications.
Collapse
Affiliation(s)
- Hualin Zhang
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan, China
| | - Jinsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical College, Wenzhou, China
| |
Collapse
|
87
|
Kong M, Muñoz N, Valdivia A, Alvarez A, Herrera-Molina R, Cárdenas A, Schneider P, Burridge K, Quest AFG, Leyton L. Thy-1-mediated cell-cell contact induces astrocyte migration through the engagement of αVβ3 integrin and syndecan-4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1409-20. [PMID: 23481656 DOI: 10.1016/j.bbamcr.2013.02.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 01/06/2023]
Abstract
Cell adhesion to the extracellular matrix proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitation, western blotting and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the heparin-binding domain of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that despite initially inducing strong cell attachment, favors cell migration upon persistent stimulation by engaging the same signaling receptors and molecules as those utilized by the extracellular matrix proteins to stimulate cell movement.
Collapse
Affiliation(s)
- Milene Kong
- Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Hou XB, Hu YC, He JQ. Isotopic tracing for calculating the surface density of arginine-glycine-aspartic acid-containing peptide on allogeneic bone. Orthop Surg 2013; 5:51-5. [PMID: 23420748 DOI: 10.1111/os.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/14/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the feasibility of determining the surface density of arginine-glycine-aspartic acid (RGD) peptides grafted onto allogeneic bone by an isotopic tracing method involving labeling these peptides with (125) I, evaluating the impact of the input concentration of RGD peptides on surface density and establishing the correlation between surface density and their input concentration. METHODS A synthetic RGD-containing polypeptide (EPRGDNYR) was labeled with (125) I and its specific radioactivity calculated. Reactive solutions of RGD peptide with radioactive (125) I-RGD as probe with input concentrations of 0.01 mg/mL, 0.10 mg/mL, 0.50 mg/mL, 1.00 mg/mL, 2.00 mg/mL and 4.00 mg/mL were prepared. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linking agent, reactions were induced by placing allogeneic bone fragments into reactive solutions of RGD peptide of different input concentrations. On completion of the reactions, the surface densities of RGD peptides grafted onto the allogeneic bone fragments were calculated by evaluating the radioactivity and surface areas of the bone fragments. The impact of input concentration of RGD peptides on surface density was measured and a curve constructed. RESULTS Measurements by a radiodensity γ-counter showed that the RGD peptides had been labeled successfully with (125) I. The allogeneic bone fragments were radioactive after the reaction, demonstrating that the RGD peptides had been successfully grafted onto their surfaces. It was also found that with increasing input concentration, the surface density increased. CONCLUSION It was concluded that the surface density of RGD peptides is quantitatively related to their input concentration. With increasing input concentration, the surface density gradually increases to saturation value.
Collapse
Affiliation(s)
- Xiao-bin Hou
- Department of Bone Oncology, Tianjin Hospital, Tianjin, China
| | | | | |
Collapse
|
89
|
Muth CA, Steinl C, Klein G, Lee-Thedieck C. Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PLoS One 2013; 8:e54778. [PMID: 23405094 PMCID: PMC3566109 DOI: 10.1371/journal.pone.0054778] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)-derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7-10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors.
Collapse
Affiliation(s)
- Christine Anna Muth
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Carolin Steinl
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Gerd Klein
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Cornelia Lee-Thedieck
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
90
|
Li Y, Guo J, Tang S, Lang L, Chen X, Perrin DM. One-step and one-pot-two-step radiosynthesis of cyclo-RGD-(18)F-aryltrifluoroborate conjugates for functional imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:44-56. [PMID: 23342300 PMCID: PMC3545361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
Arylboronates capture aqueous (18)F-fluoride in one step to afford a highly polar (18)F-labeled aryltrifluoroborate anion ((18)F-ArBF(3) (-)) that clears rapidly in vivo. To date however, there is little data to show that a ligand labeled with a prosthetic (18)F-ArBF(3) (-) will provide functional images. RGD, a high-affinity ligand for integrins that are present on the cell surface of numerous tumors, has been labeled in many formats with many different radionuclides, and as such represents a well-established ligand that can be used to evaluate new labeling methods. Herein we have labeled RGD with a prosthetic (18)F-ArBF(3) (-) via two approaches for the first time: 1) a RGD-boronate bioconjugate is directly labeled in one step and 2) an alkyne-modified arylborimidine is first converted to the corresponding (18)F-ArBF(3) (-) which is then conjugated to an RGD-azide via Cu(+)-mediated [2+3] dipolar cycloaddition in one pot over two steps. RGD-(18)F-ArBF(3) (-) bionconjugates were produced in reasonable radiochemical yields using low amounts of (18)F-fluoride anion (10-50 mCi). Despite relatively low specific activities, good tumor images are revealed in each case.
Collapse
Affiliation(s)
- Ying Li
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| | - Jinxia Guo
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Shiqing Tang
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - David M Perrin
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| |
Collapse
|
91
|
|
92
|
Mandal B, Kaplan D. Biologic Biomaterials. Biomaterials 2012. [DOI: 10.1201/b13687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
93
|
Vines JB, Lim DJ, Anderson JM, Jun HW. Hydroxyapatite nanoparticle reinforced peptide amphiphile nanomatrix enhances the osteogenic differentiation of mesenchymal stem cells by compositional ratios. Acta Biomater 2012; 8:4053-63. [PMID: 22842043 PMCID: PMC3462224 DOI: 10.1016/j.actbio.2012.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/13/2022]
Abstract
In the field of bone tissue engineering, there is a need for materials that mimic the native bone extracellular matrix (ECM). This need is met through the creation of biphasic composites intended to mimic both the organic and inorganic facets of the native bone ECM. However, few studies have created composites with organic ECM analogous components capable of directing cellular behaviors and many are not fabricated in the nanoscale. Furthermore, few attempts have been made at investigating how variations of organic and inorganic components affect the osteogenic differentiation of human mesenchymal stem cells (hMSCs). To address these issues, biphasic nanomatrix composites consisting of hydroxyapatite nanoparticles (HANPs) embedded within peptide amphiphile (PA) nanofibers tailored with the RGDS cellular adhesion motif (PA-RGDS) were created at various HANP to PA-RGDS ratios. Fabrication of these biphasic nanomatrix composites was confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The long-term cellularity and osteogenic differentiation of hMSCs in response to the different compositional ratios were then assessed by quantifying the timed expression of genes indicative of osteogenic differentiation, alkaline phosphatase activity, and DNA content over time. Decreased cellularity and the expression of genes over time correlated with increasing compositional ratios between HANP and PA-RGDS. The highest HANP to PA-RGDS ratio (66% HANP) exhibited the greatest improvement to the osteogenic differentiation of hMSCs. Overall, these results demonstrate that the compositional ratio of biphasic nanomatrix composites plays an important role in influencing the osteogenic differentiation of hMSCs. Based on the observations presented within this study, these biphasic nanomatrix composites show promise for future usage in bone tissue engineering applications.
Collapse
Affiliation(s)
- Jeremy B. Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dong-Jin Lim
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joel M. Anderson
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
94
|
Renner JN, Cherry KM, Su RSC, Liu JC. Characterization of Resilin-Based Materials for Tissue Engineering Applications. Biomacromolecules 2012; 13:3678-85. [PMID: 23057410 DOI: 10.1021/bm301129b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie N. Renner
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Kevin M. Cherry
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Renay S.-C. Su
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Julie C. Liu
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| |
Collapse
|
95
|
Notni J, Pohle K, Wester HJ. Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of ⁶⁸Ga-TRAP(RGD)₃. Nucl Med Biol 2012; 40:33-41. [PMID: 22995902 DOI: 10.1016/j.nucmedbio.2012.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 01/11/2023]
Abstract
Gallium-68 is rapidly gaining importance, as this generator-produced PET isotope is available independent of on-site cyclotrons, enabling radiopharmaceutical production with comparably simple techniques at low cost. The recently introduced TRAP chelator combines the advantage of straightforward design of multimeric ⁶⁸Ga-radiopharmaceuticals with very fast and efficient ⁶⁸Ga-labeling. We synthesized a series of five cyclo(RGDfK) peptide trimers and determined their α(v)β₃ integrin affinities in competition assays on α(v)β₃-expressing M21 human melanoma cells against ¹²⁵I-echistatin. The compound with highest IC₅₀, Ga-TRAP(RGD)₃, showed more than 7-fold higher affinity compared to the monomers F-Galacto-RGD and Ga-NODAGA-c(RGDyK). TRAP(RGD)₃ was radiolabeled with ⁶⁸Ga in a fully automated GMP compliant manner. CD-1 athymic nude mice bearing M21/M21L human melanoma xenografts were used for biodistribution studies, blockade experiments, metabolite studies and PET imaging. ⁶⁸Ga-TRAP(RGD)₃ exhibited high M21 tumor uptake (6.08±0.63% ID/g, 60 min p.i.), was found to be fully stable in vivo, and showed a fast renal clearance. Blockade studies showed that uptake in the tumor, as well as in all other tissues, is highly integrin specific. A comparison of biodistribution and PET data of ⁶⁸Ga-TRAP(RGD)₃ with those of ⁶⁸Ga-NODAGA-c(RGDyK) and ¹⁸F-Galacto-RGD showed that the higher affinity of the trimer effects a larger dynamic response of tracer uptake to integrin expression, i.e., enhanced integrin-specific uptake in all tissues. We conclude that ⁶⁸Ga-TRAP(RGD)₃ could allow for imaging of low-level integrin expression in tissues which are not visible with the two competitors. Overall, the study constitutes proof of concept for the favourable in vivo properties of TRAP-based ⁶⁸Ga radiopharmaceuticals.
Collapse
Affiliation(s)
- Johannes Notni
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, D-85748 Garching, Germany.
| | | | | |
Collapse
|
96
|
Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, Ofek P, Polyak D, Scomparin A, Satchi-Fainaro R. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 2012; 161:446-60. [PMID: 22286005 DOI: 10.1016/j.jconrel.2011.12.021] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
Abstract
Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each stage of the process will be described, with examples illustrating the different solutions to the challenges of drug delivery systems in vivo.
Collapse
Affiliation(s)
- Ela Markovsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Tumbarello DA, Temple J, Brenton JD. ß3 integrin modulates transforming growth factor beta induced (TGFBI) function and paclitaxel response in ovarian cancer cells. Mol Cancer 2012; 11:36. [PMID: 22640878 PMCID: PMC3442987 DOI: 10.1186/1476-4598-11-36] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/28/2012] [Indexed: 02/05/2023] Open
Abstract
Background The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. Results We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and −4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Conclusions Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Collapse
Affiliation(s)
- David A Tumbarello
- Cancer Research UK, Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | | | | |
Collapse
|
98
|
Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials 2012; 33:3375-87. [DOI: 10.1016/j.biomaterials.2012.01.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/14/2012] [Indexed: 12/13/2022]
|
99
|
Analysis of Cell Binding and Internalization of Multivalent PEG-Based Gene Delivery Vehicles. IEEE Trans Nanobioscience 2012; 11:54-61. [DOI: 10.1109/tnb.2011.2179555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
100
|
Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM, Esposito G. The EMILIN/Multimerin family. Front Immunol 2012; 2:93. [PMID: 22566882 PMCID: PMC3342094 DOI: 10.3389/fimmu.2011.00093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 01/12/2023] Open
Abstract
Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Multimerin1, and Multimerin2) constitute a four member family that in addition to the shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and assemble into high molecular weight multimers. They are predominantly expressed in the extracellular matrix and contribute to several cellular functions in part associated with the gC1q domain and in part not yet assigned nor linked to other specific regions of the sequence. Among the latter is the control of arterial blood pressure, the inhibition of Bacillus anthracis cell cytotoxicity, the promotion of cell death, the proangiogenic function, and a role in platelet hemostasis. The focus of this review is to highlight the multiplicity of functions and domains of the EMILIN/Multimerin family with a particular emphasis on the regulatory role played by the ligand-receptor interactions of the gC1q domain. EMILIN1 is the most extensively studied member both from the structural and functional point of view. The structure of the gC1q of EMILIN1 solved by NMR highlights unique characteristics compared to other gC1q domains: it shows a marked decrease of the contact surface of the trimeric assembly and while conserving the jelly-roll topology with two β-sheets of antiparallel strands it presents a nine-stranded β-sandwich fold instead of the usual 10-stranded fold. This is likely due to the insertion of nine residues that disrupt the ordered strand organization and forma a highly dynamic protruding loop. In this loop the residue E933 is the site of interaction between gC1q and the α4β1 and α9β1 integrins, and contrary to integrin occupancy that usually upregulates cell growth, when gC1q is ligated by the integrin the cells reduce their proliferative activity.
Collapse
Affiliation(s)
- Alfonso Colombatti
- Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico Aviano, Italy.
| | | | | | | | | | | |
Collapse
|