51
|
Ryan KJ, Charlet-B N, Cooper TA. Binding of PurH to a muscle-specific splicing enhancer functionally correlates with exon inclusion in vivo. J Biol Chem 2000; 275:20618-26. [PMID: 10801888 DOI: 10.1074/jbc.m909977199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated alternative splicing of avian cardiac troponin T (cTNT) pre-mRNA requires multiple intronic elements called muscle-specific splicing enhancers (MSEs) that flank the alternative exon 5 and promote muscle-specific exon inclusion. To understand the function of the MSEs in muscle-specific splicing, we sought to identify trans-acting factors that bind to these elements. MSE3, which is located 66-81 nucleotides downstream of exon 5, assembles a complex that is both sequence- and muscle-specific. Purification and characterization of the MSE3 complex identified one component as 5-aminoimidazole-4-carboxamide ribonucleotideformyltransferase/IMP cyclohydrolase (PurH), an enzyme involved in de novo purine synthesis. Recombinant human PurH protein directly binds MSE3 RNA and PurH is the primary determinant of sequence-specific binding in the native complex. Furthermore, we show a direct correlation between the in vitro binding affinity of both the MSE3 complex and recombinant PurH with functional activation of exon inclusion in vivo. Together, these results strongly suggest that PurH performs a second function as a component of a complex that regulates MSE3-dependent exon inclusion.
Collapse
Affiliation(s)
- K J Ryan
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
52
|
Ayling JE, Bailey SW, Boerth SR, Giugliani R, Braegger CP, Thöny B, Blau N. Hyperphenylalaninemia and 7-pterin excretion associated with mutations in 4a-hydroxy-tetrahydrobiopterin dehydratase/DCoH: analysis of enzyme activity in intestinal biopsies. Mol Genet Metab 2000; 70:179-88. [PMID: 10924272 DOI: 10.1006/mgme.2000.3016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperphenylalaninemia, which can cause neurological disorders and mental retardation, results from a mutation in phenylalanine hydroxylase or an enzyme required for biosynthesis or regeneration of its cofactor, tetrahydrobiopterin. The hyperphenylalaninemia variant primapterinuria is characterized by the excretion of 7-biopterin (primapterin). This disorder is thought to be due to a deficiency of 4a-hydroxy-tetrahydrobiopterin dehydratase (pterin-4a-carbinolamine dehydratase), but a lack of tissue activity has not been directly demonstrated. The five mutations so far recognized in patients with primapterinuria are associated with either a single amino acid change or a premature stop codon. Only C81R has been successfully expressed in soluble form, and was found to have 40% of normal activity. Tissues which could be obtained by minimally invasive procedures were analyzed for dehydratase activity. None was detected in normal human white cells or fibroblasts. However, activity was found in intestine of rat, dog, pig, and particularly humans where it was only eight times lower than in liver. Distribution along the length and across the wall of small intestine was relatively uniform. Moreover, the dehydratases from human liver and intestinal mucosa have identical kinetic properties. A biopsy of duodenal mucosa from a patient with homozygous E96K dehydratase had activity of 55 nmol. min(-1)g(-1) mucosa compared to 329 +/- 32 nmol. min(-1)g(-1) tissue in controls (n = 12). The sixfold lower tissue activity of the E96K mutant alone may not be sufficient to account for the biochemical symptoms of primapterinuria in this patient. However, accumulation of a 4a-hydroxy-tetrahydrobiopterin degradation product (a side-chain cyclic adduct), which has been observed in vitro and appears to be a dehydratase inhibitor, may further exacerbate the problem.
Collapse
Affiliation(s)
- J E Ayling
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, 36688, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 2000; 347 Pt 1:1-16. [PMID: 10727395 PMCID: PMC1220924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Tetrahydrobiopterin (BH(4)) cofactor is essential for various processes, and is present in probably every cell or tissue of higher organisms. BH(4) is required for various enzyme activities, and for less defined functions at the cellular level. The pathway for the de novo biosynthesis of BH(4) from GTP involves GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase. Based on gene cloning, recombinant expression, mutagenesis studies, structural analysis of crystals and NMR studies, reaction mechanisms for the biosynthetic and recycling enzymes were proposed. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I, the expression of which may be under the control of cytokine induction. In the liver at least, activity is inhibited by BH(4), but stimulated by phenylalanine through the GTP cyclohydrolase I feedback regulatory protein. The enzymes that depend on BH(4) are the phenylalanine, tyrosine and tryptophan hydroxylases, the latter two being the rate-limiting enzymes for catecholamine and 5-hydroxytryptamine (serotonin) biosynthesis, all NO synthase isoforms and the glyceryl-ether mono-oxygenase. On a cellular level, BH(4) has been found to be a growth or proliferation factor for Crithidia fasciculata, haemopoietic cells and various mammalian cell lines. In the nervous system, BH(4) is a self-protecting factor for NO, or a general neuroprotecting factor via the NO synthase pathway, and has neurotransmitter-releasing function. With regard to human disease, BH(4) deficiency due to autosomal recessive mutations in all enzymes (except sepiapterin reductase) have been described as a cause of hyperphenylalaninaemia. Furthermore, several neurological diseases, including Dopa-responsive dystonia, but also Alzheimer's disease, Parkinson's disease, autism and depression, have been suggested to be a consequence of restricted cofactor availability.
Collapse
Affiliation(s)
- B Thöny
- Division of Clinical Chemistry, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | |
Collapse
|
54
|
Abstract
Tetrahydrobiopterin (BH(4)) cofactor is essential for various processes, and is present in probably every cell or tissue of higher organisms. BH(4) is required for various enzyme activities, and for less defined functions at the cellular level. The pathway for the de novo biosynthesis of BH(4) from GTP involves GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase. Based on gene cloning, recombinant expression, mutagenesis studies, structural analysis of crystals and NMR studies, reaction mechanisms for the biosynthetic and recycling enzymes were proposed. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I, the expression of which may be under the control of cytokine induction. In the liver at least, activity is inhibited by BH(4), but stimulated by phenylalanine through the GTP cyclohydrolase I feedback regulatory protein. The enzymes that depend on BH(4) are the phenylalanine, tyrosine and tryptophan hydroxylases, the latter two being the rate-limiting enzymes for catecholamine and 5-hydroxytryptamine (serotonin) biosynthesis, all NO synthase isoforms and the glyceryl-ether mono-oxygenase. On a cellular level, BH(4) has been found to be a growth or proliferation factor for Crithidia fasciculata, haemopoietic cells and various mammalian cell lines. In the nervous system, BH(4) is a self-protecting factor for NO, or a general neuroprotecting factor via the NO synthase pathway, and has neurotransmitter-releasing function. With regard to human disease, BH(4) deficiency due to autosomal recessive mutations in all enzymes (except sepiapterin reductase) have been described as a cause of hyperphenylalaninaemia. Furthermore, several neurological diseases, including Dopa-responsive dystonia, but also Alzheimer's disease, Parkinson's disease, autism and depression, have been suggested to be a consequence of restricted cofactor availability.
Collapse
Affiliation(s)
- B Thöny
- Division of Clinical Chemistry, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | |
Collapse
|
55
|
Pogge v Strandmann E, Senkel S, Ryffel GU. Ectopic pigmentation in Xenopus in response to DCoH/PCD, the cofactor of HNF1 transcription factor/pterin-4alpha-carbinolamine dehydratase. Mech Dev 2000; 91:53-60. [PMID: 10704830 DOI: 10.1016/s0925-4773(99)00269-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DCoH, the dimerization cofactor of the HNF-1 homeodomain proteins (hepatocyte nuclear factor-1alpha and beta), is involved in gene expression by associating with these transcription factors. The protein also called PCD for pterin-4alpha-carbinolamine dehydratase is a bifunctional factor as it catalyzes also the regeneration of tetrahydrobiopterin. This coenzyme is used by the enzyme phenylalanine hydroxylase, which generates tyrosine, the precursor of catecholamines and melanin. DCoH/PCD presumably cooperates with other partners, because it is expressed earlier than HNF1 and phenylalanine hydroxylase (PAH) in early vertebrate development. It is also found in cells lacking HNF1 and PAH like skin, brain and the pigmented epithelium of the eye suggesting a yet unknown function. We show that the overexpression of DCoH/PCD in Xenopus induces the formation of ectopic pigment cells in the epidermis, that are visible earlier than the endogenous pigmentation and broader distributed. This ectopic pigmentation is accompanied by an increase in tyrosinase activity and the amount of melanin. Overexpression of DCoH/PCD induces the appearance of pigment cells also in animal cap explants, that normally differentiate into atypical epidermis. DCoH/PCD mutants with impaired carbinolamine dehydratase activity retain the potential to induce pigmentation and we propose therefore that DCoH/PCD is not simply an essential enzyme for melanin biosynthesis, but also a regulator for the differentiation of pigment producing cells.
Collapse
Affiliation(s)
- E Pogge v Strandmann
- Universitätsklinikum Essen, Institut für Zellbiologie (Tumorforschung), Hufelandstrasse 55, D-45122, Essen, Germany.
| | | | | |
Collapse
|
56
|
Depaepe V, Cuvelier L, Thöny B, Résibois A. Pterin-4alpha-carbinolamine dehydratase in rat brain. I. Patterns of co-localization with tyrosine hydroxylase. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:76-88. [PMID: 10648890 DOI: 10.1016/s0169-328x(99)00297-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The bifunctional protein, PCD/DCoH, is both a pterin-4alpha-carbinolamine dehydratase (PCD) and a dimerization cofactor of the hepatic nuclear factor 1alpha (DCoH). In association with brain tyrosine hydroxylase (TH), which is required for dopamine synthesis, PCD catalyses dehydration and thus recycling of the cofactor tetrahydrobiopterin (BH(4)). PCD immunoreactivity in the catecholaminergic system of the rat brain was studied using a rabbit polyclonal antibody. Double immunofluorescence was performed to establish intracellular co-localization with TH. PCD immunoreactivity was found to be high and consistently present in all the neuron groups expressing TH. More than 90% of the TH+ cells were also expressing PCD. The highest co-expression (99-100% of TH+ cells) was observed in pontine catecholaminergic cell groups including locus coeruleus. Lower co-expression was observed in substantia nigra (17% of TH+ cells without PCD) and particularly in arcuate nucleus (41% of TH+ cells without PCD). Our results argue in favor of a generalized recycling of BH(4) in catecholaminergic neurons except when the neuron terminal field is located outside the blood-brain barrier. The respective roles of synthesis and recycling of BH(4) in the control of TH activity are discussed.
Collapse
Affiliation(s)
- V Depaepe
- Laboratoire d' Histologie, Faculté de Médecine CP620, Université Libre de Bruxelles, 808 route de Lennik, Brussels, Belgium
| | | | | | | |
Collapse
|
57
|
Vaxillaire M, Abderrahmani A, Boutin P, Bailleul B, Froguel P, Yaniv M, Pontoglio M. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J Biol Chem 1999; 274:35639-46. [PMID: 10585442 DOI: 10.1074/jbc.274.50.35639] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor 1alpha (HNF1alpha) is an atypical dimeric homeodomain-containing protein that is expressed in liver, intestine, stomach, kidney, and pancreas. Mutations in the HNF1alpha gene are associated with an autosomal dominant form of non-insulin-dependent diabetes mellitus called maturity-onset diabetes of the young (MODY3). More than 80 different mutations have been identified so far, many of which involve highly conserved amino acid residues among vertebrate HNF1alpha. In the present work, we investigated the molecular mechanisms by which MODY3 mutations could affect HNF1alpha function. For this purpose, we analyzed the properties of 10 mutants resulting in amino acid substitutions or protein truncation. Some mutants have a reduced protein stability, whereas others are either defective in the DNA binding or impaired in their intrinsic trans-activation potential. Three mutants, characterized by a complete loss of trans-activation, behave as dominant negatives when transfected with the wild-type protein. These data define a clear causative relationship between MODY3 mutations and functional defects in HNF1alpha trans-activation. In addition, our analysis sheds new light on the structure of a homeoprotein playing a key role in pancreatic beta cell function.
Collapse
Affiliation(s)
- M Vaxillaire
- Unité des Virus Oncogènes, Unité de Recherche Associée 1644, Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Eskinazi R, Thöny B, Svoboda M, Robberecht P, Dassesse D, Heizmann CW, Van Laethem JL, Resibois A. Overexpression of pterin-4a-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 in human colon cancer. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1105-13. [PMID: 10514393 PMCID: PMC1867015 DOI: 10.1016/s0002-9440(10)65213-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/18/1999] [Indexed: 11/20/2022]
Abstract
Pterin-4a-carbinolamine dehydratase (PCD) is a bifunctional protein also known as DCoH (dimerization co-factor of hepatocyte nuclear factor 1 (HNF1)). PCD/DCoH modulates the DNA binding specificity of HNF1, thus acting on its transcriptional activity. In addition, it participates in the recycling of tetrahydrobiopterin (BH(4)), an essential cofactor of several metabolic reactions. We investigated colorectal tumors and colorectal tumor cell lines as compared to normal colon samples in search of a potential differential expression of PCD/DCoH. Immunohistochemistry was conducted on 20 human colorectal tumors and 20 normal samples using a specific polyclonal antibody. Immunoblotting and RT-PCR analysis for PCD/DCoH and HNF1 were also performed on both human tissues and CACO-2 and HT-29 cell lines. All of the 20 tumors and both colon cancer cell lines presented a strong and widespread immunoreactivity for PCD/DCoH, contrasting with the absence of expression in the normal epithelia. We thus report the massive overexpression of PCD/DCoH in colon tumors, which is in striking contrast with the absence of staining in normal counterparts. The sharp contrast in the expression of a modulator of transcriptional activity between tumoral and normal cells may have a physiopathological role. PCD/DCoH could potentially be a new marker of malignant colon cells in vivo.
Collapse
Affiliation(s)
- R Eskinazi
- Laboratoire de Chimie Biologique et de la Nutrition, Faculté de Médecine, Département de Gastroentérologie, Hôpital Erasme, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Song J, Xia T, Jensen RA. PhhB, a Pseudomonas aeruginosa homolog of mammalian pterin 4a-carbinolamine dehydratase/DCoH, does not regulate expression of phenylalanine hydroxylase at the transcriptional level. J Bacteriol 1999; 181:2789-96. [PMID: 10217769 PMCID: PMC93720 DOI: 10.1128/jb.181.9.2789-2796.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pterin 4a-carbinolamine dehydratase is bifunctional in mammals. In addition to playing a catalytic role in pterin recycling in the cytoplasm, it plays a regulatory role in the nucleus, where it acts as a dimerization-cofactor component (called DCoH) for the transcriptional activator HNF-1alpha. A thus far unique operon in Pseudomonas aeruginosa contains a gene encoding a homolog (PhhB) of the regulatory dehydratase, together with genes encoding phenylalanine hydroxylase (PhhA) and aromatic aminotransferase (PhhC). Using complementation of tyrosine auxotrophy in Escherichia coli as a functional test, we have found that the in vivo function of PhhA requires PhhB. Strikingly, mammalian DCoH was an effective substitute for PhhB, and either one was effective in trans. Surprisingly, the required presence of PhhB for complementation did not reflect a critical positive regulatory effect of phhB on phhA expression. Rather, in the absence of PhhB, PhhA was found to be extremely toxic in E. coli, probably due to the nonenzymatic formation of 7-biopterin or a similar derivative. However, bacterial PhhB does appear to exert modest regulatory effects in addition to having a catalytic function. PhhB enhances the level of PhhA two- to threefold, as was demonstrated by gene inactivation of phhB in P. aeruginosa and by comparison of the levels of expression of PhhA in the presence and absence of PhhB in Escherichia coli. Experiments using constructs having transcriptional and translational fusions with a lacZ reporter indicated that PhhB activates PhhA at the posttranscriptional level. Regulation of PhhA and PhhB is semicoordinate; both PhhA and PhhB are induced coordinately in the presence of either L-tyrosine or L-phenylalanine, but PhhB exhibits a significant basal level of activity that is lacking for PhhA. Immunoprecipitation and affinity chromatography showed that PhhA and PhhB form a protein-protein complex.
Collapse
Affiliation(s)
- J Song
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | |
Collapse
|
60
|
Abstract
The idea of one gene--one protein--one function has become too simple because increasing numbers of proteins are found to have two or more different functions. The multiple functions of such moonlighting proteins add another dimension to cellular complexity and benefit cells in several ways. However, cells have had to develop sophisticated mechanisms for switching between the distinct functions of these proteins.
Collapse
Affiliation(s)
- C J Jeffery
- Rosenstiel Center, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
61
|
Köster S, Stier G, Kubasch N, Curtius HC, Ghisla S. Pterin-4a-carbinolamine dehydratase from Pseudomonas aeruginosa: characterization, catalytic mechanism and comparison to the human enzyme. Biol Chem 1998; 379:1427-32. [PMID: 9894810 DOI: 10.1515/bchm.1998.379.12.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The three-dimensional structure of pterin-4a-carbinolamine dehydratase (PCD) from Pseudomonas aeruginosa has been solved. Based on this we have investigated the roles of putative active center residues through functional replacement by site-directed mutagenesis. Three histidines, His73, His74 and His91, appear to be involved in dehydration catalysis. The three-dimensional positions of these residues match those of corresponding histidines at the active center of human PCD. Based on the coincidence of catalytic parameters, and on the similar effects induced by the mutations, it is concluded that the substrate binding mode and the reaction mechanisms of bacterial and human PCD are basically identical.
Collapse
Affiliation(s)
- S Köster
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
62
|
Abstract
The presence of intervening sequences or introns in eukaryotic genes has been known for more than 20 years, and the mechanisms underlying RNA splicing have been studied in depth both genetically and biochemically. In recent years, however, an increasing number of bacterial genes have been introduced into higher eukaryotes as important tools for genetic studies. Their gene products are frequently used as an indirect measure for cell type-specific promoter activity, as, for example, in the case of chloramphenicol acetyl transferase (CAT assay) or beta-galactosidase. Here we show that RNA splicing of two prokaryotic genes encoding site-specific DNA recombinases occurs in eukaryotic cells. In one case, splicing is only observed after treatment of cells with the cytokine alpha interferon. We further demonstrate that mutating an intragenic donor splice site in a bacterial gene apparently activates a second, alternative splicing pathway. In conjunction with previous reports, our findings should also be regarded as a warning that splicing of bacterial genes in higher eukaryotes is a more common phenomenon than presently recognized, which may be difficult to overcome and may cause problems in the interpretation of experimental results.
Collapse
Affiliation(s)
- E Lorbach
- Institute of Genetics, University of Cologne, Germany
| | | | | |
Collapse
|
63
|
Seong C, Jeong S, Park D, Yoon J, Oh Y, Yim J, Han K, Baek K. Molecular characterization of the Drosophila melanogaster gene encoding the pterin 4alpha-carbinolamine dehydratase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:273-8. [PMID: 9774744 DOI: 10.1016/s0167-4838(98)00203-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We have isolated and characterized the cDNA and the genomic DNA encoding Drosophila melanogaster pterin 4alpha-carbinolamine dehydratase (PCD). The amino acid sequence deduced from the cDNA sequence was very similar to those of PCDs previously reported in other species (19-57% identity). The protein coding region of the cDNA was expressed in E. coli as a histidine fusion protein, and the expressed protein proved to have PCD activity. The characterization of the Drosophila genomic clone revealed that the Drosophila PCD gene is interrupted by two introns. The potential promoter region, deduced from the determination of the transcription start point (tsp), lacks the distinct TATAAA box consensus sequence.
Collapse
Affiliation(s)
- C Seong
- Department and Institute of Genetic Engineering and Natural Sciences, Department of Genetic Engineering, Kyung Hee University, Yongin City 449-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Guerin T, Walsh GA, Donlon J, Kaufman S. Correlation of rat hepatic phenylalanine hydroxylase, with tetrahydrobiopterin and GTP concentrations. Int J Biochem Cell Biol 1998; 30:1047-54. [PMID: 9785468 DOI: 10.1016/s1357-2725(98)00065-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatic phenylalanine hydroxylase is reported to be more abundant in experimentally-diabetic rats; whereas livers of animals fed a high protein diet, where gluconeogenesis also prevails, have normal amounts of this enzyme. In this study, in addition to seeking an explanation for this effect of experimental diabetes, we also examined the effects of providing alternative dietary gluconeogenic substrates. In rats fed a diet composed of 40% (w/w) glycerol, the specific activities of hepatic phenylalanine hydroxylase are decreased to about 60% of control values. There is no effect on the apparent state of phosphorylation of the enzyme. However, studies on the incorporation of radiolabelled leucine into liver phenylalanine hydroxylase suggested that there was a decreased rate of synthesis. Similarly, animals fed a diet containing 85% (w/w) fructose also have diminished phenylalanine hydroxylase activities. Under all of the above circumstances and also in streptozotocin-induced diabetic animals, alterations in the concentrations of the hydroxylase cofactor, tetrahydrobiopterin and of GTP closely correlate with the effects on the enzyme activities. They are elevated in livers of diabetic animals and significantly diminished in livers of rats fed diets rich in glycerol or fructose. These observations suggest that in adult rat both liver tetrahydrobiopterin concentrations and the expression of hepatic phenylalanine hydroxylase are regulated by GTP [210].
Collapse
Affiliation(s)
- T Guerin
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
65
|
Lei XD, Kaufman S. Human white blood cells and hair follicles are good sources of mRNA for the pterin carbinolamine dehydratase/dimerization cofactor of HNF1 for mutation detection. Biochem Biophys Res Commun 1998; 248:432-5. [PMID: 9675155 DOI: 10.1006/bbrc.1998.8898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pterin carbinolamine dehydratase/dimerization cofactor of HNF1 (PCD/DCoH) is a protein that has a dual function. It is a pterin 4alpha-carbinolamine dehydratase that is involved in the regeneration of the cofactor tetrahydrobiopterin during the phenylalanine hydroxylase- catalyzed hydroxylation of phenylalanine. In addition, it is the dimerization cofactor of HNF1 that is able to activate the transcriptional activity of HNF1. Deficiencies in the gene for this dual functional protein result in hyperphenylalaninemia. Here we report for the first time that the PCD/DCoH mRNA is present in human white blood cells and hair follicles. Taking advantage of this finding, a sensitive, rapid and convenient method for screening mutations occurring in the coding region of this gene has been described.
Collapse
Affiliation(s)
- X D Lei
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | |
Collapse
|
66
|
Thöny B, Neuheiser F, Kierat L, Blaskovics M, Arn PH, Ferreira P, Rebrin I, Ayling J, Blau N. Hyperphenylalaninemia with high levels of 7-biopterin is associated with mutations in the PCBD gene encoding the bifunctional protein pterin-4a-carbinolamine dehydratase and transcriptional coactivator (DCoH). Am J Hum Genet 1998; 62:1302-11. [PMID: 9585615 PMCID: PMC1377166 DOI: 10.1086/301887] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pterin-4a-carbinolamine dehydratase (PCD) is required for efficient tetrahydrobiopterin regeneration after phenylalanine hydroxylase activity. This catalytic function was proposed to be specifically defective in newborns with a mild form of hyperphenylalaninemia (HPA) and persistent high urinary levels of primapterin (7-biopterin). A second regulatory task of the same protein is DCoH, a coactivation of transcription by hepatocyte nuclear factor 1alpha (HNF-1alpha), a function that is apparently not impaired in these HPA individuals. It has been shown elsewhere that the human PCD/DCoH bifunctional protein is encoded by a single 4-exon-containing gene, PCBD, located on chromosome 10q22. We have now examined the PCBD gene for mutations at the genomic level in six such HPA patients from four different families. By the use of new intron-specific primers, we detected, in all six patients, single, homozygous nucleotide alterations, in exon 4, that were inherited from their parents. These homozygous alterations predicted mutant PCD/DCoH with a single amino acid exchange, in two cases (alleles T78I), or premature stop codons, in the other four patients (alleles E86X and Q97X). Recombinant expression in Escherichia coli revealed that the mutant proteins-T78I, E86X, and Q97X-are almost entirely in the insoluble fraction, in contrast to wild type, which is expressed as a soluble protein. These data support the proposal that HPA in combination with urinary primapterin may be due to autosomal recessive inheritance of mutations in the PCBD gene specifically affecting the dehydratase activity.
Collapse
Affiliation(s)
- B Thöny
- Department of Pediatrics, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lei XD, Kaufman S. Identification of hepatic nuclear factor 1 binding sites in the 5' flanking region of the human phenylalanine hydroxylase gene: implication of a dual function of phenylalanine hydroxylase stimulator in the phenylalanine hydroxylation system. Proc Natl Acad Sci U S A 1998; 95:1500-4. [PMID: 9465044 PMCID: PMC19063 DOI: 10.1073/pnas.95.4.1500] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phenylalanine hydroxylase stimulator (PHS) is a component of the phenylalanine hydroxylation system that is involved in the regeneration of the cofactor tetrahydrobiopterin. It is also identical to the dimerization cofactor of hepatocyte nuclear factor 1 (HNF1) (DCoH) that is able to enhance the transcriptional activity of HNF1. Moreover, it has the structural potential for binding macromolecules such as proteins and nucleic acids, consistent with its involvement in gene expression. We investigated whether PHS/DCoH could enhance the expression of phenylalanine hydroxylase (PAH). Cotransfection assays showed that DCoH itself could not transactivate the 9-kb human PAH 5' flanking fragment. However, this 9-kb fragment was transactivated by HNF1 in a dose-dependent manner with a maximum of nearly 8-fold activation; DCoH potentiated this transactivation by another 1.6-fold. The HNF1 binding sites were located at -3.5 kb in a region that is 77.5% identical to the mouse liver-specific hormone-inducible PAH gene enhancer. This study suggests a possible dual function of PHS in vivo in the human phenylalanine hydroxylation system: it is involved in the regeneration of the cofactor tetrahydrobiopterin and can also enhance the expression of the human PAH gene.
Collapse
Affiliation(s)
- X D Lei
- Laboratory of Neurochemistry, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
68
|
Johnen G, Kaufman S. Studies on the enzymatic and transcriptional activity of the dimerization cofactor for hepatocyte nuclear factor 1. Proc Natl Acad Sci U S A 1997; 94:13469-74. [PMID: 9391049 PMCID: PMC28329 DOI: 10.1073/pnas.94.25.13469] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resembles nucleic acid binding domains. Two domains of the protein have been selectively targeted to determine if a change in one activity affects the other. No strong correlation has been found, supporting the idea that carbinolamine dehydratase activity is not required for HNF1 binding in vitro or transcriptional coactivation in vivo. Double mutations in the active center, however, influence the in vivo transcriptional activity but not HNF1 binding. This finding suggests that some active center residues also are used during transcription, possibly for binding of another (macro)molecule. Several mutations in the saddle led to a surprising increase in transcription, therefore linking this domain to transcriptional regulation as well. The transcriptional function of DCoH therefore is composed of two parts, HNF1 binding and another contributing effect that involves the active site and, indirectly, the saddle.
Collapse
Affiliation(s)
- G Johnen
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
69
|
Lei XD, Woodworth CD, Johnen G, Kaufman S. Expression of 4alpha-carbinolamine dehydratase in human epidermal keratinocytes. Biochem Biophys Res Commun 1997; 238:556-9. [PMID: 9299550 DOI: 10.1006/bbrc.1997.7336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4alpha-Carbinolamine dehydratase is a bifunctional protein involved in the regeneration of tetrahydrobiopterin during the hydroxylation of the aromatic amino acids. It is also a dimerization cofactor of HNF1 and therefore is believed to function as part of the hepatic gene transcription system. In view of the recent discoveries that the distribution and developmental pattern of the dehydratase do not correlate strictly with those of the aromatic amino acid hydroxylases and HNF1, the hypothesis that the dehydratase may have other unknown functions has been put forward. In the present paper, we demonstrate unambiguously that human epidermal keratinocytes express detectable levels of this protein as indicated by enzyme assay, immunoprecipitation, Western blot, and RT-PCR. Its complete coding sequence has been cloned and was found to be identical with the human liver counterpart. The possible function of the dehydratase in skin is discussed.
Collapse
Affiliation(s)
- X D Lei
- National Cancer Institute, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
70
|
Sourdive DJ, Transy C, Garbay S, Yaniv M. The bifunctional DCOH protein binds to HNF1 independently of its 4-alpha-carbinolamine dehydratase activity. Nucleic Acids Res 1997; 25:1476-84. [PMID: 9092652 PMCID: PMC146627 DOI: 10.1093/nar/25.8.1476] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
HNF1 is a liver enriched atypical homeoprotein isolated from vertebrates which is involved in the transcriptional activation of liver, kidney, intestine and pancreas specific genes. HNF1 contains an N-terminal dimerisation and a POU-like domain both essential together with the homeodomain for DNA specific recognition. Using the yeast two-hybrid system we searched for proteins interacting with HNF1. We repeatedly obtained cDNA clones encoding DCOH/4-alpha-carbinolamine dehydratase, an enzyme involved in the oxidation of aromatic amino acids that was shown to bind to and stabilise HNF1 dimers. Using the yeast system, we show that the enzymatic activity of DCOH is not essential for HNF1 binding and that the HNF1 dimerisation domain is sufficient for DCOH binding. Furthermore we demonstrate that both proteins co-localise in co-transfected cells.
Collapse
Affiliation(s)
- D J Sourdive
- Unité des Virus Oncogènes, URA 1644 du CNRS, Département des Biotechnologies, U163 INSERM, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
71
|
Rhee KH, Stier G, Becker PB, Suck D, Sandaltzopoulos R. The bifunctional protein DCoH modulates interactions of the homeodomain transcription factor HNF1 with nucleic acids. J Mol Biol 1997; 265:20-9. [PMID: 8995521 DOI: 10.1006/jmbi.1996.0708] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hepatocyte nuclear factor-1 (HNF1) is a homeodomain transcription factor that binds DNA as a dimer. HNF1 dimers associate with two molecules of DCoH, a bifunctional protein that also has an enzymatic function in the tetrahydrobiopterin regeneration, to form stable heterotetramers also capable of DNA binding. Employing purified, recombinant HNF1, HNF1/DCoH heterotetramers and DCoH homotetramers we investigated whether DCoH affects interactions of HNF1 with nucleic acids. Although we detected no direct binding of DCoH to DNA or RNA, DCoH stabilized HNF1/DNA complexes and promoted interactions with sub-optimal DNA target sequences such as the human alpha1-antitrypsin TATA box region. Importantly, we also observed interactions of HNF1 with RNA, but these interactions were completely abolished when HNF1 was complexed with DCoH. Interestingly, DCoH retains its enzymatic activity while complexed with HNF1. Our results document intermolecular regulation of HNF1 binding to nucleic acids by DCoH.
Collapse
Affiliation(s)
- K H Rhee
- Structural Biology Programme, EMBL, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
72
|
Affiliation(s)
- T. Joseph Kappock
- Department of Chemistry, Yale University, P.O. Box 208107 New Haven, Connecticut 06520-8107
| | | |
Collapse
|
73
|
Köster S, Stier G, Ficner R, Hölzer M, Curtius HC, Suck D, Ghisla S. Location of the active site and proposed catalytic mechanism of pterin-4a-carbinolamine dehydratase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:858-64. [PMID: 8944775 DOI: 10.1111/j.1432-1033.1996.00858.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Based on the recently solved three-dimensional structure of pterin-4a-carbinolamine dehydratase from rat/human liver the involvement of the proposed active-site residues Glu57, Asp60, His61, His62, Tyr69, His79, Arg87 and Asp88 was examined by site-directed mutagenesis. Most of the mutants showed reduced activity, and only the Glu57-->Ala mutant and the His61-->Ala, His62-->Ala double mutant were fully devoid of activity. The dissociation constants of quinonoid 6,6-dimethyl-7,8-dihydropterin were significantly increased for binding to the Glu57-->Ala, His61-->Ala, His62-->Ala single mutants and the His61-->Ala, His62-->Ala double mutant, confirming that His61 and His62 are essential for substrate binding and catalysis. The mechanism of dehydration is proposed to involve base catalysis at the N(5)-H group of the substrate by His61.
Collapse
Affiliation(s)
- S Köster
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Calkhoven CF, Ab G. Multiple steps in the regulation of transcription-factor level and activity. Biochem J 1996; 317 ( Pt 2):329-42. [PMID: 8713055 PMCID: PMC1217492 DOI: 10.1042/bj3170329] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduction pathways affecting a given gene. It is obvious that the regulation of these regulators themselves is of crucial importance for differential gene expression during development and in terminally differentiated cells. Transcription factors can be regulated at two, principally different, levels, namely concentration and activity, each of which can be modulated in a variety of ways. The concentrations of transcription factors, as of intracellular proteins in general, may be regulated at any of the steps leading from DNA to protein, including transcription, RNA processing, mRNA degradation and translation. The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors. Heterodimerization between transcription factors adds another dimension to the regulatory diversity and signal integration. Finally, non-DNA-binding (accessory) factors may mediate a diverse range of functions, e.g. serving as a bridge between the transcription factor and the basal transcription machinery, stabilizing the DNA-binding complex or changing the specificity of the target sequence recognition. The present review presents an overview of different modes of transcription-factor regulation, each illustrated by typical examples.
Collapse
Affiliation(s)
- C F Calkhoven
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
75
|
Faust DM, Catherin AM, Barbaux S, Belkadi L, Imaizumi-Scherrer T, Weiss MC. The activity of the highly inducible mouse phenylalanine hydroxylase gene promoter is dependent upon a tissue-specific, hormone-inducible enhancer. Mol Cell Biol 1996; 16:3125-37. [PMID: 8649424 PMCID: PMC231307 DOI: 10.1128/mcb.16.6.3125] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of the phenylalanine hydroxylase gene in livers and kidneys of rodents is activated at birth and is induced by glucocorticoids and cyclic AMP in the liver. Regulatory elements in a 10-kb fragment upstream of the mouse gene have been characterized. The promoter lacks TAATA and CCAAT consensus sequences and shows only extremely weak activity in transitory expression assays with phenylalanine hydroxylase-producing hepatoma cells. No key elements for regulation of promoter activity are localized within 2 kb of upstream sequences. However, a liver-specific DNase I-hypersensitive site at kb -3.5 comprises a tissue-specific and hormone-inducible enhancer. This enhancer contains multiple protein binding sites, including sites for ubiquitous factors (NF1 and AP1), the glucocorticoid receptor, and the hepatocyte-enriched transcription factors hepatocyte nuclear factor 1 (HNF1) and C/EBP. Mutation revealed that the last two sites are critical not only for basal activity but also for obtaining a maximal hormone response. Efficient transcription from the highly inducible promoter shows absolute dependence upon the enhancer at kb - 3.5, which in turn requires HNF1 and C/EBP as well as hormones. The regulatory region of the mouse phenylalanine hydroxylase gene differs totally from that of humans, even though the genes of both species are expressed essentially in the liver. Furthermore, the phenylalanine hydroxylase gene of mice shows an expression pattern very similar to those of the rodent tyrosine aminotransferase and phosphoenolpyruvate carboxykinase genes, yet each shows a different organization of its regulatory region.
Collapse
Affiliation(s)
- D M Faust
- Département de Biologie Moléculaire, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
76
|
Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996; 84:575-85. [PMID: 8598044 DOI: 10.1016/s0092-8674(00)81033-8] [Citation(s) in RCA: 423] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HNF1 is a transcriptional activator of many hepatic genes including albumin, alpha1-antitrypsin, and alpha- and beta-fibrinogen. It is related to the homeobox gene family and is predominantly expressed in liver and kidney. Mice lacking HNF1 fail to thrive and die around weaning after a progressive wasting syndrome with a marked liver enlargement. The transcription rate of genes like albumin and alpha1-antitrypsin is reduced, while the gene coding for phenylalanine hydroxylase is totally silent, giving rise to phenylketonuria. Mutant mice also suffer from severe Fanconi syndrome caused by renal proximal tubular dysfunction. The resulting massive urinary glucose loss leads to energy and water wasting. HNF1-deficient mice may provide a model for human renal Fanconi syndrome.
Collapse
Affiliation(s)
- M Pontoglio
- Unité des Virus Oncogènes, Département des Biotechnologies, InstitutPasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Johnen G, Kowlessur D, Citron BA, Kaufman S. Characterization of the wild-type form of 4a-carbinolamine dehydratase and two naturally occurring mutants associated with hyperphenylalaninemia. Proc Natl Acad Sci U S A 1995; 92:12384-8. [PMID: 8618906 PMCID: PMC40362 DOI: 10.1073/pnas.92.26.12384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The characterization of 4a-carbinolamine dehydratase with the enzymatically synthesized natural substrate revealed non-Michaelis-Menten kinetics. A Hill coefficient of 1.8 indicates that the dehydratase exists as a multisubunit enzyme that shows cooperativity. A mild form of hyperphenylalaninemia with high 7-biopterin levels has been linked to mutations in the human 4a-carbinolamine dehydratase gene. We have now cloned and expressed two mutant forms of the protein based on a patient's DNA sequences. The kinetic parameters of the mutant C82R reveal a 60% decrease in Vmax but no change in Km (approximately 5 microM), suggesting that the cysteine residue is not involved in substrate binding. Its replacement by arginine possibly causes a conformational change in the active center. Like the wild-type enzyme, this mutant is heat stable and forms a tetramer. The susceptibility to proteolysis of C82R, however, is markedly increased in vitro compared with the wild-type protein. We have also observed a decrease in the expression levels of C82R protein in transfected mammalian cells, which could be due to proteolytic instability. The 18-amino acid-truncated mutant GLu-87--> termination could not be completely purified and characterized due to minute levels of expression and its extremely low solubility as a fusion protein. No dehydratase activity was detected in crude extracts from transformed bacteria or transfected mammalian cells. Considering the decrease in specific activity and stability of the mutants, we conclude that the patient probably has less than 10% residual dehydratase activity, which could be responsible for the mild hyperphenylalaninemia and the high 7-biopterin levels.
Collapse
Affiliation(s)
- G Johnen
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
78
|
Hufton SE, Jennings IG, Cotton RG. Structure and function of the aromatic amino acid hydroxylases. Biochem J 1995; 311 ( Pt 2):353-66. [PMID: 7487868 PMCID: PMC1136008 DOI: 10.1042/bj3110353] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S E Hufton
- Olive Miller Protein Chemistry Laboratory, Murdoch Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
79
|
Köster S, Thöny B, Macheroux P, Curtius HC, Heizmann CW, Pfleiderer W, Ghisla S. Human pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1 alpha. Characterization and kinetic analysis of wild-type and mutant enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:414-23. [PMID: 7635153 DOI: 10.1111/j.1432-1033.1995.tb20714.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor-1 alpha is a protein with two different functions. We have overexpressed and purified the human wild-type protein, and its Cys81Ser and Cys81Arg mutants. The Cys81Arg mutant has been proposed to be causative in a hyperphenylalaninaemic patient [Citron, B. A., Kaufman, S., Milstien, S., Naylor, E. W., Greene, C. L. & Davis, M. D. (1993) Am. J. Hum. Genet. 53, 768-774]. The dehydratase behaves as a tetramer on gel filtration, while cross-linking experiments showed mono-, di-, tri-, and tetrameric forms, irrespective of the presence of the single Cys81. Sulfhydryl-modifying reagents did not affect the activity, but rather showed that Cys81 is exposed. Various pterins bind and quench the tryptophan fluorescence suggesting the presence of a specific binding site. The fluorescence is destroyed upon light irradiation. Wild-type and the Cys81Ser protein enhance the rate of the phenylalanine hydroxylase assay approximately 10-fold, a value similar to that of native dehydratase from rat liver; the Cys81Arg mutant, in contrast, has significantly lower activity. This is compatible with the hypothesis that the dehydratase is a rate-limiting factor for the in vivo phenylalanine hydroxylase reaction. The three proteins enhance the spontaneous dehydration of the synthetic substrate 6,6-dimethyl-7,8-dihydropterin-4a-carbinolamine approximately 50-70-fold at 4 degrees C and pH 8.5. The results are discussed in view of the recently solved three-dimensional structure of the enzyme [Ficner, R., Sauer, U. W., Stier, G. & Suck, D. (1995) EMBO J. 14, 2032-2042].
Collapse
Affiliation(s)
- S Köster
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Mayer B, Werner ER. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1995; 351:453-63. [PMID: 7543976 DOI: 10.1007/bf00171035] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
(6R)-5,6,7,8-Tetrahydro-L-biopterin(H4biopterin) is well known as a cofactor of enzymes that hydroxylate aromatic amino acids. More recent work has revealed an essential role of H4biopterin in the biosynthesis of nitric oxide (NO), an intercellular messenger molecule synthesized from L-arginine by different NO synthase isozymes in many species and tissues. While the function of H4biopterin in aromatic amino acid hydroxylation is well established, the role of this pteridine in NO synthesis is, as yet, elusive. Current experimental evidence hints at a dual mode of action of H4biopterin, involving both an allosteric effect on the NO synthase protein and participation as a reactant in L-arginine oxidation. As discussed in detail in the present article, the latter effect of this pteridine may be related to the protection of NO synthase from feedback inhibition by NO.
Collapse
Affiliation(s)
- B Mayer
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria
| | | |
Collapse
|
81
|
Endrizzi JA, Cronk JD, Wang W, Crabtree GR, Alber T. Crystal structure of DCoH, a bifunctional, protein-binding transcriptional coactivator. Science 1995; 268:556-9. [PMID: 7725101 DOI: 10.1126/science.7725101] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DCoH, the dimerization cofactor of hepatocyte nuclear factor-1, stimulates gene expression by associating with specific DNA binding proteins and also catalyzes the dehydration of the biopterin cofactor of phenylalanine hydroxylase. The x-ray crystal structure determined at 3 angstrom resolution reveals that DCoH forms a tetramer containing two saddle-shaped grooves that comprise likely macromolecule binding sites. Two equivalent enzyme active sites flank each saddle, suggesting that there is a spatial connection between the catalytic and binding activities. Structural similarities between the DCoH fold and nucleic acid-binding proteins argue that the saddle motif has evolved to bind diverse ligands or that DCoH unexpectedly may bind nucleic acids.
Collapse
Affiliation(s)
- J A Endrizzi
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA
| | | | | | | | | |
Collapse
|
82
|
Pogge yon Strandmann E, Ryffel GU. Developmental expression of the maternal protein XDCoH, the dimerization cofactor of the homeoprotein LFB1 (HNF1). Development 1995; 121:1217-26. [PMID: 7743933 DOI: 10.1242/dev.121.4.1217] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tissue-specific transcription factors LFB1 (HNF1) and LFB3 (vHNF1) mainly expressed in liver, kidney and intestine are homeoproteins that interact with the regulatory element HP1. The HP1 sequence constitutes one of the most important cis-acting elements in liver-specifically expressed genes, while its function in other cell types containing LFB1 and LFB3 is not fully understood. In mammals, LFB1 activity is modulated by DCoH, a cofactor that stimulates the LFB1 transactivation significantly. Using the rat cDNA probe, we cloned the corresponding Xenopus sequence XDCoH, encoding a 104 amino acid protein, that is 85% identical to the rat protein. XDCoH enhances the LFB1-dependent transactivation potential in transfection experiments and interacts in vitro directly with LFB1 and its variant form LFB3. The protein is detectable in liver and kidney extracts of adult frogs and in small amounts also in lung and stomach, organs expressing LFB1 and/or LFB3 protein as well. To investigate the possible involvement of XDCoH in Xenopus development, we analyzed its temporal and spatial expression pattern during early embryogenesis. XDCoH is a maternal factor, although LFB1 is absent in the egg. In early cleavage stages, the protein is detectable in the cytoplasm of each blastomere and enters the nuclei of the cells as early as the zygotic transcription in the Xenopus embryo starts. The amount of XDCoH increases dramatically following neurulation, when the formation of liver, pronephros and other organs takes place. Whole-mount immunostaining demonstrates that, in the developing larvae, XDCoH is localized in the nuclei of the hepatocytes, the gut cells and the pronephric cells, tissues of mesodermal and endodermal origin known to contain LFB1 and LFB3. Surprisingly it is also present in the pigmented epithelium surrounding the eye of the embryo, which is derived from the anterior part of the ectodermal neural plates and lacks LFB1. The tissue distribution of XDCoH during embryogenesis suggests that XDCoH is involved in determination and differentiation of various unrelated cell types. It seems likely that XDCoH interaction is not only essential for the function of LFB1 and LFB3 but also for certain other transcription factors.
Collapse
|
83
|
|
84
|
Thöny B, Leimbacher W, Blau N, Harvie A, Heizmann CW. Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase. Am J Hum Genet 1994; 54:782-92. [PMID: 8178819 PMCID: PMC1918260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A variant type of hyperphenylalaninemia is caused by a deficiency of tetrahydrobiopterin (BH4), the obligatory cofactor for phenylalanine hydroxylase. The most frequent form of this cofactor deficiency is due to lack of 6-pyruvoyl-tetrahydropterin synthase (PTPS) activity, the second enzyme in the biosynthetic pathway for BH4. The human liver cDNA for PTPS was previously isolated, and the recombinant protein was found to be active when expressed in Escherichia coli. We now have investigated two patients for their molecular nature of this autosomal recessive disorder. Both patients were diagnosed as PTPS deficient, one with the central and one with the peripheral form, on the basis of an elevated serum phenylalanine concentration concomitant with lowered levels of urinary biopterin and PTPS activity in erythrocytes. Molecular analysis was performed on the patients' cultured primary skin fibroblasts. PTPS activities were found in vitro to be reduced to background activity. Direct cDNA sequence analysis using reverse transcriptase-PCR technology showed for the patient with the central from a homozygous G-to-A transition at codon 25, causing the replacement of an arginine by glutamine (R25Q). Expression of this mutant allele in E. coli revealed 14% activity when compared with the wild-type enzyme. The patient with the peripheral form exhibited compound heterozygosity, having on one allele a C-to-T transition resulting in the substitution of arginine 16 for cysteine (R16C) in the enzyme and having on the second allele a 14-bp deletion (delta 14bp), leading to a frameshift at lysine 120 and a premature stop codon (K120-->Stop). Heterologous expression of the enzyme with the single-amino-acid exchange R16C revealed only 7% enzyme activity, whereas expression of the deletion allele delta 14bp exhibited no detectable activity. All three mutations, R25Q, R16C, and K120-->Stop, affect evolutionarily conserved residues in PTPS, result in reduced enzymatic activity when reconstituted in E. coli, and are thus believed to be the molecular cause for the BH4 deficiency. This is the first report describing mutations in PTPS that lead to BH4 deficiency.
Collapse
Affiliation(s)
- B Thöny
- Department of Pediatrics, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
85
|
|
86
|
Zhao G, Xia T, Song J, Jensen RA. Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster. Proc Natl Acad Sci U S A 1994; 91:1366-70. [PMID: 8108417 PMCID: PMC43159 DOI: 10.1073/pnas.91.4.1366] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa possesses a multigene operon that includes phenylalanine hydroxylase (PhhA; phenylalanine 4-monooxygenase, EC 1.14.16.1). phhA encodes PhhA (M(r) = 30,288), phhB (M(r) = 13,333) encodes a homologue of mammalian 4 alpha-carbinolamine dehydratase/homeodomain protein transregulator, and phhC encodes an aromatic aminotransferase (M(r) = 43,237). The reading frames specifying phhB and phhC overlap by 2 bases. The P. aeruginosa PhhA appears to contain iron and is pterin dependent. Unlike the multimeric mammalian hydroxylase, the native P. aeruginosa enzyme is a monomer. The P. aeruginosa PhhA is homologous with mammalian PhhA, tryptophan hydroxylase, and tyrosine hydroxylase. Expression of PhhA from its native promoter required phhB. This may suggest a positive regulatory role for phhB, consistent with the dual catalytic and regulatory roles of the corresponding mammalian homologue.
Collapse
Affiliation(s)
- G Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | | | |
Collapse
|
87
|
Raha A, Wagner C, MacDonald R, Bresnick E. Rat liver cytosolic 4 S polycyclic aromatic hydrocarbon-binding protein is glycine N-methyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37525-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
88
|
Citron BA, Kaufman S, Milstien S, Naylor EW, Greene CL, Davis MD. Mutation in the 4a-carbinolamine dehydratase gene leads to mild hyperphenylalaninemia with defective cofactor metabolism. Am J Hum Genet 1993; 53:768-74. [PMID: 8352282 PMCID: PMC1682436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hyperphenylalaninemias represent a major class of inherited metabolic disorders. They are most often caused by mutations in the phenylalanine hydroxylase gene and, less frequently but with usually more serious consequences, in genes necessary for the synthesis and regeneration of the cofactor, tetrahydrobiopterin. This cofactor is absolutely required for all aromatic amino acid hydroxylations, and, recently, nitric oxide production from L-arginine has also been found to be dependent on tetrahydrobiopterin. Phenylalanine hydroxylase catalyzes a coupled reaction in which phenylalanine is converted to tyrosine and in which tetrahydrobiopterin is converted to the unstable carbinolamine, 4a-hydroxytetrahydrobiopterin. The enzyme, carbinolamine dehydratase, catalyzes the dehydration of the carbinolamine to quinonoid dihydropterin. A decreased rate of dehydration of this compound has been hypothesized to be responsible for the production of 7-biopterin found in certain mildly hyperphenylalaninemic individuals. We have now identified nonsense and missense mutations in the 4a-carbinolamine dehydratase gene in a hyperphenylalaninemic child who excretes large amounts of 7-biopterin. This finding is consistent with the role of the carbinolamine dehydratase in the phenylalanine hydroxylation reaction. Together with previously identified inherited disorders in phenylalanine hydroxylase and dihydropteridine reductase, there are now identified mutations in the three enzymes involved in the phenylalanine hydroxylation system. In addition, the genetics of this system may have broader implications, since the product of the dehydratase gene has previously been shown to play an additional role (as dimerization cofactor for hepatocyte nuclear factor-1 alpha) in the regulation of transcription, through interaction with hepatocyte nuclear factor-1 alpha.
Collapse
Affiliation(s)
- B A Citron
- Laboratory of Neurochemistry, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
89
|
Curtius HC, Ghisla S, Hasegawa H, Blau N, Rebrin I. Progress in the study of biosynthesis and role of 7-substituted pterins: function of pterin-4a-carbinolamine dehydratase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:107-10. [PMID: 8304091 DOI: 10.1007/978-1-4615-2960-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- H C Curtius
- Department of Pediatrics, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
90
|
Thöny B, Neuheiser F, Hauer CR, Heizmann CW. Molecular cloning and recombinant expression of the human liver phenylalanine hydroxylase stimulating factor revealed structural and functional identity to the dimerization cofactor for the nuclear transcription factor HNF-1 alpha. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:103-6. [PMID: 8304090 DOI: 10.1007/978-1-4615-2960-6_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B Thöny
- Division of Clinical Chemistry, University Children's Hospital, Zürich, Switzerland
| | | | | | | |
Collapse
|
91
|
Ciliberto G, Colantuoni V, De Francesco R, De Simone V, Monaci P, Nicosia A, Ramji DP, Toniatti C, Cortese R. Transcriptional Control of Gene Expression in Hepatic Cells. Gene Expr 1993. [DOI: 10.1007/978-1-4684-6811-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
92
|
Kaufman S, Citron BA, Davis M, Milstien S. The isolation and characterization of clones of 4a-hydroxytetrahydrobiopterin dehydratase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:97-102. [PMID: 8304232 DOI: 10.1007/978-1-4615-2960-6_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S Kaufman
- Laboratory of Neurochemistry, National Institute of Mental Health, Betheada, MD 20892
| | | | | | | |
Collapse
|
93
|
Bailey SW, Boerth SR, Dillard SB, Ayling JE. The mechanism of cofactor regeneration during phenylalanine hydroxylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:47-54. [PMID: 8304161 DOI: 10.1007/978-1-4615-2960-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S W Bailey
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile 36688
| | | | | | | |
Collapse
|