51
|
Belevich I, Borisov VB, Zhang J, Yang K, Konstantinov AA, Gennis RB, Verkhovsky MI. Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site. Proc Natl Acad Sci U S A 2005; 102:3657-62. [PMID: 15728392 PMCID: PMC553295 DOI: 10.1073/pnas.0405683102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 01/28/2005] [Indexed: 11/18/2022] Open
Abstract
Time-resolved electron transfer and electrogenic H(+) translocation have been compared in a bd-type quinol oxidase from Escherichia coli and its E445A mutant. The high-spin heme b(595) is found to be retained by the enzyme in contrast to the original proposal, but it is not reducible even by excess of dithionite. When preincubated with the reductants, both the WT (b(558)(2+), b(595)(2+), d(2+)) and E445A mutant oxidase (b(558)(2+), b(595)(3+), d(2+)) bind O(2) rapidly, but formation of the oxoferryl state in the mutant is approximately 100-fold slower than in the WT enzyme. At the same time, the E445A substitution does not affect intraprotein electron re-equilibration after the photolysis of CO bound to ferrous heme d in the one-electron-reduced enzyme (the so-called "electron backflow"). The backflow is coupled to membrane potential generation. Electron transfer between hemes d and b(558) is electrogenic. In contrast, electron transfer between hemes d and b(595) is not electrogenic, although heme b(595) is the major electron acceptor for heme d during the backflow, and therefore is not likely to be accompanied by net H(+) uptake or release. The E445A replacement does not alter electron distribution between hemes b(595) and d in the one-electron reduced cytochrome bd [E(m)(d) > E(m)(b(595)), where E(m) is the midpoint redox potential]; however, it precludes reduction of heme b(595), given heme d has been reduced already by the first electron. Presumably, E445 is one of the two redox-linked ionizable groups required for charge compensation of the di-heme oxygen-reducing site (b(595), d) upon its full reduction by two electrons.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
52
|
Zhang J, Hellwig P, Osborne JP, Gennis RB. Arginine 391 in Subunit I of the Cytochrome bd Quinol Oxidase from Escherichia coli Stabilizes the Reduced Form of the Hemes and Is Essential for Quinol Oxidase Activity. J Biol Chem 2004; 279:53980-7. [PMID: 15475358 DOI: 10.1074/jbc.m408626200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome bd quinol oxidase is one of two respiratory oxidases in Escherichia coli. It oxidizes dihydroubiquinol or dihydromenaquinol while reducing dioxygen to water. The bd-type oxidases have only been found in prokaryotes and have been implicated in the survival of some bacteria, including pathogens, under conditions of low aeration. With a high affinity for dioxygen, cytochrome bd not only couples respiration to the generation of a proton motive force but also scavenges O(2). In the current work, the role of a highly conserved arginine residue is explored by site-directed mutagenesis. Four mutations were made: R391A, R391K, R391M, and R391Q. All of the mutations except R391K result in enzyme lacking ubiquinol oxidase activity. Oxidase activity using the artificial reductant N,N,N',N'-tetramethyl-p-phenylenediamine in place of ubiquinol was, however, unimpaired by the mutations, indicating that the catalytic center where O(2) is reduced is intact. UV-visible spectra of each of the mutant oxidases show no perturbations to any of the three heme components (heme b(558), heme b(595), and heme d). However, spectroelectrochemical titrations of the R391A mutant reveal that the midpoint potentials of all of the heme components are substantially lower compared with the wild type enzyme. Since Arg(391) is close to Met(393), one of the axial ligands to heme b(558), it is to be expected that the R391A mutation might destabilize the reduced form of heme b(558). The fact that the midpoint potentials of heme d and heme b(595) are also significantly lowered in the R391A mutant is consistent with these hemes being physically close together on the periplasmic side of the membrane.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
53
|
Borisov VB, Forte E, Konstantinov AA, Poole RK, Sarti P, Giuffrè A. Interaction of the bacterial terminal oxidase cytochromebdwith nitric oxide. FEBS Lett 2004; 576:201-4. [PMID: 15474037 DOI: 10.1016/j.febslet.2004.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/30/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Cytochrome bd is a prokaryotic terminal oxidase catalyzing O2 reduction to H2O. The oxygen-reducing site has been proposed to contain two hemes, d and b595, the latter presumably replacing functionally CuB of heme-copper oxidases. We show that NO, in competition with O2, rapidly and potently (Ki = 100 +/- 34 nM at approximately 70 microM O2) inhibits cytochrome bd isolated from Escherichia coli and Azotobacter vinelandii in turnover, inhibition being quickly and fully reverted upon NO depletion. Under anaerobic reducing conditions, neither of the two enzymes reveals NO reductase activity, which is proposed to be associated with CuB in heme-copper oxidases.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow 119992, Russian Federation
| | | | | | | | | | | |
Collapse
|
54
|
Zhang J, Barquera B, Gennis RB. Gene fusions with β-lactamase show that subunit I of the cytochromebdquinol oxidase fromE. colihas nine transmembrane helices with the O2reactive site near the periplasmic surface. FEBS Lett 2004; 561:58-62. [PMID: 15013751 DOI: 10.1016/s0014-5793(04)00125-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 01/09/2004] [Indexed: 11/25/2022]
Abstract
The cytochrome bd quinol oxidase is a component of the respiratory chain of many prokaryotes. The enzyme contains two subunits, CydA and CydB, which were initially predicted based on the sequence of the Escherichia coli oxidase to have seven and eight transmembrane spans, respectively. More recently, the topological model of CydA was revised to predict nine transmembrane helices, based on additional sequence information from other organisms. In the current work, the topology of the E. coli oxidase was experimentally examined using beta-lactamase gene fusions. The results confirm the revised topology, which places the oxygen reactive site near the periplasmic surface.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biochemistry, University of Illinois, 600 South Mathews Street, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
55
|
Immoos CE, Bhaskar B, Cohen MS, Barrows TP, Farmer PJ, Poulos TL. Mesopone cytochrome c peroxidase: functional model of heme oxygenated oxidases. J Inorg Biochem 2002; 91:635-43. [PMID: 12237229 DOI: 10.1016/s0162-0134(02)00447-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of heme ring oxygenation on enzyme structure and function has been examined in a reconstituted cytochrome c peroxidase. Oxochlorin derivatives were formed by OsO(4) treatment of mesoporphyrin followed by acid-catalyzed pinacol rearrangement. The northern oxochlorin isomers were isolated by chromatography, and the regio-isomers assignments determined by 2D COSY and NOE 1H NMR. The major isomer, 4-mesoporphyrinone (Mp), was metallated with FeCl(2) and reconstituted into cytochrome c peroxidase (CcP) forming a hybrid green protein, MpCcP. The heme-altered enzyme has 99% wild-type peroxidase activity with cytochrome c. EPR spectroscopy of MpCcP intermediate compound I verifies the formation of the Trp(191) radical similar to wild-type CcP in the reaction cycle. Peroxidase activity with small molecules is varied: guaiacol turnover increases approximately five-fold while that with ferrocyanide is approximately 85% of native. The electron-withdrawing oxo-substitutents on the cofactor cause a approximately 60-mV increase in Fe(III)/Fe(II) reduction potential. The present investigation represents the first structural characterization of an oxochlorin protein with X-ray intensity data collected to 1.70 A. Although a mixture of R- and S-mesopone isomers of the FeMP cofactor was used during heme incorporation into the apo-protein, only the S-isomer is found in the crystallized protein.
Collapse
Affiliation(s)
- Chad E Immoos
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | | | |
Collapse
|
56
|
Borisov VB, Sedelnikova SE, Poole RK, Konstantinov AA. Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO. J Biol Chem 2001; 276:22095-9. [PMID: 11283005 DOI: 10.1074/jbc.m011542200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azotobacter vinelandii is an obligately aerobic bacterium in which aerotolerant dinitrogen fixation requires cytochrome bd. This oxidase comprises two polypeptide subunits and three hemes, but no copper, and has been studied extensively. However, there remain apparently conflicting reports on the reactivity of the high spin heme b(595) with ligands. Using purified cytochrome bd, we show that absorption changes induced by CO photodissociation from the fully reduced cytochrome bd at low temperatures demonstrate binding of the ligand with heme b(595). However, the magnitude of these changes corresponds to the reaction with CO of only about 5% of the heme. CO binding with a minor fraction of heme b(595) is also revealed at room temperature by time-resolved studies of CO recombination. The data resolve the apparent discrepancies between conclusions drawn from room and low temperature spectroscopic studies of the CO reaction with cytochrome bd. The results are consistent with the proposal that hemes b(595) and d form a diheme oxygen-reducing center with a binding capacity for a single exogenous ligand molecule that partitions between the hemes d and b(595) in accordance with their intrinsic affinities for the ligand. In this model, the affinity of heme b(595) for CO is about 20-fold lower than that of heme d.
Collapse
Affiliation(s)
- V B Borisov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | |
Collapse
|
57
|
Bebbington KJ, Williams HD. A role for DNA supercoiling in the regulation of the cytochrome bd oxidase of Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2001; 147:591-598. [PMID: 11238966 DOI: 10.1099/00221287-147-3-591] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cydAB operon of Escherichia coli encodes cytochrome bd, a terminal oxidase in the aerobic respiratory chain. The high oxygen affinity of this oxidase explains its increased synthesis under low-oxygen conditions. Expression of the cydAB operon is controlled by the ArcA/ArcB two-component system and the oxygen-sensing transcriptional regulator Fnr. However, cydAB expression is still induced upon entry into stationary phase or following a shift to anaerobic conditions in a mutant deleted for arcA and fnr [Cotter, P. A. & Gunsalus, R. P. (1992), FEMS Microbiol Lett 91, 31-36]. Indeed, such a mutant contains 60% of the wild-type levels of spectrally detectable cytochrome bd. A possible mechanism to account for this regulation is that changes in negative supercoiling, which occur during a shift to low-oxygen or anaerobic conditions, may contribute to the regulation of the cydAB operon. This paper reports several lines of evidence in support of this idea. Firstly, the expression of cydAB, and the final level of spectrally detectable cytochrome bd, is sensitive to inhibitors of DNA gyrase, the enzyme responsible for introducing negative supercoils into DNA. Both nalidixic acid and novobiocin reduce cydA-lacZ expression in a concentration-dependent manner. Secondly, in a gyrA mutant, defective in DNA gyrase activity, expression of cydAB is reduced to a basal level that is no longer sensitive to the oxygen status. Both gyrase inhibitors and the gyrA mutation reduce cydAB expression in a strain deleted for arcA and fnr, indicating that their effects are not mediated indirectly through ArcA or Fnr, but rather that they are likely to be direct effects on cydAB expression. In conclusion, the authors have shown that changes in DNA supercoiling play a role in the induction of cydAB expression and may provide a general way of increasing cytochrome bd levels in the cell in response to environmental stress.
Collapse
Affiliation(s)
- Keren J Bebbington
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK1
| | - Huw D Williams
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK1
| |
Collapse
|
58
|
Tsubaki M, Hori H, Mogi T. Probing molecular structure of dioxygen reduction site of bacterial quinol oxidases through ligand binding to the redox metal centers. J Inorg Biochem 2000; 82:19-25. [PMID: 11132627 DOI: 10.1016/s0162-0134(00)00140-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytochromes bo and bd are structurally unrelated terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli. The high-spin heme o-CuB binuclear center serves as the dioxygen reduction site for cytochrome bo, and the heme b595-heme d binuclear center for cytochrome bd. CuB coordinates three histidine ligands and serves as a transient ligand binding site en route to high-spin heme o one-electron donor to the oxy intermediate, and a binding site for bridging ligands like cyanide. In addition, it can protect the dioxygen reduction site through binding of a peroxide ion in the resting state, and connects directly or indirectly Tyr288 and Glu286 to carry out redox-driven proton pumping in the catalytic cycle. Contrary, heme b595 of cytochrome bd participate a similar role to CuB in ligand binding and dioxygen reduction but cannot perform such versatile roles because of its rigid structure.
Collapse
Affiliation(s)
- M Tsubaki
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Akou-gun, Hyogo, Japan
| | | | | |
Collapse
|
59
|
Winstedt L, Frankenberg L, Hederstedt L, von Wachenfeldt C. Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J Bacteriol 2000; 182:3863-6. [PMID: 10851008 PMCID: PMC94564 DOI: 10.1128/jb.182.13.3863-3866.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned an Enterococcus faecalis gene cluster, cydABCD, which when expressed in Bacillus subtilis results in a functional cytochrome bd terminal oxidase. Our results indicate that E. faecalis V583 cells have the capacity of aerobic respiration when grown in the presence of heme.
Collapse
Affiliation(s)
- L Winstedt
- Department of Microbiology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
60
|
Koch HG, Winterstein C, Saribas AS, Alben JO, Daldal F. Roles of the ccoGHIS gene products in the biogenesis of the cbb(3)-type cytochrome c oxidase. J Mol Biol 2000; 297:49-65. [PMID: 10704306 DOI: 10.1006/jmbi.2000.3555] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many bacteria the ccoGHIS cluster, located immediately downstream of the structural genes (ccoNOQP) of cytochrome cbb(3) oxidase, is required for the biogenesis of this enzyme. Genetic analysis of ccoGHIS in Rhodobacter capsulatus demonstrated that ccoG, ccoH, ccoI and ccoS are expressed independently of each other, and do not form a simple operon. Absence of CcoG, which has putative (4Fe-4S) cluster binding motifs, does not significantly affect cytochrome cbb(3) oxidase activity. However, CcoH and CcoI are required for normal steady-state amounts of the enzyme. CcoI is highly homologous to ATP-dependent metal ion transporters, and appears to be involved in the acquisition of copper for cytochrome cbb(3) oxidase, since a CcoI-minus phenotype could be mimicked by copper ion starvation of a wild-type strain. Remarkably, the small protein CcoS, with a putative single transmembrane span, is essential for the incorporation of the redox-active prosthetic groups (heme b, heme b(3 )and Cu) into the cytochrome cbb(3) oxidase. Thus, the ccoGHIS products are involved in several steps during the maturation of the cytochrome cbb(3) oxidase.
Collapse
Affiliation(s)
- H G Koch
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | |
Collapse
|
61
|
Vos MH, Borisov VB, Liebl U, Martin JL, Konstantinov AA. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc Natl Acad Sci U S A 2000; 97:1554-9. [PMID: 10660685 PMCID: PMC26473 DOI: 10.1073/pnas.030528197] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1999] [Accepted: 12/06/1999] [Indexed: 11/18/2022] Open
Abstract
Interaction of the two high-spin hemes in the oxygen reduction site of the bd-type quinol oxidase from Escherichia coli has been studied by femtosecond multicolor transient absorption spectroscopy. The previously unidentified Soret band of ferrous heme b(595) was determined to be centered around 440 nm by selective excitation of the fully reduced unliganded or CO-bound cytochrome bd in the alpha-band of heme b(595). The redox state of the b-type hemes strongly affects both the line shape and the kinetics of the absorption changes induced by photodissociation of CO from heme d. In the reduced enzyme, CO photodissociation from heme d perturbs the spectrum of ferrous cytochrome b(595) within a few ps, pointing to a direct interaction between hemes b(595) and d. Whereas in the reduced enzyme no heme d-CO geminate recombination is observed, in the mixed-valence CO-liganded complex with heme b(595) initially oxidized, a significant part of photodissociated CO does not leave the protein and recombines with heme d within a few hundred ps. This caging effect may indicate that ferrous heme b(595) provides a transient binding site for carbon monoxide within one of the routes by which the dissociated ligand leaves the protein. Taken together, the data indicate physical proximity of the hemes d and b(595) and corroborate the possibility of a functional cooperation between the two hemes in the dioxygen-reducing center of cytochrome bd.
Collapse
Affiliation(s)
- M H Vos
- Institut National de la Santé et de la Recherche Médicale U451, Laboratoire d'Optique Appliquée, Ecole Polytechnique-Ecole Nationale Supérieure des Techniques Avancées, 91761 Palaiseau Cedex, France.
| | | | | | | | | |
Collapse
|
62
|
Sakamoto J, Koga E, Mizuta T, Sato C, Noguchi S, Sone N. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:147-58. [PMID: 10216161 DOI: 10.1016/s0005-2728(99)00012-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.
Collapse
Affiliation(s)
- J Sakamoto
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan.
| | | | | | | | | | | |
Collapse
|
63
|
Osborne JP, Gennis RB. Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:32-50. [PMID: 10076013 DOI: 10.1016/s0005-2728(98)00171-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous sequences of the cytochrome bd quinol oxidase (cytochrome bd) have recently become available for analysis. The analysis has revealed a small number of conserved residues, a new topology for subunit I and a phylogenetic tree involving extensive horizontal gene transfer. There are 20 conserved residues in subunit I and two in subunit II. Algorithms utilizing multiple sequence alignments predicted a revised topology for cytochrome bd, adding two transmembrane helices to subunit I to the seven that were previously indicated by the analysis of the sequence of the oxidase from E. coli. This revised topology has the effect of relocating the N-terminus and C-terminus to the periplasmic and cytoplasmic sides of the membrane, respectively. The new topology repositions I-H19, the putative ligand for heme b595, close to the periplasmic edge of the membrane, which suggests that the heme b595/heme d active site of the oxidase is located near the outer (periplasmic) surface of the membrane. The most highly conserved region of the sequence of subunit I contains the sequence GRQPW and is located in a predicted periplasmic loop connecting the eighth and ninth transmembrane helices. The potential importance of this region of the protein was previously unsuspected, and it may participate in the binding of either quinol or heme d. There are two very highly conserved glutamates in subunit I, E99 and E107, within the third transmembrane helix (E. coli cytochrome bd-I numbering). It is speculated that these glutamates may be part of a proton channel leading from the cytoplasmic side of the membrane to the heme d oxygen-reactive site, now placed near the periplasmic surface. The revised topology and newly revealed conserved residues provide a clear basis for further experimental tests of these hypotheses. Phylogenetic analysis of the new sequences of cytochrome bd reveals considerable deviation from the 16sRNA tree, suggesting that a large amount of horizontal gene transfer has occurred in the evolution of cytochrome bd.
Collapse
Affiliation(s)
- J P Osborne
- School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
64
|
Kavanagh EP, Callis JB, Edwards SE, Poole RK, Hill S. Redox poise and oxygenation of cytochrome bd in the diazotroph Azotobacter vinelandii assessed in vivo using diode-array reflectance spectrophotometry. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2271-2280. [PMID: 9720050 DOI: 10.1099/00221287-144-8-2271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A ferrous oxygenated form of cytochrome d is characteristic of all cytochrome bd-type oxidases so far examined, but its participation in enzyme turnover is unclear. It is relatively stable, occurs in aerated cell suspensions and predominates during enzyme preparation. In this study, diode-array reflectance spectrophotometry was used to assess the redox poise and oxygenation of cytochrome bd in vivo, in the aerobic diazotroph Azotobacter vinelandii. Mutants either lacking or overproducing the cytochrome bd oxidase were used to confirm the reliability of the optical configuration. Changes in absorbance attributed to cytochromes b, c and d were followed as the O2 supply was altered either in suspensions of harvested cells or during steady-state growth. In washed cell suspensions, three states of cytochrome d, which differed in absorbance characteristics, were seen: (1) an oxygenated form that absorbs at 650 nm, (2) a form which has little absorbance at either 650 or 630 nm and (3) the reduced form that absorbs at 630 nm. The transition between states 2 and 3, but not 1 and 2, correlated with the changes in the redox states of cytochromes b595 and b560. The dissolved O2 concentration at which this transition occurred coincided approximately with the apparent O2 affinity for the oxidase in vivo (approx. 5 microM). During steady-state growth, the cytochromes were partially reduced and the oxygenated form of cytochrome d was undetected. These in situ measurements support the view that an oxygenated form of cytochrome d (absorbing at 650 nm) in the one-electron-reduced cytochrome bd-type oxidase does not take part in enzyme turnover.
Collapse
Affiliation(s)
| | - James B Callis
- Nitrogen Fixation Laboratory, John Innes CentreNorwich NR4 7UHUK
| | - Sian E Edwards
- Division of Life SciencesKing's College London, Campden Hill Road, London W8 7AHUK
- Nitrogen Fixation Laboratory, John Innes CentreNorwich NR4 7UHUK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of SheffieldSheffield S10 2TNUK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes CentreNorwich NR4 7UHUK
| |
Collapse
|
65
|
Abstract
Reduction of the membrane-bound cytochrome bd from Bacillus subtilis, Escherichia coli and Azotobacter vinelandii as well as of the purified enzyme from E. coli was followed by secondary absorption changes on a time scale of tens of minutes. The difference absorption spectra of these changes resembled those induced by CO binding with heme d2+ indicating interaction of the heme with an endogenous pi-acceptor ligand. The spontaneous spectral changes were prevented and reversed by CO binding with the reduced cytochrome bd. Bonding of heme d iron to an endogenous protein ligand at the sixth axial position upon reduction is proposed and several possible mechanisms of such a process are considered.
Collapse
Affiliation(s)
- N Azarkina
- A.N. Belozerskiy Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
66
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
67
|
Affiliation(s)
- S Jünemann
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, UK.
| |
Collapse
|
68
|
Poole RK, Anjum MF, Membrillo-Hernández J, Kim SO, Hughes MN, Stewart V. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 1996; 178:5487-92. [PMID: 8808940 PMCID: PMC178372 DOI: 10.1128/jb.178.18.5487-5492.1996] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing glucose, glycerol, maltose, or sorbitol as a carbon source. Mutations in cya (encoding adenylate cyclase) or changes in medium pH between 5 and 9 were without effect on aerobic expression. Levels of aerobic and anaerobic expression in glucose-containing minimal media were similar; both were unaffected by an arcA mutation. Anaerobic, but not aerobic, expression of phi (hmp-lacZ)1 was stimulated three- to four-fold by an fnr mutation; an apparent Fnr-binding site is present in the hmp promoter. Iron depletion of rich broth medium by the chelator 2'2'-dipyridyl (0.1 mM) enhanced hmp expression 40-fold under anaerobic conditions, tentatively attributed to effects on Fnr. At a higher chelator concentration (0.4 mM), hmp expression was also stimulated aerobically. Anaerobic expression was stimulated 6-fold by the presence of nitrate and 25-fold by the presence of nitrite. Induction by nitrate or nitrite was unaffected by narL and/or narP mutations, demonstrating regulation of hmp by these ions via mechanisms alternative to those implicated in the regulation of other respiratory genes. Nitric oxide (10 to 20 microM) stimulated aerobic phi (hmp-lacZ)1 activity by up to 19-fold; soxS and soxR mutations only slightly reduced the NO effect. We conclude that hmp expression is negatively regulated by Fnr under anaerobic conditions and that additional regulatory mechanisms are involved in the responses to oxygen, nitrogen compounds, and iron availability. Hmp is implicated in reactions with small nitrogen compounds.
Collapse
Affiliation(s)
- R K Poole
- Division of Life Sciences, King's College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
69
|
Hori H, Tsubaki M, Mogi T, Anraku Y. EPR study of NO complex of bd-type ubiquinol oxidase from Escherichia coli. J Biol Chem 1996; 271:9254-8. [PMID: 8621585 DOI: 10.1074/jbc.271.16.9254] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The heme axial ligands of bd-type ubiquinol oxidase of Escherichia coli were studied by EPR and optical spectroscopies using nitric oxide (NO) as a monitoring probe. We found that NO bound to ferrous heme d of the air-oxidized and fully reduced enzymes with very high affinity and to ferrous heme b595 of the fully reduced enzyme with low affinity. EPR spectrum of the 14NO complex of the reduced enzyme exhibited an axially symmetric signal with g-values at g = 2.041 and g = 1.993 and a clear triplet of triplet (or a triplet of doublet for the 15NO complex) superhyperfine structure originating from a nitrogenous proximal ligand trans to NO was observed. This EPR species was assigned to the ferrous heme d-NO complex. This suggests that the proximal axial ligand of heme d is a histidine residue in an anomalous condition or other nitrogenous amino acid residue. Furthermore, the EPR line shape of the ferrous heme d-NO was slightly influenced by the oxidation state of the heme b595. This indicates that heme d exists in close proximity to heme b595 forming a binuclear center. Another axially symmetric EPR signal with g-values at g(parallel) = 2.108 and g(perpendicular) = 2.020 appeared after prolonged incubation of the reduced enzyme with NO and was attributed to the ferrous heme b595-NO complex.
Collapse
Affiliation(s)
- H Hori
- Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | |
Collapse
|
70
|
D'mello R, Hill S, Poole RK. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):755-763. [PMID: 8936304 DOI: 10.1099/00221287-142-4-755] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytochrome bd is a respiratory oxidase in Escherichia coli and many other bacteria. It contains cytochromes b558, b595 and d as redox centres, and is thus unrelated to the haem-copper super-family of terminal oxidases. The apparent affinities (Km) for oxygen uptake by respiring cells and membranes from a mutant lacking the alternative oxidase cytochrome bo' were determined by deoxygenation of oxyleghaemoglobin as a sensitive reporter of dissolved oxygen concentration. Respiration rates were maximal at oxygen concentrations of 25-50 nM, but the kinetics were complex and indicative of substrate (i.e. oxygen) inhibition. Km values were in the range 3-8 nM (the lowest recorded for a respiratory oxidase), and Ki values between 0.5 and 1.8 microM were obtained. Low temperature photodissociation of anoxic, CO-ligated membranes confirmed the absence of cytochrome bo' and revealed a high-spin b-type cytochrome identified as cytochrome b595 of the cytochrome bd complex. Photodissociation in the presence of oxygen revealed binding of a ligand (presumably oxygen) to cytochrome b595 at a rate much greater than that of CO binding, and formation of the oxygenated form of cytochrome d. The results confirm that both high-spin haems in the cytochrome bd complex bind CO and demonstrate that oxygen can also react with both haems. Substrate inhibition of oxidase activity, in addition to transcriptional regulation of oxidase synthesis, may play a crucial role in the regulation of partitioning of electron flux between the cytochrome bd- and bo'-terminated respiratory pathways.
Collapse
Affiliation(s)
- Rita D'mello
- Division of Life Sciences, King's College London, Campden Hill Road, London W8 7AH, UK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Robert K Poole
- Division of Life Sciences, King's College London, Campden Hill Road, London W8 7AH, UK
| |
Collapse
|
71
|
Tsubaki M, Hori H, Mogi T, Anraku Y. Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli. J Biol Chem 1995; 270:28565-9. [PMID: 7499371 DOI: 10.1074/jbc.270.48.28565] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We extended our investigation on the structure of the redox centers of bd-type ubiquinol oxidase from Escherichia coli using cyanide as a monitoring probe. We found that addition of cyanide to the air-oxidized O2-bound enzyme caused appearance of an infrared C-N stretching band at 2161 cm-1 and concomitant disappearance of the 647 nm absorption band of the cytochrome d (Fe2+)-O2 species. Addition of cyanide to the air-oxidized CO-bound enzyme also resulted in disappearance of the 635 nm absorption band and the 1983.4 cm-1 C-O infrared band of the cytochrome d (Fe2+)-CO species. The resulting species had a derivative-shaped electron paramagnetic resonance signal at g = 3.15. Upon partial reduction with sodium dithionite, this species was converted partly to a transient heme d (Fe3+)-C = N species having an electron paramagnetic resonance signal at gz = 2.96 and a C-N infrared band at 2138 cm-1. These observations suggest that the active site of the enzyme has a heme-heme binuclear metal center distinct from that of the heme-copper terminal oxidase and that the treatment of the air-oxidized enzyme with cyanide resulted in a cyanide-bridging species with "heme d(Fe3+)-C = N-heme b595(Fe3+)" structure.
Collapse
Affiliation(s)
- M Tsubaki
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Hyogo, Japan
| | | | | | | |
Collapse
|
72
|
Sun J, Osborne JP, Kahlow MA, Kaysser TM, Hil JJ, Gennis RB, Loehr TM. Resonance Raman studies of Escherichia coli cytochrome bd oxidase. Selective enhancement of the three heme chromophores of the "as-isolated" enzyme and characterization of the cyanide adduct. Biochemistry 1995; 34:12144-51. [PMID: 7547954 DOI: 10.1021/bi00038a007] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytochrome bd oxidase is a terminal bacterial oxidase containing three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be at a dinuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinone. One of the unique functional features of this enzyme is its resistance to high concentrations of cyanide (Ki in the millimolar range). With the appropriate selection of laser lines, the ligation and spin states of the b558, b595, and d hemes can be probed selectively by resonance Raman (rR) spectroscopy. Wavelengths between 400 and 500 nm predominantly excite the rR spectra of the b558 and b595 chromophores. Spectra obtained within this interval show a mixed population of spin and ligation states arising from b558 and b595, with the former more strongly enhanced at higher energy. Red excitation wavelengths (590-650 nm) generate rR spectra characteristic of chlorins, indicating the selective enhancement of the d heme. These rR results reveal that cytochrome bd oxidase "as isolated" contains the b558 heme in a six-coordinate low-spin ferric state, the b595 heme in a five-coordinate high-spin (5cHS) ferric state, and the d heme in a mixture of oxygenated (FeIIO2 <--> FeIIIO2-; d650) and ferryl-oxo (FeIV = O; d680) states. However, the rR spectra of these two chlorin species indicate that they are both in the 5cHS state, suggesting that the d heme is lacking a strongly coordinated sixth ligand.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Sun
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Jünemann S, Wrigglesworth JM. Cytochrome bd oxidase from Azotobacter vinelandii. Purification and quantitation of ligand binding to the oxygen reduction site. J Biol Chem 1995; 270:16213-20. [PMID: 7608187 DOI: 10.1074/jbc.270.27.16213] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytochrome bd has been purified from Azotobacter vinelandii by a new simplified procedure. The heme and total iron content has been measured, as has the number of high affinity CO and NO binding sites. Spectral changes indicate high affinity binding of CO and NO to heme d only, with a stoichiometry of 1 molecule of gas per 2 molecules of heme b or per 3 atoms of iron. The results clearly define a stoichiometry of one heme d per complex. Low affinity binding of CO and NO to heme b595 also occurs at higher ligand concentrations. EPR heme-nitrosyl signals are seen with NO bound to both hemes b595 and d but with no indication of spin exchange coupling. Exposure of the air-oxidized complex to alkaline pH results in removal of molecular oxygen from heme d and a change in line shape of the high spin region of the EPR spectrum. Cyanide binds to both heme d and heme b595 in the air-oxidized complex, displacing molecular oxygen from heme d. The rate of cyanide binding to heme d as assessed by spectral changes at 650 nm does not correlate with the rate of binding to heme b595 as assessed by the loss of the high spin EPR signal. In addition, the cyanide binding rate in the presence of reductant is only 3 times that of the rate of binding to the air-oxidized enzyme, in contrast to the copper-containing oxidases where strong redox cooperativity makes these two rates differ by a factor of at least 10(6). The results do not support the idea of the presence of two strongly interacting hemes in a binuclear center.
Collapse
Affiliation(s)
- S Jünemann
- Metals in Biology and Medicine Centre, King's College London, United Kingdom
| | | |
Collapse
|
74
|
Hirota S, Mogi T, Anraku Y, Gennis RB, Kitagawa T. Resonance raman study on axial ligands of heme irons in cytochromebd-type ubiquinol oxidase fromEscherichia coli. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/bspy.350010502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
75
|
Hill BC, Hill JJ, Gennis RB. The room temperature reaction of carbon monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia coli. Biochemistry 1994; 33:15110-5. [PMID: 7999770 DOI: 10.1021/bi00254a021] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
When grown under O2-limited conditions, Escherichia coli expresses a cytochrome bd quinol oxidase that has an unusually high affinity for O2. We have studied the reaction of cytochrome bd with CO and O2 by rapid-reaction spectrophotometry. The reduced enzyme forms a photosensitive ferrocytochrome d-CO complex, and following photolysis, CO recombines with the reduced enzyme with a bimolecular rate of 8 x 10(7) M-1 s-1. Reaction of CO-bound enzyme with O2 gives a CO off-rate of 1.6 s-1. The O2 reaction is followed by a flow-flash procedure in which CO-ligated enzyme is mixed with O2, and the reaction commenced by photolysis of cytochrome d-CO. In the presence of O2, two processes are resolved on a time-scale of 300 microseconds. The absorbance at 645 nm first increases at a rate that is dependent on O2 concentration with a value of 2 x 10(9) M-1 s-1. The second phase results in decreased absorbance at 645 nm and increased absorbance at 680 nm. The rate of the second process is independent from O2 concentration above 50 microM O2 and reaches a first-order limit of 1 x 10(4) s-1. A model for the reaction of the cytochrome bd quinol oxidase with O2 is proposed in which an initial ferrocytochrome d-oxy adduct forms, and then decays to a ferryl-oxo species. The oxidation of the low-spin cytochrome b component of the oxidase, monitored at 560 nm, occurs at the same time as the ferryl species forms. We suggest that the suitability of the cytochrome bd quinol oxidase to function at low O2 concentration is conferred by its rapid rate of binding O2.
Collapse
Affiliation(s)
- B C Hill
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
76
|
Kolonay JF, Moshiri F, Gennis RB, Kaysser TM, Maier RJ. Purification and characterization of the cytochrome bd complex from Azotobacter vinelandii: comparison to the complex from Escherichia coli. J Bacteriol 1994; 176:4177-81. [PMID: 8021200 PMCID: PMC205620 DOI: 10.1128/jb.176.13.4177-4181.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Partial purification of a cytochrome bd complex from Azotobacter vinelandii grown under high aeration was achieved by isolating respiratory particles enriched in this hemoprotein via differential centrifugation and detergent extraction. The cytochrome bd complex was subsequently solubilized from the inner membrane with dodecyl maltoside and purified to near homogeneity via DEAE-Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the complex consisted of two subunits, with sizes in good agreement with those predicted from the cloned cyd locus (59.7 and 42 kDa). Spectral analysis of the purified complex indicated that the heme components present were cytochromes b560, b595, and d; CO difference spectral studies identified cytochrome d as a CO-reactive component. The complex had a Km for ubiquinol-1 approximately seven times larger than that for the analogous bd complex from Escherichia coli, and O2 consumption curves revealed a Km value for O2 three times greater than that which we determined for the E. coli bd complex.
Collapse
Affiliation(s)
- J F Kolonay
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | | | |
Collapse
|
77
|
Poole RK. Oxygen reactions with bacterial oxidases and globins: binding, reduction and regulation. Antonie Van Leeuwenhoek 1994; 65:289-310. [PMID: 7832588 DOI: 10.1007/bf00872215] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oxygen is favoured as terminal electron acceptor in aerobic and facultative microorganisms because of its appropriate physical state, satisfactory solubility and its desirable combinations of kinetic and thermodynamic properties. Oxygen is generally reduced by four electrons to yield oxygen, but there are important biological consequences of, and roles for, the partial reduction to superoxide and peroxide. Complex and multiple regulatory networks ensure (i) the utilization of oxygen in preference to other oxidants, (ii) the synthesis of oxygen-consuming enzymes with appropriate properties (particularly affinity for the ligand), and (iii) appropriate cellular protection in the event of oxidative stress. This contribution reviews the terminal respiratory oxidases of selected Gram-negative bacteria and microbial haemoglobin-like proteins. Recent studies of the cytochrome bd-type oxidases of Escherichia coli and Azotobacter vinelandii suggest that, despite probable similarity at the amino acid level, the reactivities of these oxidases with oxygen are strikingly different. The respiratory protection afforded to nitrogenase in the obligately aerobic diazotroph A. vinelandii by the cytochrome bd complex appears to be accompanied by, and may be the result of, a low affinity for oxygen and a high Vmax. The poorly characterized cytochrome o-containing oxidase in this bacterium is not required for respiratory protection. In E. coli, the cytochrome bd-type oxidase has a remarkably high affinity for oxygen, consistent with the view that this is an oxygen-scavenging oxidase utilized under microaerobic conditions. The demonstration of substrate (i.e. oxygen) inhibition in this complex suggests a mechanism whereby wasteful electron flux through a non-proton-pumping oxidase is avoided at higher dissolved oxygen tensions. The demonstration of two ligand-binding sites (haems d and b595) in oxidases of this type suggests plausible mechanisms for this phenomenon. In E. coli, assembly of the cytochrome bd-type oxidase (and of periplasmic cytochromes b and c) requires the presence of an ABC transporter, which may serve to export haem or some "assembly factor" to the periplasm. There is at least one additional oxygen-consuming protein in E. coli-the flavohaemoglobin encoded by the hmp gene. Globin-like proteins are also widely distributed in other bacteria, fungi and protozoa, but most have unknown functions. The function of HMP and the related chimaeric flavohaemoglobins in other bacteria and yeast is unknown; one of several possibilities for HMP is that its relatively low affinity for oxygen during turnover with NADH as substrate could enable it to function as a sensor of failing (or rising) cytoplasmic oxygen concentrations.
Collapse
Affiliation(s)
- R K Poole
- Division of Life Sciences, King's College London, U.K
| |
Collapse
|
78
|
Affiliation(s)
- S M Musser
- California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
79
|
Tsubaki M, Uno T, Hori H, Mogi T, Nishimura Y, Anraku Y. Cytochrome d axial ligand of the bd-type terminal quinol oxidase from Escherichia coli. FEBS Lett 1993; 335:13-7. [PMID: 8243657 DOI: 10.1016/0014-5793(93)80430-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using various spectroscopic techniques, we studied the structure of the dioxygen reduction site of the bd-type terminal quinol oxidase in the aerobic respiratory chain of Escherichia coli. Resonance Raman and FT-IR spectroscopies identified the v(Fe(2+)-CO) and v(C-O) stretching frequencies at 471 and 1980.7 cm-1, respectively, at the cytochrome d center of the dithionite-reduced CO-bound enzyme. The CO ligation in the cytochrome bd complex is considerably different from those of the heme-copper terminal oxidases. Anaerobic addition of NO to the air-oxidized enzyme caused an exchange of cytochrome d-bound dioxygen with NO leading to an appearance of cytochrome d-NO EPR signal. But there is no superhyperfine structure originating from the cytochrome d proximal 14N ligand in the central resonance of the NO EPR signal. These results suggest that cytochrome d axial ligand of the cytochrome bd complex is likely a histidine residue in an anomalous condition or other than a histidine residue and, therefore, the molecular structure around the dioxygen-binding site is different from that of the heme-copper terminal oxidases.
Collapse
Affiliation(s)
- M Tsubaki
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Calhoun MW, Hill JJ, Lemieux LJ, Ingledew WJ, Alben JO, Gennis RB. Site-directed mutants of the cytochrome bo ubiquinol oxidase of Escherichia coli: amino acid substitutions for two histidines that are putative CuB ligands. Biochemistry 1993; 32:11524-9. [PMID: 8218219 DOI: 10.1021/bi00094a008] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The bo-type ubiquinol oxidase of Escherichia coli is a member of the superfamily of structurally related heme-copper respiratory oxidases. The members of this family, which also includes the aa3-type cytochrome c oxidases, contain at least two heme prosthetic groups, a six-coordinate low-spin heme, and a high-spin heme. The high-spin heme is magnetically coupled to a copper, CuB, forming a binuclear center which is the site of oxygen reduction to water. Vectorial proton translocation across the membrane bilayer appears to be another common feature of this superfamily of oxidases. It has been proposed previously that the two adjacent histidines in putative transmembrane helix VII (H333 and H334 in the E. coli sequence) of the largest subunit of the heme-copper oxidases are ligands to CuB. Previously reported mutagenesis studies of the E. coli bo-type oxidase and the aa3-type oxidase of Rhodobacter sphaeroides supported this model, as substitutions at these two positions produced nonfunctional enzymes but did not perturb the visible spectra of the two heme groups. In this work, six different amino acids, including potential copper-liganding residues, were substituted for H333 and H334 of the E. coli oxidase. All of the mutations resulted in inactive, but assembled, oxidase with both of the heme components present. However, cryogenic Fourier transform infrared (FTIR) spectroscopy of the CO adducts revealed that dramatic changes occur at the binuclear center as a result of each mutation and that CuB appears to be absent.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M W Calhoun
- School of Chemical Sciences, University of Illinois, Urbana 61801
| | | | | | | | | | | |
Collapse
|
81
|
Thomas JW, Lemieux LJ, Alben JO, Gennis RB. Site-directed mutagenesis of highly conserved residues in helix VIII of subunit I of the cytochrome bo ubiquinol oxidase from Escherichia coli: an amphipathic transmembrane helix that may be important in conveying protons to the binuclear center. Biochemistry 1993; 32:11173-80. [PMID: 8218180 DOI: 10.1021/bi00092a029] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome bo from Escherichia coli is a ubiquinol oxidase which is a member of the superfamily of heme-copper respiratory oxidases. This superfamily, which includes the eukaryotic cytochrome c oxidases, has in common a bimetallic center consisting of a high-spin heme component and a copper atom (CuB) which is the site where molecular oxygen is reduced to water. Subunit I, which contains all the amino acid ligands to the metal components of the binuclear center, has 15 putative transmembrane spanning helices, of which 12 are common to the entire superfamily. Transmembrane helix VIII has been noted to contain highly conserved polar residues that fall along one face of the helix. These residues could, in principle, be important components of a pathway providing a conduit for protons from the cytoplasm to gain access to the binuclear center. These conserved residues include Thr352, Thr359, and Lys362. In addition, Pro358, in the middle of this transmembrane helix, is totally conserved in the superfamily. Some substitutions for Thr352 (Ala, Asn) result in major perturbations at the binuclear center as judged by the low-temperature Fourier transform infrared (FTIR) absorbance difference spectroscopy of the CO adducts. Whereas Thr352Ala is inactive enzymatically, both Thr352Asn and Thr352Ser have substantial activity. Substitutions for Thr359 (Ala or Ser) also do not perturb the spectroscopic properties of the binuclear metal center, but the Thr359Ala mutant is devoid of enzyme activity. Changing the neighboring Pro358 to Ala has no detectable effect on the properties of the oxidase. However, all substitutions for Lys362 (Leu, Met, Gln, or Arg) are inactive.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J W Thomas
- School of Chemical Sciences, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|