51
|
Richard-Fogal CL, Frawley ER, Feissner RE, Kranz RG. Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 2006; 189:455-63. [PMID: 17085564 PMCID: PMC1797374 DOI: 10.1128/jb.01388-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies have indicated that specific heme delivery to apocytochrome c is a critical feature of the cytochrome c biogenesis pathways called system I and II. To determine directly the heme requirements of each system, including whether other metal porphyrins can be incorporated into cytochromes c, we engineered Escherichia coli so that the natural system I (ccmABCDEFGH) was deleted and exogenous porphyrins were the sole source of porphyrins (Delta hemA). The engineered E. coli strains that produced recombinant system I (from E. coli) or system II (from Helicobacter) facilitated studies of the heme concentration dependence of each system. Using this exogenous porphyrin approach, it was shown that in system I the levels of heme used are at least fivefold lower than the levels used in system II, providing an important advantage for system I. Neither system could assemble holocytochromes c with other metal porphyrins, suggesting that the attachment mechanism is specific for Fe protoporphyrin. Surprisingly, Zn and Sn protoporphyrins are potent inhibitors of the pathways, and exogenous heme competes with this inhibition. We propose that the targets are the heme binding proteins in the pathways (CcmC, CcmE, and CcmF for system I and CcsA for system II).
Collapse
|
52
|
Feissner RE, Richard-Fogal CL, Frawley ER, Kranz RG. ABC transporter-mediated release of a haem chaperone allows cytochromecbiogenesis. Mol Microbiol 2006; 61:219-31. [PMID: 16824107 DOI: 10.1111/j.1365-2958.2006.05221.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP-binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead-end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP-dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.
Collapse
Affiliation(s)
- Robert E Feissner
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
53
|
Allen JWA, Ferguson SJ. The Escherichia coli cytochrome c maturation (Ccm) apparatus can mature cytochromes with an extra cysteine within or adjacent to the CXXCH motif. Biochem Soc Trans 2006; 34:91-3. [PMID: 16417490 DOI: 10.1042/bst0340091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-Type cytochromes are characterized by covalent attachment of haem to protein through thioether bonds between the vinyl groups of the haem and the thiols of a Cys-Xaa-Xaa-Cys-His motif. Proteins of this type play crucial roles in the biochemistry of the nitrogen cycle. Many Gram-negative bacteria use the Ccm (cytochrome c maturation) proteins for the post-translational haem attachment to their c-type cytochromes. The Ccm system can correctly mature c-type cytochromes with CCXXCH, CCXCH, CXCCH and CXXCHC motifs, even though these are not found naturally and the extra cysteine might, in principle, disrupt the biogenesis proteins. The non-occurrence of these motifs probably relates to the destructive chemistry that can occur if a free thiol reacts with haem iron to generate a radical.
Collapse
Affiliation(s)
- J W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
54
|
Sun N, Wang A, Cowley AB, Altuve A, Rivera M, Benson DR. Enhancing the stability of microsomal cytochrome b5: a rational approach informed by comparative studies with the outer mitochondrial membrane isoform. Protein Eng Des Sel 2005; 18:571-9. [PMID: 16246823 DOI: 10.1093/protein/gzi067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The outer mitochondrial membrane isoform of mammalian cytochrome b5 (OM b5) is much less prone to lose heme than the microsomal isoform (Mc b5), with a conserved difference at position 71 (leucine versus serine) playing a major role. We replaced Ser71 in Mc b5 with Leu, with the prediction that it would retard heme loss by diminishing polypeptide expansion accompanying rupture of the histidine to iron bonds. The strategy was partially successful in that it slowed dissociation of heme from its less stable orientation in bMc b5 (B). Heme dissociation from orientation A was accelerated to a similar extent, however, apparently owing to increased binding pocket dynamic mobility related to steric strain. A second mutation (L32I) guided by results of previous comparative studies of Mc and OM b5s diminished the steric strain, but much greater relief was achieved by replacing heme with iron deuteroporphyrin IX (FeDPIX). Indeed, the stability of the Mc(S71L) b5 FeDPIX complex is similar to that of the FeDPIX complex of OM b5. The results suggest that maximizing heme binding pocket compactness in the apo state is a useful general strategy for increasing the stability of engineered or designed proteins.
Collapse
Affiliation(s)
- Na Sun
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
55
|
Lin YW, Wang WH, Zhang Q, Lu HJ, Yang PY, Xie Y, Huang ZX, Wu HM. Converting Cytochrome b5 into cytochrome c-like protein. Chembiochem 2005; 6:1356-9. [PMID: 15977276 DOI: 10.1002/cbic.200500030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying-Wu Lin
- Chemical Biology Lab, Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Allen J, Ginger M, Ferguson S. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochem J 2005; 383:537-42. [PMID: 15500440 PMCID: PMC1133747 DOI: 10.1042/bj20040832] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system.
Collapse
Affiliation(s)
- James W. A. Allen
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email or )
| | - Michael L. Ginger
- †Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
- To whom correspondence should be addressed (email or )
| | - Stuart J. Ferguson
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
57
|
Stevens JM, Daltrop O, Allen JWA, Ferguson SJ. C-type cytochrome formation: chemical and biological enigmas. Acc Chem Res 2004; 37:999-1007. [PMID: 15609992 DOI: 10.1021/ar030266l] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
C-type cytochromes are proteins that are essential for the life of virtually all organisms. They characteristically contain heme that is covalently attached via thioether bonds to two cysteines in the protein. In this Account, we describe the challenging chemistry of thioether bond formation and the surprising variety of biogenesis systems that exist in nature to perform the difficult posttranslational heme attachment process. We show what insight has been gained into the various biogenesis systems from in vitro and in vivo experiments and highlight some forthcoming challenges in this field.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
58
|
Stevens JM, Gordon EH, Ferguson SJ. Overproduction of CcmABCDEFGH restores cytochrome c maturation in a DsbD deletion strain of E. coli: another route for reductant? FEBS Lett 2004; 576:81-5. [PMID: 15474015 DOI: 10.1016/j.febslet.2004.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
The multidomain transmembrane protein DsbD is essential for cytochrome c maturation (Ccm) in Escherichia coli and transports reductant to the otherwise oxidising environment of the bacterial periplasm. The Ccm proteins ABCDEFGH are also essential and we show that the overproduction of these proteins can unexpectedly complement for the absence of DsbD in a deletion strain by partially restoring the production of an exogenous c-type cytochrome under aerobic and anaerobic conditions. This suggests that one or more of the Ccm proteins can provide reductant to the periplasm. The Ccm proteins do not, however, restore the normal disulfide mis-isomerisation phenotype of the deletion strain, as shown by assay of the multidisulfide-bonded enzyme urokinase.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
59
|
Zhu H, Larade K, Jackson TA, Xie J, Ladoux A, Acker H, Berchner-Pfannschmidt U, Fandrey J, Cross AR, Lukat-Rodgers GS, Rodgers KR, Bunn HF. NCB5OR is a novel soluble NAD(P)H reductase localized in the endoplasmic reticulum. J Biol Chem 2004; 279:30316-25. [PMID: 15131110 PMCID: PMC3045664 DOI: 10.1074/jbc.m402664200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NAD(P)H cytochrome b5 oxidoreductase, Ncb5or (previously named b5+b5R), is widely expressed in human tissues and broadly distributed among the animal kingdom. NCB5OR is the first example of an animal flavohemoprotein containing cytochrome b5 and chrome b5 reductase cytodomains. We initially reported human NCB5OR to be a 487-residue soluble protein that reduces cytochrome c, methemoglobin, ferricyanide, and molecular oxygen in vitro. Bioinformatic analysis of genomic sequences suggested the presence of an upstream start codon. We confirm that endogenous NCB5OR indeed has additional NH2-terminal residues. By performing fractionation of subcellular organelles and confocal microscopy, we show that NCB5OR colocalizes with calreticulin, a marker for endoplasmic reticulum. Recombinant NCB5OR is soluble and has stoichiometric amounts of heme and flavin adenine dinucleotide. Resonance Raman spectroscopy of NCB5OR presents typical signatures of a six-coordinate low-spin heme similar to those found in other cytochrome b5 proteins. Kinetic measurements showed that full-length and truncated NCB5OR reduce cytochrome c actively in vitro. However, both full-length and truncated NCB5OR produce superoxide from oxygen with slow turnover rates: kcat = approximately 0.05 and approximately 1 s(-1), respectively. The redox potential at the heme center of NCB5OR is -108 mV, as determined by potentiometric titrations. Taken together, these data suggest that endogenous NCB5OR is a soluble NAD(P)H reductase preferentially reducing substrate(s) rather than transferring electrons to molecular oxygen and therefore not an NAD(P)H oxidase for superoxide production. The subcellular localization and redox properties of NCB5OR provide important insights into the biology of NCB5OR and the phenotype of the Ncb5or-null mouse.
Collapse
Affiliation(s)
- Hao Zhu
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- To whom correspondence may be addressed: Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115. Tel.: 617-278-0870; Fax: 617-739-0748;
| | - Kevin Larade
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Timothy A. Jackson
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jianxin Xie
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Annie Ladoux
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Helmut Acker
- Labor fuer optische Systemphysiologie, Max-Planck-Institut fuer molekulare Physiologie, 44227 Dortmund, Germany
| | - Utta Berchner-Pfannschmidt
- Labor fuer optische Systemphysiologie, Max-Planck-Institut fuer molekulare Physiologie, 44227 Dortmund, Germany
- Universitätsklinikum Essen, Institut fuer Physiologie, 45122 Essen, Germany
| | - Joachim Fandrey
- Universitätsklinikum Essen, Institut fuer Physiologie, 45122 Essen, Germany
| | - Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | | | - Kenton R. Rodgers
- Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105-5516
| | - H. Franklin Bunn
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- To whom correspondence may be addressed: Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115. Tel.: 617-732-5841; Fax: 617-739-0748;
| |
Collapse
|
60
|
Allen JWA, Daltrop O, Stevens JM, Ferguson SJ. C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems. Philos Trans R Soc Lond B Biol Sci 2003; 358:255-66. [PMID: 12594933 PMCID: PMC1693095 DOI: 10.1098/rstb.2002.1192] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C-type cytochromes are a structurally diverse group of haemoproteins, which are related by the occurrence of haem covalently attached to a polypeptide via two thioether bonds formed by the vinyl groups of haem and cysteine side chains in a CXXCH peptide motif. Remarkably, three different post-translational systems for forming these cytochromes have been identified. The evolution of both the proteins themselves and the biogenesis systems poses many questions to which answers are currently being sought. In this article we review the progress that has been made in understanding the need for covalent attachment of haem to proteins in cytochromes c and the complex systems involved in their formation.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
61
|
Abstract
When treated with dithionite at neutral pH, the recombinant hemoglobin from Synechocystis sp. PCC 6803 reconstituted with ferric heme undergoes a rapid chemical reaction resulting in the attachment of the heme group to the polypeptide chain. The nature of the cross-linked species was studied by NMR and mass spectral methods. 1H NMR data indicated that the 2-vinyl group was the reacting moiety of the heme. Mass spectrometry of pepsin digests located the site of attachment within a 12-mer at the C-terminal end of the protein. Homonuclear and 1H-15N NMR data identified the modified residue as His117, which underwent addition to the vinyl Calpha through the imidazole Nepsilon. Dithionite treatment of the globin reconstituted with Zn protoporphyrin IX sample did not lead to 2-vinyl group modification, suggesting that the chemical reduction of the heme iron facilitated the attachment.
Collapse
Affiliation(s)
- B Christie Vu
- Department of Chemistry and the Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
62
|
Daltrop O, Stevens JM, Higham CW, Ferguson SJ. The CcmE protein of the c-type cytochrome biogenesis system: unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apocytochrome. Proc Natl Acad Sci U S A 2002; 99:9703-8. [PMID: 12119398 PMCID: PMC124985 DOI: 10.1073/pnas.152120699] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three key steps of cytochrome c biogenesis in many Gram-negative bacteria, the uptake of heme by the heme chaperone CcmE, the covalent attachment of heme to CcmE, and its subsequent release from CcmE to an apocytochrome c, have been achieved in vitro. apo-CcmE from Escherichia coli preferentially bound to ferric, with high affinity (K(d), 200 nM), rather than ferrous heme. The preference for ferric heme was confirmed by competition with 8-anilino-1-naphthalenesulfonate, which bound to a hydrophobic pocket in apo-CcmE. Reduction under certain conditions of the ferric heme-CcmE complex, which has characteristics of a b-type cytochrome, resulted in covalent attachment of heme to the protein. The resulting in vitro-produced holo-CcmE was identical to the in vivo-produced holo-CcmE, proving that unmodified Fe-protoporphyrin IX is incorporated into CcmE. Only noncovalent binding of mesoheme to CcmE was observed, thus implicating at least one vinyl group in covalent binding of heme to CcmE. Heme transferred in vitro from holo-CcmE to apocytochrome c, provided the heme was reduced. The necessity for reduced holo-CcmE might explain the role of the heme chaperone, i.e., prevention of reaction of ferric heme with apocytochrome and thus avoidance of incorrect side products. In addition, an AXXAH mutant of the CXXCH binding motif in the apocytochrome c was unable to accept heme from holo-CcmE. These in vitro results mimic, and thus have implications for, the molecular pathway of heme transfer during c-type cytochrome maturation in many species of bacteria in vivo.
Collapse
Affiliation(s)
- Oliver Daltrop
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
63
|
Daltrop O, Allen JWA, Willis AC, Ferguson SJ. In vitro formation of a c-type cytochrome. Proc Natl Acad Sci U S A 2002; 99:7872-6. [PMID: 12060734 PMCID: PMC122987 DOI: 10.1073/pnas.132259099] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
C-type cytochromes are essential for almost all organisms; they are characterized by the covalent attachment of heme to protein through two thioether bonds to a Cys-Xaa-Xaa-Cys-His peptide motif. Here we show, contrary to opinion of 30 years standing, that a c-type cytochrome can form from heme and apoprotein in vitro under mild conditions and in the absence of any biosynthesis apparatus. This reaction occurs provided formation of a disulfide bond within the Cys-Xaa-Xaa-Cys-His motif is avoided. There are important implications for understanding in vivo cytochrome c assembly.
Collapse
Affiliation(s)
- Oliver Daltrop
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
64
|
Lu Y, Berry SM, Pfister TD. Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. Chem Rev 2001; 101:3047-80. [PMID: 11710062 DOI: 10.1021/cr0000574] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Y Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
65
|
Abstract
c-Type cytochromes are a group of proteins with diverse structures and functions. Their common feature is covalent attachment of haem to one or more CXXCH motifs. There does not seem to be a single advantageous reason for this covalent attachment.
Collapse
Affiliation(s)
- P D Barker
- University Chemical Laboratory, University of Cambridge, UK
| | | |
Collapse
|
66
|
Kranz R, Lill R, Goldman B, Bonnard G, Merchant S. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 1998; 29:383-96. [PMID: 9720859 DOI: 10.1046/j.1365-2958.1998.00869.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The past 10 years have heralded remarkable progress in the understanding of the biogenesis of c-type cytochromes. The hallmark of c-type cytochrome synthesis is the covalent ligation of haem vinyl groups to two cysteinyl residues of the apocytochrome (at a Cys-Xxx-Yyy-Cys-His signature motif). From genetic, genomic and biochemical studies, it is clear that three distinct systems have evolved in nature to assemble this ancient protein. In this review, common principles of assembly for all systems and the molecular mechanisms predicted for each system are summarized. Prokaryotes, plant mitochondria and chloroplasts use either system I or II, which are each predicted to use dedicated mechanisms for haem delivery, apocytochrome ushering and thioreduction. Accessory proteins of systems I and II co-ordinate the positioning of these two substrates at the membrane surface for covalent ligation. The third system has evolved specifically in mitochondria of fungi, invertebrates and vertebrates. For system III, a pivotal role is played by an enzyme called cytochrome c haem lyase (CCHL) in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- R Kranz
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
67
|
Keightley JA, Sanders D, Todaro TR, Pastuszyn A, Fee JA. Cloning and expression in Escherichia coli of the cytochrome c552 gene from Thermus thermophilus HB8. Evidence for genetic linkage to an ATP-binding cassette protein and initial characterization of the cycA gene products. J Biol Chem 1998; 273:12006-16. [PMID: 9575141 DOI: 10.1074/jbc.273.20.12006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report sequence of Thermus thermophilus HB8 DNA containing the gene (cycA) for cytochrome c552 and a gene (cycB) encoding a protein homologous with one subunit of an ATP-binding cassette transporter. The cycA gene encodes a 17-residue N-terminal signal peptide with following amino acid sequence identical to that reported by (Titani, K., Ericsson, L. H., Hon-nami, K., and Miyazawa, T. (1985) Biochem. Biophys. Res. Commun. 128, 781-787). A modified cycA was placed under control of the T7 promoter and expressed in Escherichia coli. Protein identical to that predicted from the gene sequence was found in two heme C-containing fractions. Fraction rC552, characterized by an alpha-band at 552 nm, contains approximately 60-70% of a protein highly similar to native cytochrome c552 and approximately 30-40% of a protein that contains a modified heme. Cytochrome rC552 is monomeric and is an excellent substrate for cytochrome ba3. Cytochrome rC557 is characterized by an alpha-band at 557 nm, contains approximately 90% heme C and approximately 10% of non-C heme, exists primarily as a homodimer, and is essentially inactive as a substrate for cytochrome ba3. We suggest that rC557 is a "conformational isomer" of rC552 having non-native, axial ligands to the heme iron and an "incorrect" protein fold that is stabilized by homodimer formation.
Collapse
Affiliation(s)
- J A Keightley
- Department of Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
68
|
Goldman BS, Beck DL, Monika EM, Kranz RG. Transmembrane heme delivery systems. Proc Natl Acad Sci U S A 1998; 95:5003-8. [PMID: 9560218 PMCID: PMC20203 DOI: 10.1073/pnas.95.9.5003] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1997] [Accepted: 02/23/1998] [Indexed: 02/07/2023] Open
Abstract
Heme proteins play pivotal roles in a wealth of biological processes. Despite this, the molecular mechanisms by which heme traverses bilayer membranes for use in biosynthetic reactions are unknown. The biosynthesis of c-type cytochromes requires that heme is transported to the bacterial periplasm or mitochondrial intermembrane space where it is covalently ligated to two reduced cysteinyl residues of the apocytochrome. Results herein suggest that a family of integral membrane proteins in prokaryotes, protozoans, and plants act as transmembrane heme delivery systems for the biogenesis of c-type cytochromes. The complete topology of a representative from each of the three subfamilies was experimentally determined. Key histidinyl residues and a conserved tryptophan-rich region (designated the WWD domain) are positioned at the site of cytochrome c assembly for all three subfamilies. These histidinyl residues were shown to be essential for function in one of the subfamilies, an ABC transporter encoded by helABCD. We believe that a directed heme delivery pathway is vital for the synthesis of cytochromes c, whereby heme iron is protected from oxidation via ligation to histidinyl residues within the delivery proteins.
Collapse
Affiliation(s)
- B S Goldman
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
69
|
Abstract
Expression of cytochrome c from Thermus thermophilus in Escherichia coli (E. coli) leads to a protein with characteristics of a molten globule. Unfolding induced by guanidine hydrochloride (GdHCl) shows that E. coli-expressed cytochrome c has lower stability (and less cooperativity of unfolding) compared to the protein extracted from Thermus thermophilus, even though the two proteins have identical amino-acid sequences. Moreover, Soret and far-UV circular dichroism signals differ for the two proteins, suggesting a distorted heme environment and more side-chain dynamics of E. coli-expressed cytochrome c. Still, tryptophan fluorescence in E. coli-expressed cytochrome c is quenched as in native protein, and the iron coordinates in a low-spin form. Amino-acid sequencing indicates the presence of only one covalent cysteine-linkage to the heme in E. coli-expressed cytochrome c (normally, there are two linkages), a possible explanation for the trapped, molten-globule-like structure. The features of this non-native protein may be of interest for interpretation of cytochrome c folding kinetics in vitro, since a molten globule may be an intermediate on the folding pathway.
Collapse
|
70
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
71
|
Goldman BS, Beckman DL, Bali A, Monika EM, Gabbert KK, Kranz RG. Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol 1997; 268:724-38. [PMID: 9175857 DOI: 10.1006/jmbi.1997.0992] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The helABC genes are predicted to encode an ATP-binding cassette (ABC) transporter necessary for heme export for ligation in bacterial cytochrome c biogenesis. The recent discoveries of homologs of the helB and helC genes in plant mitochondrial genomes suggest this is a highly conserved transporter in prokaryotes and some eukaryotes with the HelB and HelC proteins comprising the transmembrane components. Molecular genetic analysis in the Gram-negative bacterium Rhodobacter capsulatus was used to show that the helABC and helDX genes are part of an operon linked to the secDF genes. To facilitate analysis of this transporter, strains with non-polar deletions in each gene, epitope and reporter-tagged HelABCD proteins, and antisera specific to the HelA and HelX proteins were generated. We directly demonstrate that this transporter is present in the cytoplasmic membrane as an HelABCD complex. The HelB and HelC but not HelD proteins are necessary for the binding and stability of the HelA protein, the cytoplasmic subunit containing the ATP-binding region. In addition we show that the HelA protein co-immunoprecipitates with either the HelC or HelD proteins. Thus, the HelABCD heme export complex is distinguished by the presence of four membrane-associated subunits and represents a unique subfamily of ABC transporters.
Collapse
Affiliation(s)
- B S Goldman
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
72
|
Mitochondrial Import of Cytochrome C. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(09)60011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
73
|
Sambongi Y, Ferguson SJ. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS Lett 1994; 340:65-70. [PMID: 8119410 DOI: 10.1016/0014-5793(94)80174-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression from a plasmid of the complete gene, including the codons for the N-terminal periplasmic targeting signal, for cytochrome c550 of Paracoccus denitrificans led to the formation of the holo protein in the periplasms of both P. denitrificans and Escherichia coli. Expression of the gene from which the region coding for the targeting signal had been specifically deleted resulted in formation of apo-protein in the cytoplasms of both organisms. These findings are consistent with haem attachment occurring in the periplasm. In contrast, the formation of holo cytochrome c552 from Hydrogenobacter thermophilus following expression of the gene lacking the periplasmic targeting sequence in either P. denitrificans or E. coli is attributed to spontaneous cytoplasmic attachment of haem to the thermostable protein.
Collapse
Affiliation(s)
- Y Sambongi
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|