51
|
Tatusova T. Genomic databases and resources at the National Center for Biotechnology Information. Methods Mol Biol 2010; 609:17-44. [PMID: 20221911 DOI: 10.1007/978-1-60327-241-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The National Center for Biotechnology Information (NCBI), as a primary public repository of genomic sequence data, collects and maintains enormous amounts of heterogeneous data. Data for genomes, genes, gene expressions, gene variation, gene families, proteins, and protein domains are integrated with the analytical, search, and retrieval resources through the NCBI Web site. Entrez, a text-based search and retrieval system, provides a fast and easy way to navigate across diverse biological databases.Customized genomic BLAST enables sequence similarity searches against a special collection of organism-specific sequence data and viewing the resulting alignments within a genomic context using NCBI's genome browser, Map Viewer.Comparative genome analysis tools lead to further understanding of evolutionary processes, quickening the pace of discovery.
Collapse
|
52
|
Paterson AH, Freeling M, Tang H, Wang X. Insights from the comparison of plant genome sequences. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:349-72. [PMID: 20441528 DOI: 10.1146/annurev-arplant-042809-112235] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The next decade will see essentially completed sequences for multiple branches of virtually all angiosperm clades that include major crops and/or botanical models. These sequences will provide a powerful framework for relating genome-level events to aspects of morphological and physiological variation that have contributed to the colonization of much of the planet by angiosperms. Clarification of the fundamental angiosperm gene set, its arrangement, lineage-specific variations in gene repertoire and arrangement, and the fates of duplicated gene pairs will advance knowledge of functional and regulatory diversity and perhaps shed light on adaptation by lineages to whole-genome duplication, which is a distinguishing feature of angiosperm evolution. Better understanding of the relationships among angiosperm genomes promises to provide a firm foundation upon which to base translational genomics: the leveraging of hard-won structural and functional genomic information from crown botanical models to dissect novel and, in some cases, economically important features in many additional organisms.
Collapse
Affiliation(s)
- Andrew H Paterson
- Department of Plant Biology, University of Georgia, Athens, Georgia.
| | | | | | | |
Collapse
|
53
|
Jacquemin J, Laudié M, Cooke R. A recent duplication revisited: phylogenetic analysis reveals an ancestral duplication highly-conserved throughout the Oryza genus and beyond. BMC PLANT BIOLOGY 2009; 9:146. [PMID: 20003305 PMCID: PMC2797015 DOI: 10.1186/1471-2229-9-146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/10/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial. RESULTS We have carried out a comparative analysis of this duplication within the wild species of the genus Oryza, using a phylogenetic approach to specify its origin and evolutionary dynamics. Paralogous pairs were isolated for nine genes selected throughout the region in all Oryza genome types, as well as in two outgroup species, Leersia perrieri and Potamophila parviflora. All Oryza species display the same global evolutionary dynamics but some lineage-specific features appear towards the proximal end of the duplicated region. The same level of conservation is observed between the redundant copies of the tetraploid species Oryza minuta. The presence of orthologous duplicated blocks in the genome of the more distantly-related species, Brachypodium distachyon, strongly suggests that this duplication between chromosomes 11 and 12 was formed as part of the whole genome duplication common to all Poaceae. CONCLUSION Our observations suggest that recurrent but heterogeneous concerted evolution throughout the Oryza genus and in related species has led specifically to the extremely high sequence conservation occurring in this region of more than 2 Mbp.
Collapse
Affiliation(s)
- Julie Jacquemin
- Laboratoire Génome et Développement des Plantes, Unité mixte de recherche 5096, Centre national de la recherche scientifique, Institut pour la recherche et le développement, Université de Perpignan via Domitia, 58, Av Paul Alduy, 66860 Perpignan Cedex, France
| | - Michèle Laudié
- Laboratoire Génome et Développement des Plantes, Unité mixte de recherche 5096, Centre national de la recherche scientifique, Institut pour la recherche et le développement, Université de Perpignan via Domitia, 58, Av Paul Alduy, 66860 Perpignan Cedex, France
| | - Richard Cooke
- Laboratoire Génome et Développement des Plantes, Unité mixte de recherche 5096, Centre national de la recherche scientifique, Institut pour la recherche et le développement, Université de Perpignan via Domitia, 58, Av Paul Alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
54
|
Wei F, Stein JC, Liang C, Zhang J, Fulton RS, Baucom RS, De Paoli E, Zhou S, Yang L, Han Y, Pasternak S, Narechania A, Zhang L, Yeh CT, Ying K, Nagel DH, Collura K, Kudrna D, Currie J, Lin J, Kim H, Angelova A, Scara G, Wissotski M, Golser W, Courtney L, Kruchowski S, Graves TA, Rock SM, Adams S, Fulton LA, Fronick C, Courtney W, Kramer M, Spiegel L, Nascimento L, Kalyanaraman A, Chaparro C, Deragon JM, Miguel PS, Jiang N, Wessler SR, Green PJ, Yu Y, Schwartz DC, Meyers BC, Bennetzen JL, Martienssen RA, McCombie WR, Aluru S, Clifton SW, Schnable PS, Ware D, Wilson RK, Wing RA. Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 2009; 5:e1000728. [PMID: 19936048 PMCID: PMC2773423 DOI: 10.1371/journal.pgen.1000728] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/16/2009] [Indexed: 12/20/2022] Open
Abstract
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on approximately 1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.
Collapse
Affiliation(s)
- Fusheng Wei
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua C. Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Chengzhi Liang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Robert S. Fulton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Regina S. Baucom
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Emanuele De Paoli
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Lixing Yang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yujun Han
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Shiran Pasternak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Apurva Narechania
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Cheng-Ting Yeh
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Kai Ying
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dawn H. Nagel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kristi Collura
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer Currie
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Jinke Lin
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - HyeRan Kim
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Angelina Angelova
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel Scara
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Marina Wissotski
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Wolfgang Golser
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Laura Courtney
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott Kruchowski
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tina A. Graves
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan M. Rock
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephanie Adams
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucinda A. Fulton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catrina Fronick
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William Courtney
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lori Spiegel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lydia Nascimento
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Ananth Kalyanaraman
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Cristian Chaparro
- Université de Perpignan Via Domitia, CNRS UMR 5096, Perpignan, France
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR 5096, Perpignan, France
| | - Phillip San Miguel
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Susan R. Wessler
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Pamela J. Green
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Yeisoo Yu
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Blake C. Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Bennetzen
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - W. Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Srinivas Aluru
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Sandra W. Clifton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick S. Schnable
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Richard K. Wilson
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
55
|
Abstract
When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.
Collapse
|
56
|
E Y, Lin F, Zhang CY, Cui N, Xu YF. [Bioinformatics analysis of candidate sequences between two flanking markers linked with resistance gene Ht1 to Exserohilum turcicum in maize]. YI CHUAN = HEREDITAS 2009; 31:638-644. [PMID: 19586865 DOI: 10.3724/sp.j.1005.2009.00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to get Ht1 candidate sequence(s), bioinformatics method was employed to analyze sequences between two flanking markers umc22a and umc122a linked with Ht1. Sixty-three open reading frame (ORF) sequences were found, fourteen of which encoded protein domains. The amino acid sequences encoded by these ORF sequences were blasted with the 24 cloned resistance gene amino acid sequences, and a phylogenetic tree was constructed. Among the fourteen ORF sequences, gpm565a with nucleotide binding site (NBS), containing a lot of random coils, had both high identity and close relationship with Xal resistant to bacterial blight, and was predicted to be related with Ht1. The remaining thirteen ORF sequences had no enough evidence to show any relationships with Ht1 due to lack of conserved domains, low identity or distant relationships.
Collapse
Affiliation(s)
- Yang E
- Biological Science and Technology College, Shenyang Agricultural University, Shenyang 110161, China.
| | | | | | | | | |
Collapse
|
57
|
Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung CW, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S. Gramene QTL database: development, content and applications. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2009; 2009:bap005. [PMID: 20157478 PMCID: PMC2790302 DOI: 10.1093/database/bap005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 03/20/2009] [Indexed: 01/28/2023]
Abstract
Gramene is a comparative information resource for plants that integrates data across diverse data domains. In this article, we describe the development of a quantitative trait loci (QTL) database and illustrate how it can be used to facilitate both the forward and reverse genetics research. The QTL database contains the largest online collection of rice QTL data in the world. Using flanking markers as anchors, QTLs originally reported on individual genetic maps have been systematically aligned to the rice sequence where they can be searched as standard genomic features. Researchers can determine whether a QTL co-localizes with other QTLs detected in independent experiments and can combine data from multiple studies to improve the resolution of a QTL position. Candidate genes falling within a QTL interval can be identified and their relationship to particular phenotypes can be inferred based on functional annotations provided by ontology terms. Mutations identified in functional genomics populations and association mapping panels can be aligned with QTL regions to facilitate fine mapping and validation of gene–phenotype associations. By assembling and integrating diverse types of data and information across species and levels of biological complexity, the QTL database enhances the potential to understand and utilize QTL information in biological research.
Collapse
Affiliation(s)
- Junjian Ni
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901, USA and Cold Spring Harbor Labs, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 2009; 16:141-54. [PMID: 19359285 PMCID: PMC2695773 DOI: 10.1093/dnares/dsp006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Completion of the genome analysis followed by extensive comprehensive studies on a variety of genes and gene families of rice (Oryza sativa) resulted in rapid accumulation of information concerning the presence of many complex traits that are governed by a number of genes of distinct functions in this most important crop cultivated worldwide. The genetic and molecular biological dissection of many important rice phenotypes has contributed to our understanding of the complex nature of the genetic control with respect to these phenotypes. However, in spite of the considerable advances made in the field, details of genetic control remain largely unsolved, thereby hampering our exploitation of this useful information in the breeding of new rice cultivars. To further strengthen the field application of the genome science data of rice obtained so far, we need to develop more powerful genomics-assisted methods for rice breeding based on information derived from various quantitative trait loci (QTL) and related analyses. In this review, we describe recent progresses and outcomes in rice QTL analyses, problems associated with the application of the technology to rice breeding and their implications for the genetic study of other crops along with future perspectives of the relevant fields.
Collapse
Affiliation(s)
- Toshio Yamamoto
- QTL Genomics Research Center, National Institute of Agrobiological Science, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | |
Collapse
|
59
|
Zeng D, Hu J, Dong G, Liu J, Zeng L, Zhang G, Guo L, Zhou Y, Qian Q. Quantitative trait loci mapping of flag-leaf ligule length in rice and alignment with ZmLG1 gene. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:360-6. [PMID: 21452587 DOI: 10.1111/j.1744-7909.2008.00803.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A doubled haploid (DH) population, which consists of 120 lines derived from anther culture of a typical indica and japonica hybrid ‘CJ06’/‘TN1’, was used in this study. Ligule lengths of flag leaf were investigated for quantitative trait loci (QTL) mapping using the DH population. Five QTLs (qLL-2, qLL-4, qLL-6, qLL-10 and qLL-12) controlling the ligule length (LL) were detected on chromosomes 2, 4, 6, 10 and 12, with the variances explained 11.4%, 13.6%, 27.8%, 22.1% and 11.0%, respectively. Using four known genes of ZmGL1, ZmGL2, ZmGL3 and ZmGL4 in maize from the MaizeGDB, their homologs in rice were aligned and integrated into the existing simple sequence repeats linkage map by in silico mapping. A ZmLG1 homolog gene, OsLG1 encoding a squamosa promoter binding protein, was located between the markers RM255 and RM280, which is just identical to the interval of qLL-4 on the long arm of chromosome 4. The results are beneficial to dissection of the ligule molecular mechanism and the study of cereal evolution.
Collapse
Affiliation(s)
- Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J. The 'inner circle' of the cereal genomes. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:119-25. [PMID: 19095493 DOI: 10.1016/j.pbi.2008.10.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 05/18/2023]
Abstract
Early marker-based macrocolinearity studies between the grass genomes led to arranging their chromosomes into concentric 'crop circles' of synteny blocks that initially consisted of 30 rice-independent linkage groups representing the ancestral cereal genome structure. Recently, increased marker density and genome sequencing of several cereal genomes allowed the characterization of intragenomic duplications and their integration with intergenomic colinearity data to identify paleo-duplications and propose a model for the evolution of the grass genomes from a common ancestor. On the basis of these data an 'inner circle' comprising five ancestral chromosomes was defined providing a new reference for the grass chromosomes and new insights into their ancestral relationships and origin, as well as an efficient tool to design cross-genome markers for genetic studies.
Collapse
Affiliation(s)
- Stéphanie Bolot
- INRA/UBP UMR 1095, Domaine de Crouelle, 234 avenue du Brézet 63100 Clermont Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
61
|
Zhao J, Sun Z, Zheng J, Guo X, Dong Z, Huai J, Gou M, He J, Jin Y, Wang J, Wang G. Cloning and characterization of a novel CBL-interacting protein kinase from maize. PLANT MOLECULAR BIOLOGY 2009; 69:661-74. [PMID: 19105030 DOI: 10.1007/s11103-008-9445-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 12/05/2008] [Indexed: 05/04/2023]
Abstract
A novel CBL-interacting protein kinase (CIPK) gene, ZmCIPK16, was isolated from maize (Zea mays), which has been certified to have two copies in the genome. The ZmCIPK16 is strongly induced in maize seedlings by PEG, NaCl, ABA, dehydration, heat and drought, but not by cold. A yeast two-hybrid assay demonstrated that ZmCIPK16 interacted with ZmCBL3, ZmCBL4, ZmCBL5, and ZmCBL8. Bimolecular fluorescence complementation (BiFC) assays prove that ZmCIPK16 can interact with ZmCBL3, ZmCBL4, ZmCBL5, and ZmCBL8 in vivo. Subcellular localization showed that ZmCIPK16 is distributed in the nucleus, plasma membrane and cytoplasm; this is different from the specific localization of ZmCBL3, ZmCBL4, and ZmCBL5, which are found in the plasma membrane. The results also showed that overexpression of ZmCIPK16 in the Arabidopsis sos2 mutant induced the expression of the SOS1 gene and enhanced salt tolerance. These findings indicate that ZmCIPK16 may be involved in the CBL-CIPK signaling network in maize responses to salt stress.
Collapse
Affiliation(s)
- Jinfeng Zhao
- State Key Laboratory of Agrobiotechnology and Department of Seed Science and Technology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci U S A 2009; 106:2071-6. [PMID: 19164767 DOI: 10.1073/pnas.0812798106] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomics is a powerful tool to decipher gene and genome evolution. Placing multiple genome comparisons in a phylogenetic context improves the sensitivity of evolutionary inferences. In the genus Oryza, this comparative approach can be used to investigate gene function, genome evolution, domestication, polyploidy, and ecological adaptation. A large genomic region surrounding the MONOCULM1 (MOC1) locus was chosen for study in 14 Oryza species, including 10 diploids and 4 allotetraploids. Sequencing and annotation of 18 bacterial artificial chromosome clones for these species revealed highly conserved gene colinearity and structure in the MOC1 region. Since the Oryza radiation about 14 Mya, differences in transposon amplification appear to be responsible for the different current sizes of the Oryza genomes. In the MOC1 region, transposons were only conserved between genomes of the same type (e.g., AA or BB). In addition to the conserved gene content, several apparent genes have been generated de novo or uniquely retained in the AA lineage. Two different 3-gene segments have been inserted into the MOC1 region of O. coarctata (KK) or O. sativa by unknown mechanism(s). Large and apparently noncoding sequences flanking the MOC1 gene were observed to be under strong purifying selection. The allotetraploids Oryza alta and Oryza minuta were found to be products of recent polyploidization, less than 1.6 and 0.4 Mya, respectively. In allotetraploids, pseudogenization of duplicated genes was common, caused by large deletions, small frame-shifting insertions/deletions, or nonsense mutations.
Collapse
|
63
|
Holding DR, Larkins BA. Zein Storage Proteins. MOLECULAR GENETIC APPROACHES TO MAIZE IMPROVEMENT 2008. [DOI: 10.1007/978-3-540-68922-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Abstract
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that has been used for estimating the average degree of dominance of quantitative trait loci (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selfing. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive x additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.
Collapse
|
65
|
Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments. C R Biol 2008; 331:579-86. [DOI: 10.1016/j.crvi.2008.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 05/26/2008] [Accepted: 05/27/2008] [Indexed: 12/13/2022]
|
66
|
Barret P, Brinkmann M, Beckert M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:581-94. [PMID: 18516584 DOI: 10.1007/s00122-008-0803-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/09/2008] [Indexed: 05/18/2023]
Abstract
In flowering plants, double fertilization occurs when the egg cell and the central cell are each fertilized by one sperm cell. In maize, some lines produce pollen capable of inducing in situ gynogenesis thereby leading to maternal haploids that originate exclusively from the female plant. In this paper, we present a genetic analysis of in situ gynogenesis in maize. Using a cross between non-inducing and inducing lines, we identified a major locus on maize chromosome 1 controlling in situ gynogenesis (ggi1, for gynogenesis inducer 1). Fine mapping of this locus was performed, and BAC physical contigs spanning the locus were identified using the rice genome as anchor. Genetic component analysis showed that (a) a segregation distortion against the inducer parent was present at this locus, (b) segregation resulted only from male deficiency and (c) there was a correlation between the rate of segregation distortion and the level of gynogenetic induction. In addition, our results showed that the genotype of the pollen determined its capacity to induce the formation of a haploid female embryo, indicating gametophytic expression of the character with incomplete penetrance. We propose the occurrence of a gametophytic-specific process which leads to segregation distortion at the ggi1 locus associated with gynogenetic induction with incomplete penetrance.
Collapse
Affiliation(s)
- P Barret
- INRA, UMR1095 Génétique, Diversité et Ecophysiologie des Céréales (GDEC), 234 avenue du Brézet, 63100 Clermont-Ferrand, France.
| | | | | |
Collapse
|
67
|
The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica. Funct Integr Genomics 2008; 9:97-108. [PMID: 18633654 DOI: 10.1007/s10142-008-0091-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 06/08/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
Abstract
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.
Collapse
|
68
|
Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates. Funct Integr Genomics 2008; 8:375-86. [DOI: 10.1007/s10142-008-0085-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/11/2008] [Accepted: 04/20/2008] [Indexed: 01/18/2023]
|
69
|
Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 2008; 3:e123. [PMID: 17658954 PMCID: PMC1934398 DOI: 10.1371/journal.pgen.0030123] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 06/11/2007] [Indexed: 11/21/2022] Open
Abstract
Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes. As a cash crop and a model biological system, maize is of great public interest. To facilitate maize molecular breeding and its basic biology research, we built a high-resolution physical map with two different fingerprinting methods on the same set of bacterial artificial chromosome clones. The physical map was integrated to a high-density genetic map and further serves as a framework for the maize genome-sequencing project. Comparative genomics showed that the euchromatic regions between rice and maize are very conserved. Physically we delimited these conserved regions and thus detected many genome rearrangements. We defined extensively the duplication blocks within the maize genome. These blocks allowed us to reconstruct the chromosomes of the maize progenitor. We detected that maize genome has experienced two rounds of genome duplications, an ancient one before maize–rice divergence and a recent one after tetraploidization.
Collapse
Affiliation(s)
- Fusheng Wei
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Ed Coe
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri, United States of America
| | - William Nelson
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Arizona Genomics Computational Laboratory, University of Arizona, Tucson, Arizona, United States of America
| | - Arvind K Bharti
- Plant Genome Initiative at Rutgers, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Fred Engler
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Arizona Genomics Computational Laboratory, University of Arizona, Tucson, Arizona, United States of America
| | - Ed Butler
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - HyeRan Kim
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Jose Luis Goicoechea
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Mingsheng Chen
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Seunghee Lee
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Galina Fuks
- Plant Genome Initiative at Rutgers, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Hector Sanchez-Villeda
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Steven Schroeder
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Zhiwei Fang
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Michael McMullen
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri, United States of America
| | - Georgia Davis
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - John E Bowers
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Science, Plant Biology, and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Science, Plant Biology, and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Mary Schaeffer
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri, United States of America
| | - Jack Gardiner
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Karen Cone
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, Arizona, United States of America
| | - Joachim Messing
- Plant Genome Initiative at Rutgers, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carol Soderlund
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Arizona Genomics Computational Laboratory, University of Arizona, Tucson, Arizona, United States of America
- * To whom correspondence should be addressed. E-mail: (CS); (RAW)
| | - Rod A Wing
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * To whom correspondence should be addressed. E-mail: (CS); (RAW)
| |
Collapse
|
70
|
Koo DH, Jiang J. Extraordinary tertiary constrictions of Tripsacum dactyloides chromosomes: implications for karyotype evolution of polyploids driven by segmental chromosome losses. Genetics 2008; 179:1119-23. [PMID: 18558656 PMCID: PMC2429865 DOI: 10.1534/genetics.108.087726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022] Open
Abstract
Tripsacum dactyloides (2n = 2x = 36) is an ancient tetraploid species. Here we report that T. dactyloides chromosomes contain an extraordinary tertiary constriction, which causes a radical and distant separation of a terminal segment from the chromosome. The relationships between extraordinary tertiary constriction and segmental chromosome loss as well as karyotype evolution of polyploid species are discussed.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
71
|
Poggio L, Rosato M, Naranjo CA. Meiotic behavior and DNA content in alloplasmic lines of maize. Genome 2008; 40:723-9. [PMID: 18464861 DOI: 10.1139/g97-795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasm of Zea mays ssp. mexicana (teosinte) affects several inherited traits when combined with genotypes of maize (Zea mays ssp. mays). The meiotic behavior and the total DNA content of four lines of maize with teosinte cytoplasm were compared with those of the parental lines. The results obtained suggest that the cytoplasm of teosinte promotes an increase in total nuclear DNA content, perhaps through an increase of highly repetitive DNA in the knob zones. The analysis of meiotic behavior indicates that the cytoplasm of teosinte can alter the spatial distribution of the genomes, since two groups of five bivalents each were observed at a high frequency. During prophase I - anaphase I, each group of five bivalents behaves in a slightly asynchronous way with respect to the other group and, moreover, two nucleoli were observed in 10% of the cells. These results suggest that the cytoplasm of teosinte could induce changes affecting genomic structure and function in some maize genotypes. These changes are of potential importance for breeding programs and evolutionary studies.
Collapse
|
72
|
Letort V, Mahe P, Cournède PH, de Reffye P, Courtois B. Quantitative genetics and functional-structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. ANNALS OF BOTANY 2008; 101:1243-54. [PMID: 17766844 PMCID: PMC2710265 DOI: 10.1093/aob/mcm197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/11/2007] [Accepted: 07/02/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. METHODS The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. KEY RESULTS AND CONCLUSIONS By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits--such as cob weight--and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand.
Collapse
Affiliation(s)
- Véronique Letort
- Ecole Centrale of Paris, Laboratoire de Mathématiques Appliquées aux Systèmes, F-92295 Châtenay-Malabry cedex, France.
| | | | | | | | | |
Collapse
|
73
|
Smarda P, Bures P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. ANNALS OF BOTANY 2008; 101:421-33. [PMID: 18158307 PMCID: PMC2701825 DOI: 10.1093/aob/mcm307] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/10/2007] [Accepted: 11/06/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Plant evolution is well known to be frequently associated with remarkable changes in genome size and composition; however, the knowledge of long-term evolutionary dynamics of these processes still remains very limited. Here a study is made of the fine dynamics of quantitative genome evolution in Festuca (fescue), the largest genus in Poaceae (grasses). METHODS Using flow cytometry (PI, DAPI), measurements were made of DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size (C/n-value) and cytosine + guanine (GC) content of 101 Festuca taxa and 14 of their close relatives. The results were compared with the existing phylogeny based on ITS and trnL-F sequences. KEY RESULTS The divergence of the fescue lineage from related Poeae was predated by about a 2-fold monoploid genome and chromosome size enlargement, and apparent GC content enrichment. The backward reduction of these parameters, running parallel in both main evolutionary lineages of fine-leaved and broad-leaved fescues, appears to diverge among the existing species groups. The most dramatic reductions are associated with the most recently and rapidly evolving groups which, in combination with recent intraspecific genome size variability, indicate that the reduction process is probably ongoing and evolutionarily young. This dynamics may be a consequence of GC-rich retrotransposon proliferation and removal. Polyploids derived from parents with a large genome size and high GC content (mostly allopolyploids) had smaller Cx- and C/n-values and only slightly deviated from parental GC content, whereas polyploids derived from parents with small genome and low GC content (mostly autopolyploids) generally had a markedly increased GC content and slightly higher Cx- and C/n-values. CONCLUSIONS The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary hypotheses and their usefulness for large-scale genomic projects. Taken together, the results suggest that there is an evolutionary advantage for small genomes in Festuca.
Collapse
Affiliation(s)
- Petr Smarda
- Masaryk University, Faculty of Science, Institute of Botany and Zoology, Kotlárská 2, CZ-611 37 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
74
|
Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. THE PLANT CELL 2008; 20:11-24. [PMID: 18178768 PMCID: PMC2254919 DOI: 10.1105/tpc.107.056309] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/21/2007] [Accepted: 12/12/2007] [Indexed: 05/17/2023]
Abstract
The grass family comprises the most important cereal crops and is a good system for studying, with comparative genomics, mechanisms of evolution, speciation, and domestication. Here, we identified and characterized the evolution of shared duplications in the rice (Oryza sativa) and wheat (Triticum aestivum) genomes by comparing 42,654 rice gene sequences with 6426 mapped wheat ESTs using improved sequence alignment criteria and statistical analysis. Intraspecific comparisons identified 29 interchromosomal duplications covering 72% of the rice genome and 10 duplication blocks covering 67.5% of the wheat genome. Using the same methodology, we assessed orthologous relationships between the two genomes and detected 13 blocks of colinearity that represent 83.1 and 90.4% of the rice and wheat genomes, respectively. Integration of the intraspecific duplications data with colinearity relationships revealed seven duplicated segments conserved at orthologous positions. A detailed analysis of the length, composition, and divergence time of these duplications and comparisons with sorghum (Sorghum bicolor) and maize (Zea mays) indicated common and lineage-specific patterns of conservation between the different genomes. This allowed us to propose a model in which the grass genomes have evolved from a common ancestor with a basic number of five chromosomes through a series of whole genome and segmental duplications, chromosome fusions, and translocations.
Collapse
Affiliation(s)
- Jérôme Salse
- Institut National de la Recherche Agronomique/Université Blaise Pascal Unité Mixte de Recherche 1095, Amélioration et Santé des Plantes, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Lee J, Park JJ, Kim SL, Yim J, An G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. PLANT MOLECULAR BIOLOGY 2007; 65:487-99. [PMID: 17594063 DOI: 10.1007/s11103-007-9196-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/24/2007] [Indexed: 05/08/2023]
Abstract
The area between the upper part of the leaf sheath and the basal portion of the leaf blade contains several specialized organs, such as the laminar joint, auricle and ligule. Here we report the identification of T-DNA insertional mutant lines that lack all of these organs. The gene knocked out in the mutant lines encodes a protein that contains a SBP (SQUAMOSA promoter Binding Protein)-domain and is highly homologous to the maize LIGULELESS1 (LG1) gene. At the amino acid sequence level, the OsLG1 protein is 69% identical to maize LG1 and 78% identical to barley LG1. We named the rice gene OsLIGULELESS1 (OsLG1). Transient expression of an OsLG1:RFP (Red Fluorescent Protein) fusion protein indicated that the protein is localized to the nucleus. Transgenic plants harboring the OsLG1 promoter:GUS (beta-glucuronidase) reporter gene construct display preferential expression in developing laminar joint regions and meristemic regions. The gene is also weakly expressed in the ligule, auricles, and leaf sheaths at the basal region. These results indicate that OsLG1 is a transcriptional factor that plays an important role in building the laminar joint between leaf blade and leaf sheath boundary, thereby controlling ligule and auricle development.
Collapse
Affiliation(s)
- Jinwon Lee
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyo-ja dong, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
77
|
Hughes T, Liberles DA. The pattern of evolution of smaller-scale gene duplicates in mammalian genomes is more consistent with neo- than subfunctionalisation. J Mol Evol 2007; 65:574-88. [PMID: 17957399 DOI: 10.1007/s00239-007-9041-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 08/24/2007] [Accepted: 09/10/2007] [Indexed: 11/28/2022]
Abstract
Gene duplication and the accompanying release of negative selective pressure on the duplicate pair is thought to be the key process that makes functional change in the coding and regulatory regions of genomes possible. However, the nature of these changes remains unresolved. There are a number of models for the fate of gene duplicates, the two most prominent of which are neofunctionalisation and subfunctionalisation, but it is still unclear which is the dominant fate. Using a dataset consisting of smaller-scale (tandem and segmental) duplications identified from the genomes of four fully sequenced mammalian genomes, we characterise two key features of smaller-scale duplicate evolution: the rate of pseudogenisation and the rate of accumulation of replacement substitutions in the coding sequence. We show that the best fitting model for gene duplicate survival is a Weibull function with a downward sloping convex hazard function which implies that the rate of pseudogenisation of a gene declines rapidly with time since duplication. Our analysis of the accumulation of replacement substitutions per replacement site shows that they accumulate on average at 64% of the neutral expectation immediately following duplication and as high as 73% in the human lineage. Although this rate declines with time since duplication, it takes several tens of millions of years before it has declined to half its initial value. We show that the properties of the gene death rate and of the accumulation of replacement substitutions are more consistent with neofunctionalisation (or subfunctionalisation followed by neofunctionalisation) than they are with subfunctionalisation alone or any of the other alternative modes of evolution of smaller-scale duplicates.
Collapse
Affiliation(s)
- Timothy Hughes
- Computational Biology Unit, BCCS, University of Bergen, 5020, Bergen, Norway.
| | | |
Collapse
|
78
|
Schneider K, Kulosa D, Soerensen TR, Möhring S, Heine M, Durstewitz G, Polley A, Weber E, Lein J, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Koch G, Jung C, Ganal M. Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:601-15. [PMID: 17622508 DOI: 10.1007/s00122-007-0591-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
A panel of 13 sugar beet lines and one genotype each of the Beta vulgaris cultivars red beet and Swiss chard, and B. vulgaris ssp. maritima were used to identify polymorphisms in alignments of genomic DNA sequences derived from 315 EST- and 43 non-coding RFLP-derived loci. In sugar beet lines, loci of expressed genes showed an average SNP frequency of 1/72 bp, 1 in 58 bp in non-coding sequences, increasing to 1/47 bp upon the addition of the remaining genotypes. Within analysed DNA fragments, alleles at different SNP positions displayed linkage disequilibrium indicative of haplotype structures. On average 2.7 haplotypes were found in sugar beet lines, and haplotype conservation in expressed genes appeared to exceed 500 bp in length. Seven different genotyping techniques including SNP detection by MALDI-TOF mass spectrometry, pyrosequencing and fluorescence scanning of labelled nucleotides were employed to perform 712 segregation analyses for 538 markers in three F(2) populations. Functions were predicted for 492 mapped sequences. Genetic maps comprised 305 loci covering 599.8 cM in population K1, 241 loci distributed over 636.6 cM in population D2, and 166 loci over 507.1 cM in population K2, respectively. Based on 156 markers common to more than one population an integrated map was constructed with 524 loci covering 664.3 cM. For 377 loci the genome positions of the most similar sequences from A. thaliana were identified, but little evidence for previously presented ancestral genome structures was found.
Collapse
Affiliation(s)
- Katharina Schneider
- Department of Plant Breeding and Yield Physiology, Max-Planck-Institute for Plant Breeding Research , Carl-von-Linné Weg 10, 50827 Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Li Y, Uhm T, Ren C, Wu C, Santos TS, Lee MK, Yan B, Santos F, Zhang A, Scheuring C, Sanchez A, Millena AC, Nguyen HT, Kou H, Liu D, Zhang HB. A plant-transformation-competent BIBAC/BAC-based map of rice for functional analysis and genetic engineering of its genomic sequence. Genome 2007; 50:278-88. [PMID: 17502901 DOI: 10.1139/g07-006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequencing of the rice genome has provided a platform for functional genomics research of rice and other cereal species. However, multiple approaches are needed to determine the functions of its genes and sequences and to use the genome sequencing results for genetic improvement of cereal crops. Here, we report a plant-transformation-competent, binary bacterial artificial chromosome (BIBAC) and bacterial artificial chromosome (BAC) based map of rice to facilitate these studies. The map was constructed from 20 835 BIBAC and BAC clones, and consisted of 579 overlapping BIBAC/BAC contigs. To facilitate functional analysis of chromosome 8 genomic sequence and cloning of the genes and QTLs mapped to the chromosome, we anchored the chromosomal contigs to the existing rice genetic maps. The chromosomal map consists of 11 contigs, 59 genetic markers, and 36 sequence tagged sites, spanning a total of ca. 38 Mb in physical length. Comparative analysis between the genetic and physical maps of chromosome 8 showed that there are 3 "hot" and 2 "cold" spots of genetic recombination along the chromosomal arms in addition to the "cold spot" in the centromeric region, suggesting that the sequence component contents of a chromosome may affect its local genetic recombination frequencies. Because of its plant transformability, the BIBAC/BAC map could provide a platform for functional analysis of the rice genome sequence and effective use of the sequencing results for gene and QTL cloning and molecular breeding.
Collapse
Affiliation(s)
- Yaning Li
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson AH. Leveraging the rice genome sequence for monocot comparative and translational genomics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:237-43. [PMID: 17522835 DOI: 10.1007/s00122-007-0559-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 04/14/2007] [Indexed: 05/15/2023]
Abstract
Common genome anchor points across many taxa greatly facilitate translational and comparative genomics and will improve our understanding of the Tree of Life. To add to the repertoire of genomic tools applicable to the study of monocotyledonous plants in general, we aligned Allium and Musa ESTs to Oryza BAC sequences and identified candidate Allium-Oryza and Musa-Oryza conserved intron-scanning primers (CISPs). A random sampling of 96 CISP primer pairs, representing loci from 11 of the 12 chromosomes in rice, were tested on seven members of the order Poales and on representatives of the Arecales, Asparagales, and Zingiberales monocot orders. The single-copy amplification success rates of Allium (31.3%), Cynodon (31.4%), Hordeum (30.2%), Musa (37.5%), Oryza (61.5%), Pennisetum (33.3%), Sorghum (47.9%), Zea (33.3%), Triticum (30.2%), and representatives of the palm family (32.3%) suggest that subsets of these primers will provide DNA markers suitable for comparative and translational genomics in orphan crops, as well as for applications in conservation biology, ecology, invasion biology, population biology, systematic biology, and related fields.
Collapse
Affiliation(s)
- H C Lohithaswa
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
81
|
Jain M, Khurana P, Tyagi AK, Khurana JP. Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 2007; 8:69-78. [PMID: 17578610 DOI: 10.1007/s10142-007-0052-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 04/07/2007] [Accepted: 05/06/2007] [Indexed: 10/23/2022]
Abstract
Intronless genes, a characteristic feature of prokaryotes, constitute a significant portion of the eukaryotic genomes. Our analysis revealed the presence of 11,109 (19.9%) and 5,846 (21.7%) intronless genes in rice and Arabidopsis genomes, respectively, belonging to different cellular role and gene ontology categories. The distribution and conservation of rice and Arabidopsis intronless genes among different taxonomic groups have been analyzed. A total of 301 and 296 intronless genes from rice and Arabidopsis, respectively, are conserved among organisms representing the three major domains of life, i.e., archaea, bacteria, and eukaryotes. These evolutionarily conserved proteins are predicted to be involved in housekeeping cellular functions. Interestingly, among the 68% of rice and 77% of Arabidopsis intronless genes present only in eukaryotic genomes, approximately 51% and 57% genes have orthologs only in plants, and thus may represent the plant-specific genes. Furthermore, 831 and 144 intronless genes of rice and Arabidopsis, respectively, referred to as ORFans, do not exhibit homology to any of the genes in the database and may perform species-specific functions. These data can serve as a resource for further comparative, evolutionary, and functional analysis of intronless genes in plants and other organisms.
Collapse
Affiliation(s)
- Mukesh Jain
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | | | |
Collapse
|
82
|
Kim H, San Miguel P, Nelson W, Collura K, Wissotski M, Walling JG, Kim JP, Jackson SA, Soderlund C, Wing RA. Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 2007; 176:379-90. [PMID: 17339227 PMCID: PMC1893071 DOI: 10.1534/genetics.106.068783] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/09/2007] [Indexed: 11/18/2022] Open
Abstract
A comparative physical map of the AA genome (Oryza sativa) and the BB genome (O. punctata) was constructed by aligning a physical map of O. punctata, deduced from 63,942 BAC end sequences (BESs) and 34,224 fingerprints, onto the O. sativa genome sequence. The level of conservation of each chromosome between the two species was determined by calculating a ratio of BES alignments. The alignment result suggests more divergence of intergenic and repeat regions in comparison to gene-rich regions. Further, this characteristic enabled localization of heterochromatic and euchromatic regions for each chromosome of both species. The alignment identified 16 locations containing expansions, contractions, inversions, and transpositions. By aligning 40% of the punctata BES on the map, 87% of the punctata FPC map covered 98% of the O. sativa genome sequence. The genome size of O. punctata was estimated to be 8% larger than that of O. sativa with individual chromosome differences of 1.5-16.5%. The sum of expansions and contractions observed in regions >500 kb were similar, suggesting that most of the contractions/expansions contributing to the genome size difference between the two species are small, thus preserving the macro-collinearity between these species, which diverged approximately 2 million years ago.
Collapse
Affiliation(s)
- HyeRan Kim
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kuhl JC, Havey MJ, Martin WJ, Cheung F, Yuan Q, Landherr L, Hu Y, Leebens-Mack J, Town CD, Sink KC. Comparative genomic analyses in Asparagus. Genome 2007; 48:1052-60. [PMID: 16391674 DOI: 10.1139/g05-073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales.
Collapse
Affiliation(s)
- Joseph C Kuhl
- Department of Horticulture, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A. A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:823-39. [PMID: 17219208 DOI: 10.1007/s00122-006-0480-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 11/30/2006] [Indexed: 05/03/2023]
Abstract
An integrated barley transcript map (consensus map) comprising 1,032 expressed sequence tag (EST)-based markers (total 1,055 loci: 607 RFLP, 190 SSR, and 258 SNP), and 200 anchor markers from previously published data, has been generated by mapping in three doubled haploid (DH) populations. Between 107 and 179 EST-based markers were allocated to the seven individual barley linkage groups. The map covers 1118.3 cM with individual linkage groups ranging from 130 cM (chromosome 4H) to 199 cM (chromosome 3H), yielding an average marker interval distance of 0.9 cM. 475 EST-based markers showed a syntenic organisation to known colinear linkage groups of the rice genome, providing an extended insight into the status of barley/rice genome colinearity as well as ancient genome duplications predating the divergence of rice and barley. The presented barley transcript map is a valuable resource for targeted marker saturation and identification of candidate genes at agronomically important loci. It provides new anchor points for detailed studies in comparative grass genomics and will support future attempts towards the integration of genetic and physical mapping information.
Collapse
Affiliation(s)
- Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Jakse J, Telgmann A, Jung C, Khar A, Melgar S, Cheung F, Town CD, Havey MJ. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:31-9. [PMID: 17016688 DOI: 10.1007/s00122-006-0407-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 08/31/2006] [Indexed: 05/10/2023]
Abstract
The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < -20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < -20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome model for plants in the Asparagales with enormous nuclear genomes.
Collapse
Affiliation(s)
- Jernej Jakse
- Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:710-27. [PMID: 17076806 DOI: 10.1111/j.1365-313x.2006.02905.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from maize (Zea mays L.) remains limited. Here we report the construction of a full-length enriched cDNA library from osmotically stressed maize seedlings by using the modified CAP trapper method. From this library, 2073 full-length cDNAs were collected and further analyzed by sequencing from both the 5'- and 3'-ends. A total of 1728 (83.4%) sequences did not match known maize mRNA and full-length cDNA sequences in the GenBank database and represent new full-length genes. After alignment of the 2073 full-length cDNAs with 448 maize BAC sequences, it was found that 84 full-length cDNAs could be mapped to the BACs. Of these, 43 genes (51.2%) have been correctly annotated from the BAC clones, 37 genes (44.0%) have been annotated with a different exon-intron structure from our cDNA, and four genes (4.76%) had no annotations in the TIGR database. Expression analysis of 2073 full-length maize cDNAs using a cDNA macroarray led to the identification of 79 genes upregulated by stress treatments and 329 downregulated genes. Of the 79 stress-inducible genes, 30 genes contain ABRE, DRE, MYB, MYC core sequences or other abiotic-responsive cis-acting elements in their promoters. These results suggest that these cis-acting elements and the corresponding transcription factors take part in plant responses to osmotic stress either cooperatively or independently. Additionally, the data suggest that an ethylene signaling pathway may be involved in the maize response to drought stress.
Collapse
Affiliation(s)
- Jinping Jia
- State Key Laboratory of Agrobiotechnology and National Center for Maize Improvement, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N. Comparative genome mapping among Picea glauca, P. mariana x P. rubens and P. abies, and correspondence with other Pinaceae. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1371-93. [PMID: 17061103 DOI: 10.1007/s00122-006-0354-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/21/2006] [Indexed: 05/12/2023]
Abstract
A composite linkage map was constructed from four individual maps for the conifer Picea glauca (Moench) Voss, from anonymous and gene-specific markfers (714 AFLPs, 38 SSRs, and 53 ESTPs). A total of 12 linkage groups were delineated with an average marker density of 2.7 cM. Macro-synteny and macro-colinearity comparisons with two other composite linkage maps developed for the species complex P. mariana (Mill.) B.S.P. x P. rubens Sarg., and for P. abies (L.) Karst. revealed an identical number of linkage groups and a remarkable conservation of the gene content and gene order of linkage groups over the million years since the split between these taxa. Identical gene order among taxa was observed for 10 of the 12 assembled composite linkage groups. The discovery of one breakdown in synteny between P. glauca and the other two taxa indicated the occurrence of an inter-chromosomal rearrangement involving an insertional translocation. Analysis of marker colinearity also revealed a putative segmental duplication. The combined information from these three Picea genomes validated and improved large-scale genome comparisons at the inter-generic level in the family Pinaceae by allowing for the identification of 11 homoeologous linkage groups between Picea and Pinus, and nine such groups between Picea and Pseudotsuga menziesii. Notably, the analysis of synteny among the three genera revealed a putative case of chromosomal fission and an inter-chromosomal rearrangement in the genome of P. menziesii. Both of these changes are inter-connected, indicating much instability in this part of the P. menziesii genome. Overall, the macro-structure of the Pinaceae genome was well conserved, which is notable given the Cretaceous origin of its main lineages.
Collapse
Affiliation(s)
- Betty Pelgas
- Centre de Recherche en Biologie Forestière, Pavillon Charles-Eugène Marchand, Université Laval, Québec, QC, Canada, G1K 7P4
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
Many studies have demonstrated that the distribution of meiotic crossover events along chromosomes is non-random in plants and other species with sexual reproduction. Large differences in recombination frequencies appear at several scales. On a large scale, regions of high and low rates of crossover have been found to alternate along the chromosomes in all plant species studied. High crossover rates have been reported to be correlated with several chromosome features (e.g. gene density and distance to the centromeres). However, most of these correlations cannot be extended to all plant species. Only a few plant species have been studied on a finer scale. Hotspots of meiotic recombination (i.e. DNA fragments of a few kilobases in length with a higher rate of recombination than the surrounding DNA) have been identified in maize and rice. Most of these hotspots are intragenic. In Arabidopsis thaliana, we have identified several DNA fragments (less than 5 kb in size) with genetic recombination rates at least 5 times higher than the whole-chromosome average [4.6 cM (centimorgan)/Mb], which are therefore probable hotspots for meiotic recombination. Most crossover breakpoints lie in intergenic or non-coding regions. Major efforts should be devoted to characterizing meiotic recombination at the molecular level, which should help to clarify the role of this process in genome evolution.
Collapse
Affiliation(s)
- C Mézard
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA, route de Saint-Cyr, 78026 Versailles cedex, France.
| |
Collapse
|
89
|
Chain FJJ, Evans BJ. Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genet 2006; 2:e56. [PMID: 16683033 PMCID: PMC1449897 DOI: 10.1371/journal.pgen.0020056] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/28/2006] [Indexed: 01/19/2023] Open
Abstract
Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization. Gene duplication plays a fundamental role in biological innovation but it is not clear how both copies of a duplicated gene manage to circumvent degradation by mutation if neither is unique. This study explores genetic mechanisms that could make each copy of a duplicate gene different, and therefore distinguishable and potentially preserved by natural selection. It is based on DNA sequences of the protein-coding region of 290 expressed duplicated genes in a frog, Xenopus laevis, that underwent complete duplication of its entire genome. Results provide evidence for multiple mechanisms acting within the same genome, within the same functional classes of genes, within the same period of time following duplication, and even on the same set of duplicated genes. Each copy of a duplicate gene may be subject to distinct evolutionary constraints, and this could be associated with degradation or enhancement of function. Functional constraints of most of these duplicates, however, are not substantially different from a single copy gene; their persistence in the first dozens of millions of years after duplication may more frequently be explained by mechanisms acting on their expression rather than their function.
Collapse
Affiliation(s)
- Frédéric J. J Chain
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ben J Evans
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
90
|
Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenziger PS, Dweikat I, Gill KS. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 2006; 88:74-87. [PMID: 16624516 DOI: 10.1016/j.ygeno.2006.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 01/13/2006] [Accepted: 02/05/2006] [Indexed: 11/27/2022]
Abstract
Bread wheat chromosome 3A has been shown to contain genes/QTLs controlling grain yield and other agronomic traits. The objectives of this study were to generate high-density physical and genetic-linkage maps of wheat homoeologous group 3 chromosomes and reveal the physical locations of genes/QTLs controlling yield and its component traits, as well as agronomic traits, to obtain a precise estimate of recombination for the corresponding regions and to enrich the QTL-containing regions with markers. Physical mapping was accomplished by 179 DNA markers mostly representing expressed genes using 41 single-break deletion lines. Polymorphism survey of cultivars Cheyenne (CNN) and Wichita (WI), and a substitution line of CNN carrying chromosome 3A from WI [CNN(WI3A)], with 142 RFLP probes and 55 SSR markers revealed that the extent of polymorphism is different among various group 3 chromosomal regions as well as among the homoeologs. A genetic-linkage map for chromosome 3A was developed by mapping 17 QTLs for seven agronomic traits relative to 26 RFLP and 15 SSR chromosome 3A-specific markers on 95 single-chromosome recombinant inbred lines. Comparison of the physical maps with the 3A genetic-linkage map localized the QTLs to gene-containing regions and accounted for only about 36% of the chromosome. Two chromosomal regions containing 9 of the 17 QTLs encompassed less than 10% of chromosome 3A but accounted for almost all of the arm recombination. To identify rice chromosomal regions corresponding to the particular QTL-containing wheat regions, 650 physically mapped wheat group 3 sequences were compared with rice genomic sequences. At an E value of E < or = 10(-5), 82% of the wheat group 3 sequences identified rice homologs, of which 54% were on rice chromosome 1. The rice chromosome 1 region collinear with the two wheat regions that contained 9 QTLs was about 6.5 Mb.
Collapse
Affiliation(s)
- Muharrem Dilbirligi
- Crop and Soil Science Department, Washington State University, P.O. Box 646420, 277 Johnson Hall, Pullman, WA 99164, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Williams P, Hardeman K, Fowler J, Rivin C. Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:727-39. [PMID: 16460507 DOI: 10.1111/j.1365-313x.2005.02632.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The divergence of sequence and expression pattern of duplicated genes provides a means for genetic innovation to occur without sacrificing an essential function. The cpx1 and cpx2 genes of maize are a singular example of duplicated genes that have diverged by deletion and creation of protein targeting information. The cpx genes encode coproporphyrinogen III oxidase ('coprogen oxidase'), which catalyzes a step in the synthesis of chlorophyll and heme. In plants, this enzyme has been found exclusively in the plastids. The cpx1 and cpx2 genes encode almost identical, catalytically active enzymes with distinctive N-terminal peptide sequences. The cpx1 gene encodes the expected plastid transit peptide, but this region is deleted from the cpx2 gene. While the 5' regions of both messenger RNAs are highly similar, the cpx2 gene has an open-reading frame that could encode a new targeting signal. GFP fused with CPX1 localized to the plastids. In contrast, the GFP fusion with CPX2 did not target plastids and appeared to localize to mitochondria. Both cpx genes are expressed ubiquitously but, based on mutant phenotype, they seem to have discrete biological roles. Seedlings homozygous for a null mutation in the cpx1 gene completely lack chlorophyll and develop necrotic lesions in the light. However, the mutant seedlings and callus cultures will grow in tissue culture in the dark, implying that they retain a capacity to produce heme. We discuss models for the evolution of the cpx genes and possible roles of mitochondrion-localized coprogen oxidase activity in maize.
Collapse
Affiliation(s)
- Pascale Williams
- Department of Botany and Plant Pathology, Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
92
|
Ferreira A, Silva MFD, Silva LDCE, Cruz CD. Estimating the effects of population size and type on the accuracy of genetic maps. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000100033] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
93
|
Sanyal A, Jackson SA. Comparative genomics reveals expansion of the FLC region in the genus Arabidopsis. Mol Genet Genomics 2005; 275:26-34. [PMID: 16341708 DOI: 10.1007/s00438-005-0063-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Mechanisms of genome evolution are poorly understood although recent genome sequencing is providing the tools to begin to illuminate such mechanisms. Using high-resolution molecular cytogenetic tools, we examined the structural evolution of 790 kb surrounding the evolutionarily important FLC locus of Arabidopsis thaliana in three of its relatives, Arabidopsis halleri, Arabidopsis neglecta and Arabidopsis arenosa. Sequenced BACs from A. thaliana were used as heterologous probes across these species and genome expansion was found in all three species relative to A. thaliana, ranging from 16 to 27%. Expansion was seen along the length of the entire region but molecular analyses revealed no characteristic pattern of either intra- or intergenic expansion among these species. Mapping of BACs on DNA fibers from A. thaliana revealed one possible error, approximately 14 kb missing from the reported sequence, indicating that for comparative studies it is important to confirm the reference sequence to which comparison will be made.
Collapse
Affiliation(s)
- Abhijit Sanyal
- Purdue University, 915 West State St., West Lafayette, IN 47907, USA
| | | |
Collapse
|
94
|
Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KFX, Messing J. Structure and architecture of the maize genome. PLANT PHYSIOLOGY 2005; 139:1612-24. [PMID: 16339807 PMCID: PMC1310546 DOI: 10.1104/pp.105.068718] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/11/2005] [Accepted: 10/05/2005] [Indexed: 05/05/2023]
Abstract
Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.
Collapse
Affiliation(s)
- Georg Haberer
- Munich Information Center for Protein Sequences, Institute for Bioinformatics, Gesellschaft für Strahlenforschung Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Mian MAR, Saha MC, Hopkins AA, Wang ZY. Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 2005; 48:637-47. [PMID: 16094432 DOI: 10.1139/g05-029] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsatellites or simple sequence repeats (SSRs) are highly useful molecular markers for plant improvement. Expressed sequence tag (EST)-SSR markers have a higher rate of transferability across species than genomic SSR markers and are thus well suited for application in cross-species phylogenetic studies. Our objectives were to examine the amplification of tall fescue EST-SSR markers in 12 grass species representing 8 genera of 4 tribes from 2 subfamilies of Poaceae and the applicability of these markers for phylogenetic analysis of grass species. About 43% of the 145 EST-SSR primer pairs produced PCR bands in all 12 grass species and had high levels of polymorphism in all forage grasses studied. Thus, these markers will be useful in a variety of forage grass species, including the ones tested in this study. SSR marker data were useful in grouping genotypes within each species. Lolium temulentum, a potential model species for cool-season forage grasses, showed a close relation with the major Festuca-Lolium species in the study. Tall wheat grass was found to be closely related to hexaploid wheat, thereby confirming the known taxonomic relations between these species. While clustering of closely related species was found, the effectiveness of such data in evaluating distantly related species needs further investigations. The phylogenetic trees based on DNA sequences of selected SSR bands were in agreement with the phylogenetic relations based on length polymorphism of SSRs markers. Tall fescue EST-SSR markers depicted phylogenetic relations among a wide range of cool-season forage grass species and thus are an important resource for researchers working with such grass species.
Collapse
Affiliation(s)
- M A Rouf Mian
- Forage Improvement Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | | | | | |
Collapse
|
96
|
Tan G, Jin H, Li G, He R, Zhu L, He G. Production and characterization of a complete set of individual chromosome additions from Oryza officinalis to Oryza sativa using RFLP and GISH analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1585-95. [PMID: 16177899 DOI: 10.1007/s00122-005-0090-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Accepted: 08/10/2005] [Indexed: 05/04/2023]
Abstract
Monosomic alien addition lines (MAALs) are valuable materials for comparative analyses of two distinct genomes, for elucidating introgression mechanisms, and for dissecting genes controlling complex traits. In the study reported here, MAALs of rice containing the complete genome of Oryza sativa and individual chromosomes of Oryza officinalis were produced. Interspecific hybridizations were made between O. sativa L. ssp. Japonica (CV, Hejiang 19, 2 n = 24, AA) and O. officinalis (Acc. HY018, 2 n = 24, CC). Two backcrosses were made to the cultivated rice to obtain BC2F1 plants. Through RFLP and GISH analyses, 25 MAALs (2 n = 25, AA + 1C) were identified and divided into 12 syntenic groups, designated MAALs 1-12. MAALs 1, 2, 3, 5, 7 and 10 were each represented by one plant, MAALs 8, 11 and 12 by two plants, MAALs 6 and 9 by four plants, and MAAL 4 by five plants. An ideogram of the C-genome of O. officinalis was constructed, based on GISH analysis of the interspecific hybrid and the MAALs. Comparative RFLP maps showed strong syntenic associations between the A-genomes and C-genomes. Chromosomal arrangements such as translocations and duplications were detected in different alien chromosomes of the MAALs. The complete set of O. officinalis MAALs generated here provides a novel manipulation platform for exploiting and utilizing the O. officinalis genome and carrying out genetic studies.
Collapse
Affiliation(s)
- Guangxun Tan
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences, Wuhan University, China
| | | | | | | | | | | |
Collapse
|
97
|
Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 2005; 110:91-107. [PMID: 16093661 DOI: 10.1159/000084941] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 04/14/2004] [Indexed: 12/11/2022] Open
Abstract
Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.
Collapse
Affiliation(s)
- C Vitte
- Laboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
98
|
Martin WJ, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Pither-Joyce M, Gokce AF, Sink KC, Town CD, Havey MJ. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genomics 2005; 274:197-204. [PMID: 16025250 DOI: 10.1007/s00438-005-0007-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 05/12/2005] [Indexed: 11/30/2022]
Abstract
The Poales (which include the grasses) and Asparagales [which include onion (Allium cepa L.) and other Allium species] are the two most economically important monocot orders. Enormous genomic resources have been developed for the grasses; however, their applicability to other major monocot groups, such as the Asparagales, is unclear. Expressed sequence tags (ESTs) from onion that showed significant similarities (80% similarity over at least 70% of the sequence) to single positions in the rice genome were selected. One hundred new genetic markers developed from these ESTs were added to the intraspecific map derived from the BYG15-23xAC43 segregating family, producing 14 linkage groups encompassing 1,907 cM at LOD 4. Onion linkage groups were assigned to chromosomes using alien addition lines of Allium fistulosum L. carrying single onion chromosomes. Visual comparisons of genetic linkage in onion with physical linkage in rice revealed scant colinearity; however, short regions of colinearity could be identified. Our results demonstrate that the grasses may not be appropriate genomic models for other major monocot groups such as the Asparagales; this will make it necessary to develop genomic resources for these important plants.
Collapse
Affiliation(s)
- William J Martin
- Agricultural Research Service, USDA, Department of Horticulture, University of Wisconsin, Madison, 53706, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Bomblies K, Doebley JF. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 2005; 172:519-31. [PMID: 16204211 PMCID: PMC1456179 DOI: 10.1534/genetics.105.048595] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenotypic variation on which selection can act during evolution may be caused by variation in activity level of developmental regulatory genes. In many cases, however, such genes affect multiple traits. This situation can lead to co-evolution of traits, or evolutionary constraint if some pleiotropic effects are detrimental. Here, we present an analysis of quantitative traits associated with gene copy number of two important maize regulatory genes, the duplicate FLORICAULA/LEAFY orthologs zfl1 and zfl2. We found statistically significant associations between several quantitative traits and copy number of both zfl genes in several maize genetic backgrounds. Despite overlap in traits associated with these duplicate genes, zfl1 showed stronger associations with flowering time, while zfl2 associated more strongly with branching and inflorescence structure traits, suggesting some divergence of function. Since zfl2 associates with quantitative variation for ear rank and also maps near a quantitative trait locus (QTL) on chromosome 2 controlling ear rank differences between maize and teosinte, we tested whether zfl2 might have been involved in the evolution of this trait using a QTL complementation test. The results suggest that zfl2 activity is important for the QTL effect, supporting zfl2 as a candidate gene for a role in morphological evolution of maize.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, 53706, USA.
| | | |
Collapse
|
100
|
Ayliffe MA, Mitchell HJ, Deuschle K, Pryor AJ. Comparative analysis in cereals of a key proline catabolism gene. Mol Genet Genomics 2005; 274:494-505. [PMID: 16179990 DOI: 10.1007/s00438-005-0048-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/19/2005] [Indexed: 11/25/2022]
Abstract
Proline accumulation and catabolism play significant roles in adaptation to a variety of plant stresses including osmotic stress, drought, temperature, freezing, UV irradiation, heavy metals and pathogen infection. In this study, the gene Delta1 -pyrroline-5-carboxylate dehydrogenase (P5CDH), which catalyzes the second step in the conversion of proline to glutamate, is characterized in a number of cereal species. P5CDH genes from hexaploid wheat, Triticum turgidum (durum wheat), Aegilops tauschii, Triticum monococcum, barley, maize and rice were shown to be conserved in terms of gene structure and sequence, present as a single copy per haploid, non-polyploid genome and located in evolutionarily conserved linkage groups. A wheat cDNA sequence was shown by yeast complementation to encode a functional P5CDH activity. A divergently-transcribed rab7 gene was identified immediately 5' of P5CDH in all grasses examined, except rice. The rab7/P5CDH intergenic region in these species, which presumably encompasses 5' regulatory elements of both genes, showed a distinct pattern of sequence evolution with sequences in juxtaposition to each ORF conserved between barley, wheat, A. tauschii and T. monococcum. More distal 5' sequence in this intergenic region showed a higher rate of divergence, with no homology observed between these regions in the wheat and barley genomes. Maize and rice showed no similarity in regions 5' of P5CDH when compared with wheat, barley, and each other, apart from a 22 bp region of conserved non-coding sequence (CNS) that is similar to a proline response element identified in the promoter of the Arabidopsis proline dehydrogenase gene. A palindromic motif similar to this cereal CNS was also identified 5' of the Arabidopsis AtP5CDH gene showing conservation of this sequence in monocot and dicot lineages.
Collapse
Affiliation(s)
- Michael A Ayliffe
- CSIRO Plant Industry, Box 1600, Clunies Ross Drive, Canberra, ACT, 2601, Australia.
| | | | | | | |
Collapse
|