51
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
52
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
53
|
Mangiagalli M, Lapi M, Maione S, Orlando M, Brocca S, Pesce A, Barbiroli A, Camilloni C, Pucciarelli S, Lotti M, Nardini M. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. FEBS J 2020; 288:546-565. [PMID: 32363751 DOI: 10.1111/febs.15354] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
To survive in cold environments, psychrophilic organisms produce enzymes endowed with high specific activity at low temperature. The structure of these enzymes is usually flexible and mostly thermolabile. In this work, we investigate the structural basis of cold adaptation of a GH42 β-galactosidase from the psychrophilic Marinomonas ef1. This enzyme couples cold activity with astonishing robustness for a psychrophilic protein, for it retains 23% of its highest activity at 5 °C and it is stable for several days at 37 °C and even 50 °C. Phylogenetic analyses indicate a close relationship with thermophilic β-galactosidases, suggesting that the present-day enzyme evolved from a thermostable scaffold modeled by environmental selective pressure. The crystallographic structure reveals the overall similarity with GH42 enzymes, along with a hexameric arrangement (dimer of trimers) not found in psychrophilic, mesophilic, and thermophilic homologues. In the quaternary structure, protomers form a large central cavity, whose accessibility to the substrate is promoted by the dynamic behavior of surface loops, even at low temperature. A peculiar cooperative behavior of the enzyme is likely related to the increase of the internal cavity permeability triggered by heating. Overall, our results highlight a novel strategy of enzyme cold adaptation, based on the oligomerization state of the enzyme, which effectively challenges the paradigm of cold activity coupled with intrinsic thermolability. DATABASE: Structural data are available in the Protein Data Bank database under the accession number 6Y2K.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Michela Lapi
- Department of Biosciences, University of Milano, Italy
| | - Serena Maione
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | | | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Italy
| | | | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| |
Collapse
|
54
|
Santos CR, Costa PACR, Vieira PS, Gonzalez SET, Correa TLR, Lima EA, Mandelli F, Pirolla RAS, Domingues MN, Cabral L, Martins MP, Cordeiro RL, Junior AT, Souza BP, Prates ÉT, Gozzo FC, Persinoti GF, Skaf MS, Murakami MT. Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol 2020; 16:920-929. [PMID: 32451508 DOI: 10.1038/s41589-020-0554-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
The fundamental and assorted roles of β-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on β-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/β)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical β-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of β-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of β-1,3-glucans, which can be exploited for biotechnological applications.
Collapse
Affiliation(s)
- Camila R Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Pedro A C R Costa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Plínio S Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | | | - Thamy L R Correa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Evandro A Lima
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Fernanda Mandelli
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Atílio T Junior
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Beatriz P Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Érica T Prates
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.
| |
Collapse
|
55
|
Dashnyam P, Lin HY, Chen CY, Gao S, Yeh LF, Hsieh WC, Tu Z, Lin CH. Substituent Position of Iminocyclitols Determines the Potency and Selectivity for Gut Microbial Xenobiotic-Reactivating Enzymes. J Med Chem 2020; 63:4617-4627. [PMID: 32105467 DOI: 10.1021/acs.jmedchem.9b01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 μM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.
Collapse
Affiliation(s)
- Punsaldulam Dashnyam
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chia-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Shijay Gao
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Lun-Fu Yeh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Wei-Che Hsieh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
56
|
Zarafeta D, Galanopoulou AP, Leni ME, Kaili SI, Chegkazi MS, Chrysina ED, Kolisis FN, Hatzinikolaou DG, Skretas G. XynDZ5: A New Thermostable GH10 Xylanase. Front Microbiol 2020; 11:545. [PMID: 32390953 PMCID: PMC7193231 DOI: 10.3389/fmicb.2020.00545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
Xylanolytic enzymes have a broad range of applications in industrial biotechnology as biocatalytic components of various processes and products, such as food additives, bakery products, coffee extraction, agricultural silage and functional foods. An increasing market demand has driven the growing interest for the discovery of xylanases with specific industrially relevant characteristics, such as stability at elevated temperatures and in the presence of other denaturing factors, which will facilitate their incorporation into industrial processes. In this work, we report the discovery and biochemical characterization of a new thermostable GH10 xylanase, termed XynDZ5, exhibiting only 26% amino acid sequence identity to the closest characterized xylanolytic enzyme. This new enzyme was discovered in an Icelandic hot spring enrichment culture of a Thermoanaerobacterium species using a recently developed bioinformatic analysis platform. XynDZ5 was produced recombinantly in Escherichia coli, purified and characterized biochemically. This analysis revealed that it acts as an endo-1,4-β-xylanase that performs optimally at 65–75°C and pH 7.5. The enzyme is capable of retaining high levels of catalytic efficiency after several hours of incubation at high temperatures, as well as in the presence of significant concentrations of a range of metal ions and denaturing agents. Interestingly, the XynDZ5 biochemical profile was found to be atypical, as it also exhibits significant exo-activity. Computational modeling of its three-dimensional structure predicted a (β/α)8 TIM barrel fold, which is very frequently encountered among family GH10 enzymes. This modeled structure has provided clues about structural features that may explain aspects of its catalytic performance. Our results suggest that XynDZ5 represents a promising new candidate biocatalyst appropriate for several high-temperature biotechnological applications in the pulp, paper, baking, animal-feed and biofuel industries.
Collapse
Affiliation(s)
- Dimitra Zarafeta
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Anastasia P Galanopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Evangelia Leni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Stavroula I Kaili
- Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Magda S Chegkazi
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Fragiskos N Kolisis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Dimitris G Hatzinikolaou
- Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
57
|
Sieriebriennikov B, Sun S, Lightfoot JW, Witte H, Moreno E, Rödelsperger C, Sommer RJ. Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell. PLoS Genet 2020; 16:e1008687. [PMID: 32282814 PMCID: PMC7179942 DOI: 10.1371/journal.pgen.1008687] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Environment shapes development through a phenomenon called developmental plasticity. Deciphering its genetic basis has potential to shed light on the origin of novel traits and adaptation to environmental change. However, molecular studies are scarce, and little is known about molecular mechanisms associated with plasticity. We investigated the gene regulatory network controlling predatory vs. non-predatory dimorphism in the nematode Pristionchus pacificus and found that it consists of genes of extremely different age classes. We isolated mutants in the conserved nuclear hormone receptor nhr-1 with previously unseen phenotypic effects. They disrupt mouth-form determination and result in animals combining features of both wild-type morphs. In contrast, mutants in another conserved nuclear hormone receptor nhr-40 display altered morph ratios, but no intermediate morphology. Despite divergent modes of control, NHR-1 and NHR-40 share transcriptional targets, which encode extracellular proteins that have no orthologs in Caenorhabditis elegans and result from lineage-specific expansions. An array of transcriptional reporters revealed co-expression of all tested targets in the same pharyngeal gland cell. Major morphological changes in this gland cell accompanied the evolution of teeth and predation, linking rapid gene turnover with morphological innovations. Thus, the origin of feeding plasticity involved novelty at the level of genes, cells and behavior.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James W. Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
58
|
Grootaert H, Van Landuyt L, Hulpiau P, Callewaert N. Functional exploration of the GH29 fucosidase family. Glycobiology 2020; 30:735-745. [PMID: 32149359 DOI: 10.1093/glycob/cwaa023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
The deoxy sugar l-fucose is frequently found as a glycan constituent on and outside living cells, and in mammals it is involved in a wide range of biological processes including leukocyte trafficking, histo-blood group antigenicity and antibody effector functions. The manipulation of fucose levels in those biomedically important systems may provide novel insights and therapeutic leads. However, despite the large established sequence diversity of natural fucosidases, so far, very few enzymes have been characterized. We explored the diversity of the α-l-fucosidase-containing CAZY family GH29 by bio-informatic analysis, and by the recombinant production and exploration for fucosidase activity of a subset of 82 protein sequences that represent the family's large sequence diversity. After establishing that most of the corresponding proteins can be readily expressed in E. coli, more than half of the obtained recombinant proteins (57% of the entire subset) showed activity towards the simple chromogenic fucosylated substrate 4-nitrophenyl α-l-fucopyranoside. Thirty-seven of these active GH29 enzymes (and the GH29 subtaxa that they represent) had not been characterized before. With such a sequence diversity-based collection available, it can easily be used to screen for fucosidase activity towards biomedically relevant fucosylated glycoproteins. As an example, the subset was used to screen GH29 members for activity towards the naturally occurring sialyl-Lewis x-type epitope on glycoproteins, and several such enzymes were identified. Together, the results provide a significant increase in the diversity of characterized GH29 enzymes, and the recombinant enzymes constitute a resource for the further functional exploration of this enzyme family.
Collapse
Affiliation(s)
- Hendrik Grootaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Linde Van Landuyt
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| |
Collapse
|
59
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
60
|
RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 2020; 726:144197. [DOI: 10.1016/j.gene.2019.144197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022]
|
61
|
Isolation and subunit compositions of the xylanosome complexes produced by Cellulosimicrobium species. Enzyme Microb Technol 2020; 133:109445. [PMID: 31874683 DOI: 10.1016/j.enzmictec.2019.109445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023]
Abstract
Cellulosimicrobium cellulans, which is type species of the genus Cellulosimicrobium, produces xylanase predominant nanoscale multienzyme complexes, i.e., xylanosomes, when grown on water-insoluble polysaccharides. Here, we report on the isolation of similar multienzyme complexes (MECs) produced by two other species in genus Cellulosimicrobium (Cellulosimicrobium funkei and Cellulosimicrobium terreum). Functional studies and subunit structure identifications using genomic sequencing and proteomic techniques were also performed. When compared with the xylanosomes produced by C. cellulans F16, the isolated MECs showed a larger particle size and shared at least three conserved multidomain proteins. In addition, they also exhibited different enzymatic activities and subunit compositions, which indicates diverse capability and strategies in degrading hemicelluloses.
Collapse
|
62
|
Isolation, Substrate Specificity, and Subunit Characterization of the Xylanosomes Produced by Oerskovia turbata JCM 3160. Curr Microbiol 2020; 77:924-930. [PMID: 31980859 DOI: 10.1007/s00284-020-01887-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
This work aims at functional studies of the multienzyme complexes produced by Oerskovia turbata JCM 3160 and reveal of their subunit structures. The multienzyme complexes were isolated, enzymatic assayed, the whole genome sequence was determined in fine scale, and the subunit structure was identified by Maldi-TOF mass spectrometry. The isolated multienzyme complexes here show similar particle size with the xylanosomes produced by Cellulosimicrobium cellulans F16, have at least two conserved multi-domain proteins, while differ significantly in enzymatic activities and low molecular weight subunit compositions. This is the first report of the enzymatic activities and subunit structures of xylanosome produced by Oerskovia turbata, providing insights into its diverse capability as well as degrading bias on hemicelluloses.
Collapse
|
63
|
Vyse K, Penzlin J, Sergeant K, Hincha DK, Arora R, Zuther E. Repair of sub-lethal freezing damage in leaves of Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:35. [PMID: 31959104 PMCID: PMC6971927 DOI: 10.1186/s12870-020-2247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The detrimental effects of global climate change direct more attention to the survival and productivity of plants during periods of highly fluctuating temperatures. In particular in temperate climates in spring, temperatures can vary between above-zero and freezing temperatures, even during a single day. Freeze-thaw cycles cause cell membrane lesions that can lead to tissue damage and plant death. Whereas the processes of cold acclimation and freeze-thaw injury are well documented, not much is known about the recovery of plants after a freezing event. We therefore addressed the following questions: i. how does the severity of freezing damage influence repair; ii. how are respiration and content of selected metabolites influenced during the repair process; and iii. how do transcript levels of selected genes respond during repair? RESULTS We have investigated the recovery from freezing to sub-lethal temperatures in leaves of non-acclimated and cold acclimated Arabidopsis thaliana plants over a period of 6 days. Fast membrane repair and recovery of photosynthesis were observed 1 day after recovery (1D-REC) and continued until 6D-REC. A substantial increase in respiration accompanied the repair process. In parallel, concentrations of sugars and proline, acting as compatible solutes during freezing, remained unchanged or declined, implicating these compounds as carbon and nitrogen sources during recovery. Similarly, cold-responsive genes were mainly down regulated during recovery of cold acclimated leaves. In contrast, genes involved in cell wall remodeling and ROS scavenging were induced during recovery. Interestingly, also the expression of genes encoding regulatory proteins, such as 14-3-3 proteins, was increased suggesting their role as regulators of repair processes. CONCLUSIONS Recovery from sub-lethal freezing comprised membrane repair, restored photosynthesis and increased respiration rates. The process was accompanied by transcriptional changes including genes encoding regulatory proteins redirecting the previous cold response to repair processes, e.g. to cell wall remodeling, maintenance of the cellular proteome and to ROS scavenging. Understanding of processes involved in repair of freeze-thaw injury increases our knowledge on plant survival in changing climates with highly fluctuating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Johanna Penzlin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, Iowa, 50010, USA
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
64
|
Kazi A, Hisyam Ismail CMK, Anthony AA, Chuah C, Leow CH, Lim BH, Banga Singh KK, Leow CY. Designing and evaluation of an antibody-targeted chimeric recombinant vaccine encoding Shigella flexneri outer membrane antigens. INFECTION GENETICS AND EVOLUTION 2020; 80:104176. [PMID: 31923724 DOI: 10.1016/j.meegid.2020.104176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 11/16/2022]
Abstract
Shigellosis is one of the most common diseases found in the developing countries, especially those countries that are prone flood. The causative agent for this disease is the Shigella species. This organism is one of the third most common enteropathogens responsible for childhood diarrhea. Since Shigella can survive gastric acidity and is an intracellular pathogen, it becomes difficult to treat. Also, uncontrolled use of antibiotics has led to development of resistant strains which poses a threat to public health. Therefore, there is a need for long term control of Shigella infection which can be achieved by designing a proper and effective vaccine. In this study, emphasis was made on designing a candidate that could elicit both B-cell and T-cell immune response. Hence B- and T-cell epitopes of outer membrane channel protein (OM) and putative lipoprotein (PL) from S. flexneri 2a were computationally predicted using immunoinformatics approach and a chimeric construct (chimeric-OP) containing the immunogenic epitopes selected from OM and PL was designed, cloned and expressed in E. coli system. The immunogenicity of the recombinant chimeric-OP was assessed using Shigella antigen infected rabbit antibody. The result showed that the chimeric-OP was a synthetic peptide candidate suitable for the development of vaccine and immunodiagnostics against Shigella infection.
Collapse
Affiliation(s)
- Ada Kazi
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Amy Amilda Anthony
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Candy Chuah
- School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Boon Huat Lim
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
65
|
Biochemical characterisation of four rhamnosidases from thermophilic bacteria of the genera Thermotoga, Caldicellulosiruptor and Thermoclostridium. Sci Rep 2019; 9:15924. [PMID: 31685873 PMCID: PMC6828813 DOI: 10.1038/s41598-019-52251-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023] Open
Abstract
Carbohydrate active enzymes are classified in databases based on sequence and structural similarity. However, their function can vary considerably within a similarity-based enzyme family, which makes biochemical characterisation indispensable to unravel their physiological role and to arrive at a meaningful annotation of the corresponding genes. In this study, we biochemically characterised the four related enzymes Tm_Ram106B, Tn_Ram106B, Cb_Ram106B and Ts_Ram106B from the thermophilic bacteria Thermotoga maritima MSB8, Thermotoga neapolitana Z2706-MC24, Caldicellulosiruptor bescii DSM 6725 and Thermoclostridium stercorarium DSM 8532, respectively, as α-l-rhamnosidases. Cobalt, nickel, manganese and magnesium ions stimulated while EDTA and EGTA inhibited all four enzymes. The kinetic parameters such as Km, Vmax and kcat were about average compared to other rhamnosidases. The enzymes were inhibited by rhamnose, with half-maximal inhibitory concentrations (IC50) between 5 mM and 8 mM. The α-l-rhamnosidases removed the terminal rhamnose moiety from the rutinoside in naringin, a natural flavonone glycoside. The Thermotoga sp. enzymes displayed the highest optimum temperatures and thermostabilities of all rhamnosidases reported to date. The four thermophilic and divalent ion-dependent rhamnosidases are the first biochemically characterised orthologous enzymes recently assigned to glycoside hydrolase family 106.
Collapse
|
66
|
Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
67
|
De novo genome assembly and comparative annotation reveals metabolic versatility in cellulolytic bacteria from cropland and forest soils. Funct Integr Genomics 2019; 20:89-101. [PMID: 31378834 DOI: 10.1007/s10142-019-00704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Cellulose, the most abundant polysaccharide in nature, is a rich source of renewable energy and sustains soil nutrients. Among the microorganisms known to degrade cellulose, bacteria are less studied compared to fungi. In the present work, we have investigated the culturable bacteria actively involved in cellulose degradation in forest and crop field soils. Based on clear zone formation and enzyme activity assay, we identified 7 bacterial strains positive for cellulose degradation. Of these, two most efficient strains (Bacillus cereus strains BHU1 and BHU2) were selected for whole genome sequencing, annotation, and information regarding GC content, number of genes, total subsystems, starch, and cellulose degradation pathways. Average nucleotide identity (ANI) showed more than 90% similarity between both the strains (BHU1 and BHU2) and with B. cereus ATCC 14579. Both the strains have genes and enzyme families like endoglucanase and β-glucosidase as evident from whole genome sequence. Cellulase containing gene families (GH5, GH8, GH1), and many other carbohydrate-degrading enzymes, were present in both the bacterial strains. Taken together, the results suggest that the strains were efficient in cellulose degradation, and can be used for energy generation and production of value-added product.
Collapse
|
68
|
Structural basis of glycogen metabolism in bacteria. Biochem J 2019; 476:2059-2092. [PMID: 31366571 DOI: 10.1042/bcj20170558] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.
Collapse
|
69
|
Kumar R, Henrissat B, Coutinho PM. Intrinsic dynamic behavior of enzyme:substrate complexes govern the catalytic action of β-galactosidases across clan GH-A. Sci Rep 2019; 9:10346. [PMID: 31316086 PMCID: PMC6637243 DOI: 10.1038/s41598-019-46589-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/28/2019] [Indexed: 01/18/2023] Open
Abstract
The conformational itineraries taken by carbohydrate residues in the catalytic subsite of retaining glycoside hydrolases (GHs), harness the link between substrate conformation and reactivity. GHs' active sites may be described as a combination of subsites dedicated to the binding of individual sugar residues and to catalysis. The three-dimensional structure of GH:carbohydrate complexes has demonstrated that carbohydrate ring conformation changes in an ordered manner during catalysis. Here we demonstrate in silico that a link exists between subsite binding dynamics and substrate specificity for β-galactosidases from clan GH-A families GH1, GH2, GH35, GH42 and GH59. Different oligosaccharides were docked in the active site of reference β-galactosidase structures using Vina-Carb. Subsequent molecular dynamics (MD) simulations revealed that these enzymes favor a high degree of flexibility and ring distortion of the substrate the lytic subsite -1. Although the β-galactosidase families examined are structurally and mechanistically related, distinct patterns of ring distortion were unveiled for the different families. For β-galactosidases, three different family-dependent reaction itineraries (1S3 → 4H3‡ → 4C1, 1,4B → 4H3/ 4E‡ → 4C1, and 1S5 → 4E/ 4H5‡ → 4C1) were identified, all compatible with the antiperiplanar lone pair hypothesis (ALPH) for the hydrolysis of β-glycosides. This comparative study reveals the fuzzy character of the changes in carbohydrate ring geometry prior to carbohydrate hydrolysis.
Collapse
Affiliation(s)
- Rajender Kumar
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288, Marseille, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288, Marseille, France
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288, Marseille, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, 23218, Jeddah, Saudi Arabia
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288, Marseille, France.
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288, Marseille, France.
- Polytech Marseille, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
70
|
Subramanian A, Kadirvel P, Anishetty S. Insights into the pH-dependent catalytic mechanism of Sulfolobus solfataricus β-glycosidase: A molecular dynamics study. Carbohydr Res 2019; 480:42-53. [DOI: 10.1016/j.carres.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
|
71
|
Abdeljalil S, Borgi I, Carvalho S, Jmal-Hammami L, Gargouri A. Molecular and bioinformatics analyses reveal two differentially expressed intracellular GH1 β-glucosidases from the rare alkalophilic fungus Stachybotrys microspora. Gene 2019; 703:134-144. [PMID: 30974199 PMCID: PMC6525110 DOI: 10.1016/j.gene.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023]
Abstract
The present study reports the isolation and analysis of two novel GH1 β-glucosidases from the alkalophilic fungus Stachybotrys microspora, using PCR and Nested-PCR. Three major gene fragments were obtained by PCR: the first two are very similar and constitute a novel gene, which was named Smbgl1A, and the third PCR fragment is part of a different gene, named Smbgl1B. The truncated gene sequences were completely filled using the recent partial whole genome sequencing data of S. microspora (data not yet published). Moreover, we investigated the relative effects of glucose in comparison to cellulose rather than evaluate their absolute effects. In fact, RT-PCR analysis showed that while Smbgl1A was expressed when the fungus was grown in the presence of cellulose but not when grown with glucose, Smbgl1B was equally expressed under both conditions. The putative catalytic residues and the conserved glycone binding sites were identified. Zymogram analysis showed the intracellular production of β-glucosidases in S. microspora. The predicted secondary structure exhibited a classical (β/α)8 barrel fold, showing that both SmBGL1A and SmBGL1B belong to the GH1 family. Phylogenetic studies showed that SmBGL1A and SmBGL1B belong to the same branch as β-glucosidases from Stachybotrys chlorohalonata and Stachybotrys chartarum. However, SmBGL1A and SmBGL1B form two distinct clades. Isolation of two novel GH 1 β-glucosidases from Stachybotrys microspora Investigation of the relative effects of glucose in comparison to cellulose Zymogram analysis has shown the intracellular production of GH1 β-glucosidases. Prediction of the secondary structure with the presence of a classical (β/α) 8 barrel
Collapse
Affiliation(s)
- Salma Abdeljalil
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia.
| | - Ines Borgi
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia
| | - Sandra Carvalho
- Mode of Action Group, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Lamia Jmal-Hammami
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia
| |
Collapse
|
72
|
Wierzbicka-Woś A, Henneberger R, Batista-García RA, Martínez-Ávila L, Jackson SA, Kennedy J, Dobson ADW. Biochemical Characterization of a Novel Monospecific Endo-β-1,4-Glucanase Belonging to GH Family 5 From a Rhizosphere Metagenomic Library. Front Microbiol 2019; 10:1342. [PMID: 31258522 PMCID: PMC6587912 DOI: 10.3389/fmicb.2019.01342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
Cellulases have a broad range of different industrial applications, ranging from food and beverages to pulp and paper and the biofuels area. Here a metagenomics based strategy was used to identify the cellulolytic enzyme CelRH5 from the rhizosphere. CelRH5 is a novel monospecific endo-β-1,4-glucanase belonging to the glycosyl hydrolase family 5 (GH5). Structural based modeling analysis indicated that CelRH5 is related to endo-β-1,4-glucanases derived from thermophilic microorganisms such as Thermotoga maritima, Fervidobacterium nodosum, and Ruminiclostridium thermocellum sharing 30-40% amino acid sequence identity. The molecular weight of the enzyme was determined as 40.5 kDa. Biochemical analyses revealed that the enzyme displayed good activity with soluble forms of cellulose as a substrate such as ostazin brilliant red hydroxyethyl cellulose (OBR-HEC), carboxymethylcellulose (CMC), hydroxyethyl cellulose (HEC), and insoluble azurine cross-linked hydroxyethylcellulose (AZCL-HEC). The enzyme shows highest enzymatic activity at pH 6.5 with high pH tolerance, remaining stable in the pH range 4.5–8.5. Highest activity was observed at 40°C, but CelRH5 is psychrotolerant being active and stable at temperatures below 30°C. The presence of the final products of cellulose hydrolysis (glucose and cellobiose) or metal ions such as Na+, K+, Li+, and Mg2+, as well as ethylenediaminetetraacetic acid (EDTA), urea, dithiothreitol (DTT), dimethyl sulfoxide (DMSO), 2-mercaptoethanol (2-ME) or glycerol, did not have a marked effect on CelRH5 activity. However, the enzyme is quite sensitive to the presence of 10 mM ions Zn2+, Ni2+, Co2+, Fe3+ and reagents such as 1 M guanidine HCl, 0.1% sodium dodecyl sulfate (SDS) and 20% ethanol. Given that it is psychrotolerant and retains activity in the presence of final cellulose degradation products, metal ions and various reagents, which are common in many technological processes; CelRH5 may be potential suitability for a variety of different biotechnological applications.
Collapse
Affiliation(s)
- Anna Wierzbicka-Woś
- Environmental Research Institute, University College Cork, Cork, Ireland.,Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Ruth Henneberger
- Environmental Research Institute, University College Cork, Cork, Ireland.,Institute for Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Stephen A Jackson
- Environmental Research Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Alan D W Dobson
- Environmental Research Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
73
|
Structural Insights into the Molecular Evolution of the Archaeal Exo-β-d-Glucosaminidase. Int J Mol Sci 2019; 20:ijms20102460. [PMID: 31109049 PMCID: PMC6566704 DOI: 10.3390/ijms20102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA), a thermostable enzyme belonging to the glycosidase hydrolase (GH) 35 family, hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a novel enzyme in terms of its primary structure, as it is homologous to both GH35 and GH42 β-galactosidases. The catalytic mechanism of GlmA is not known. Here, we summarize the recent reports on the crystallographic analysis of GlmA. GlmA is a homodimer, with each subunit comprising three distinct domains: a catalytic TIM-barrel domain, an α/β domain, and a β1 domain. Surprisingly, the structure of GlmA presents features common to GH35 and GH42 β-galactosidases, with the domain organization resembling that of GH42 β-galactosidases and the active-site architecture resembling that of GH35 β-galactosidases. Additionally, the GlmA structure also provides critical information about its catalytic mechanism, in particular, on how the enzyme can recognize glucosamine. Finally, we postulate an evolutionary pathway based on the structure of an ancestor GlmA to extant GH35 and GH42 β-galactosidases.
Collapse
|
74
|
An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Sci Rep 2019; 9:4903. [PMID: 30894609 PMCID: PMC6426972 DOI: 10.1038/s41598-019-41300-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/26/2019] [Indexed: 11/08/2022] Open
Abstract
β-glucosidases play a critical role among the enzymes in enzymatic cocktails designed for plant biomass deconstruction. By catalysing the breakdown of β-1, 4-glycosidic linkages, β-glucosidases produce free fermentable glucose and alleviate the inhibition of other cellulases by cellobiose during saccharification. Despite this benefit, most characterised fungal β-glucosidases show weak activity at high glucose concentrations, limiting enzymatic hydrolysis of plant biomass in industrial settings. In this study, structural analyses combined with site-directed mutagenesis efficiently improved the functional properties of a GH1 β-glucosidase highly expressed by Trichoderma harzianum (ThBgl) under biomass degradation conditions. The tailored enzyme displayed high glucose tolerance levels, confirming that glucose tolerance can be achieved by the substitution of two amino acids that act as gatekeepers, changing active-site accessibility and preventing product inhibition. Furthermore, the enhanced efficiency of the engineered enzyme in terms of the amount of glucose released and ethanol yield was confirmed by saccharification and simultaneous saccharification and fermentation experiments using a wide range of plant biomass feedstocks. Our results not only experimentally confirm the structural basis of glucose tolerance in GH1 β-glucosidases but also demonstrate a strategy to improve technologies for bioethanol production based on enzymatic hydrolysis.
Collapse
|
75
|
Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci U S A 2019; 116:6063-6068. [PMID: 30850540 PMCID: PMC6442616 DOI: 10.1073/pnas.1815791116] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the last two decades, the number of gene/protein sequences gleaned from sequencing projects of individual genomes and environmental DNA has grown exponentially. Only a tiny fraction of these predicted proteins has been experimentally characterized, and the function of most proteins remains hypothetical or only predicted based on sequence similarity. Despite the development of postgenomic methods, such as transcriptomics, proteomics, and metabolomics, the assignment of function to protein sequences remains one of the main challenges in modern biology. As in all classes of proteins, the growing number of predicted carbohydrate-active enzymes (CAZymes) has not been accompanied by a systematic and accurate attribution of function. Taking advantage of the CAZy database, which groups CAZymes into families and subfamilies based on amino acid similarities, we recombinantly produced 564 proteins selected from subfamilies without any biochemically characterized representatives, from distant relatives of characterized enzymes and from nonclassified proteins that show little similarity with known CAZymes. Screening these proteins for activity on a wide collection of carbohydrate substrates led to the discovery of 13 CAZyme families (two of which were also discovered by others during the course of our work), revealed three previously unknown substrate specificities, and assigned a function to 25 subfamilies.
Collapse
|
76
|
von Freiesleben P, Moroz OV, Blagova E, Wiemann M, Spodsberg N, Agger JW, Davies GJ, Wilson KS, Stålbrand H, Meyer AS, Krogh KBRM. Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Sci Rep 2019; 9:2266. [PMID: 30783168 PMCID: PMC6381184 DOI: 10.1038/s41598-019-38602-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Endo-β(1 → 4)-mannanases (endomannanases) catalyse degradation of β-mannans, an abundant class of plant polysaccharides. This study investigates structural features and substrate binding of YpenMan26A, a non-CBM carrying endomannanase from Yunnania penicillata. Structural and sequence comparisons to other fungal family GH26 endomannanases showed high sequence similarities and conserved binding residues, indicating that fungal GH26 endomannanases accommodate galactopyranosyl units in the -3 and -2 subsites. Two striking amino acid differences in the active site were found when the YpenMan26A structure was compared to a homology model of Wsp.Man26A from Westerdykella sp. and the sequences of nine other fungal GH26 endomannanases. Two YpenMan26A mutants, W110H and D37T, inspired by differences observed in Wsp.Man26A, produced a shift in how mannopentaose bound across the active site cleft and a decreased affinity for galactose in the -2 subsite, respectively, compared to YpenMan26A. YpenMan26A was moreover found to have a flexible surface loop in the position where PansMan26A from Podospora anserina has an α-helix (α9) which interacts with its family 35 CBM. Sequence alignment inferred that the core structure of fungal GH26 endomannanases differ depending on the natural presence of this type of CBM. These new findings have implications for selecting and optimising these enzymes for galactomannandegradation.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark.,DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga V Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mathias Wiemann
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Jane W Agger
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Anne S Meyer
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
77
|
Adhav A, Harne S, Bhide A, Giri A, Gayathri P, Joshi R. Mechanistic insights into enzymatic catalysis by trehalase from the insect gut endosymbiont Enterobacter cloacae. FEBS J 2019; 286:1700-1716. [PMID: 30657252 DOI: 10.1111/febs.14760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 11/26/2022]
Abstract
Energy metabolism in the diamondback moth Plutella xylostella is facilitated by trehalase, an enzyme which assists in trehalose hydrolysis, from the predominant gut bacterium Enterobacter cloacae. We report the biochemical and structural characterization of recombinant trehalase from E. cloacae (Px_EclTre). Px_EclTre showed KM of 1.47 (±0.05) mm, kcat of 6254.72 min-1 and Vmax 0.2 (±0.002) mm·min-1 at 55 °C and acidic pH. Crystal structures of Px_EclTre were determined in the ligand-free form and bound to the inhibitor Validoxylamine A. The crystal structure of the ligand-free form, unavailable until now for any other bacterial trehalases, enabled us to delineate the conformational changes accompanying ligand binding in trehalases. Multiple salt bridges were identified that potentially facilitated closure of a hood over the substrate-binding site. A cluster of five tryptophans lined the -1 substrate-binding subsite, interacted with crucial active site residues and contributed to both trehalase activity and stability. The importance of these residues in enzyme activity was further validated by mutagenesis studies. Many of these identified residues form part of signature motifs and other conserved sequences in trehalases. The structure analysis thus led to the assignment of the functional role to these conserved residues. This information can be further explored for the design of effective inhibitors against trehalases.
Collapse
Affiliation(s)
- Anmol Adhav
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, India
| | - Shrikant Harne
- Indian Institute of Science Education and Research, Pune, India
| | - Amey Bhide
- Division of Biochemical Sciences, CSIR National Chemical Laboratory, Pune, India
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR National Chemical Laboratory, Pune, India
| | | | - Rakesh Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, India
| |
Collapse
|
78
|
Chen CH, Yao JY, Yang B, Lee HL, Yuan SF, Hsieh HY, Liang PH. Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
79
|
Gytz H, Liang J, Liang Y, Gorelik A, Illes K, Nagar B. The structure of mammalian β‐mannosidase provides insight into β‐mannosidosis and nystagmus. FEBS J 2019; 286:1319-1331. [DOI: 10.1111/febs.14731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Heidi Gytz
- Department of Biochemistry Groupe de Recherche Axé sur la Structure des Protéines McGill University Montreal Canada
| | - Jason Liang
- Department of Biochemistry Groupe de Recherche Axé sur la Structure des Protéines McGill University Montreal Canada
| | - Yingke Liang
- Department of Biochemistry Groupe de Recherche Axé sur la Structure des Protéines McGill University Montreal Canada
| | - Alexei Gorelik
- Department of Biochemistry Groupe de Recherche Axé sur la Structure des Protéines McGill University Montreal Canada
| | - Katalin Illes
- Department of Biochemistry Groupe de Recherche Axé sur la Structure des Protéines McGill University Montreal Canada
| | - Bhushan Nagar
- Department of Biochemistry Groupe de Recherche Axé sur la Structure des Protéines McGill University Montreal Canada
| |
Collapse
|
80
|
Abstract
In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.
Collapse
Affiliation(s)
- César Roncero
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
81
|
Xylanase from Aspergillus tamarii shows different kinetic parameters and substrate specificity in the presence of ferulic acid. Enzyme Microb Technol 2019; 120:16-22. [DOI: 10.1016/j.enzmictec.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/20/2022]
|
82
|
Pavlov IY, Eneyskaya EV, Bobrov KS, Polev DE, Ivanen DR, Kopylov AT, Naryzhny SN, Kulminskaya AA. Comprehensive Analysis of Carbohydrate-Active Enzymes from the Filamentous Fungus Scytalidium candidum 3C. BIOCHEMISTRY (MOSCOW) 2018; 83:1399-1410. [PMID: 30482151 DOI: 10.1134/s000629791811010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endo-hemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thio-linkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.
Collapse
Affiliation(s)
- I Yu Pavlov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - E V Eneyskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - K S Bobrov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - D E Polev
- Resource Center for Molecular and Cell Technologies and "Centre Biobank", St. Petersburg State University, Stary Peterhof, St. Petersburg, 198504, Russia.
| | - D R Ivanen
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - A T Kopylov
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | - S N Naryzhny
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia. .,Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | - A A Kulminskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia. .,Peter the Great St. Petersburg Polytechnic University, Department of Medical Physics, St. Petersburg, 194021, Russia
| |
Collapse
|
83
|
A New Group of Modular Xylanases in Glycoside Hydrolase Family 8 from Marine Bacteria. Appl Environ Microbiol 2018; 84:AEM.01785-18. [PMID: 30217847 DOI: 10.1128/aem.01785-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Xylanases play a crucial role in the degradation of xylan in both terrestrial and marine environments. The endoxylanase XynB from the marine bacterium Glaciecola mesophila KMM 241 is a modular enzyme comprising a long N-terminal domain (NTD) (E44 to T562) with xylan-binding ability and a catalytic domain (CD) (T563 to E912) of glycoside hydrolase family 8 (GH8). In this study, the long NTD is confirmed to contain three different functional regions, which are NTD1 (E44 to D136), NTD2 (Y137 to A193), and NTD3 (L194 to T562). NTD1, mainly composed of eight β-strands, functions as a new type of carbohydrate-binding module (CBM), which has xylan-binding ability but no sequence similarity to any known CBM. NTD2, mainly forming two α-helices, contains one of the α-helices of the catalytic domain's (α/α)6 barrel and therefore is essential for the activity of XynB, although it is far away from the catalytic domain in sequence. NTD3, next to the catalytic domain in sequence, is shown to be helpful in maintaining the thermostability of XynB. Thus, XynB represents a kind of xylanase with a new domain architecture. There are four other predicted glycoside hydrolase sequences with the same domain architecture and high sequence identity (≥80%) with XynB, all of which are from marine bacteria. Phylogenetic analysis shows that XynB and these homologs form a new group in GH8, representing a new class of marine bacterial xylanases. Our results shed light on xylanases, especially marine xylanases.IMPORTANCE Xylanases play a crucial role in natural xylan degradation and have been extensively used in industries such as food processing, animal feed, and kraft pulp biobleaching. Some marine bacteria have been found to secrete xylanases. Characterization of novel xylanases from marine bacteria has significance for both the clarification of xylan degradation mechanisms in the sea and the development of new enzymes for industrial application. With G. mesophila XynB as a representative, this study reveals a new group of the GH8 xylanases from marine bacteria, which have a distinct domain architecture and contain a novel carbohydrate-binding module. Thus, this study offers new knowledge on marine xylanases.
Collapse
|
84
|
Mhaindarkar D, Gasper R, Lupilov N, Hofmann E, Leichert LI. Loss of a conserved salt bridge in bacterial glycosyl hydrolase BgIM-G1 improves substrate binding in temperate environments. Commun Biol 2018; 1:171. [PMID: 30345395 PMCID: PMC6192996 DOI: 10.1038/s42003-018-0167-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
Salt bridges are the strongest electrostatic interactions in proteins. They substantially contribute to a protein's structural stability. Thus, mutations of salt bridges are typically selected against. Here, we report on the evolutionary loss of a highly conserved salt bridge in the GH1 family glycosyl hydrolase BglM-G1. BglM-G1's gene was found in the bacterial metagenome of a temperate, seasonally cold marine habitat. In BglM-G1, arginine 75 is replaced by a histidine. While fully retaining β-glucosidase activity, BglM-G1 is less heat stable than an H75R variant, in which the salt bridge was artificially re-introduced. However, the K m toward its substrates was lower in wild type, leading to an overall higher catalytic efficiency. Our results indicate that this loss of the salt bridge leads to higher flexibility in BglM-G1's active site, trading structural stability at high temperatures, a trait not needed in a temperate, seasonally cold habitat, for a more effective catalytic activity.
Collapse
Affiliation(s)
- Dipali Mhaindarkar
- Ruhr University Bochum, Fakultät für Medizin, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Protein Crystallography, Universitätsstr. 150, 44780, Bochum, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Fakultät für Medizin, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Protein Crystallography, Universitätsstr. 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Fakultät für Medizin, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
85
|
Luis AS, Martens EC. Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes. Curr Opin Chem Biol 2018; 47:126-133. [PMID: 30326425 DOI: 10.1016/j.cbpa.2018.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
Individual human gut bacteria often encode hundreds of enzymes for degrading different polysaccharides. Identification of co-localized and co-regulated genes in these bacteria has been a successful approach to identify enzymes that participate in full or partial saccharification of complex carbohydrates, often unmasking novel catalytic activities. Here, we review recent studies that have led to the discovery of new activities from gut bacteria and summarize a general scheme for identifying gut bacteria with novel catalytic abilities, locating the enzymes involved and investigating their activities in detail. The strength of this approach is amplified by the availability of abundant genomic and metagenomic data for the human gut microbiome, which facilitates comparative approaches to mine existing data for new or orthologous enzymes.
Collapse
Affiliation(s)
- Ana S Luis
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
86
|
Ando D, Fujisawa T, Katagi T. Metabolism of the Strobilurin Fungicide Mandestrobin in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10154-10162. [PMID: 30205687 DOI: 10.1021/acs.jafc.8b03639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The metabolic fate of a new fungicide, mandestrobin, labeled with 14C at the phenoxy or benzyl ring was examined in wheat after a single spray application at 300 g/ha. Mandestrobin penetrated into foliage over time, with both radiolabels showing similar 14C distribution in wheat, and 2.8-3.3% of the total radioactive residue remained on the surface of straw at the final harvest. In foliage, mandestrobin primarily underwent mono-oxidation at the phenoxy ring to produce 4-hydroxy or 2-/5-hydroxymethyl derivatives, followed by their subsequent formation of malonylglucose conjugates. In grain, the cleavage of its benzyl phenyl ether bond was the major metabolic reaction, releasing the corresponding alcohol derivative, while the counterpart 2,5-dimethylphenol was not detected. The constant RS enantiomeric ratio of mandestrobin showed its enantioselective metabolism to be unlikely on/in wheat.
Collapse
Affiliation(s)
- Daisuke Ando
- Environmental Health Science Laboratory , Sumitomo Chemical Co., Ltd. , 4-2-1, Takarazuka , Hyogo 665-8555 , Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory , Sumitomo Chemical Co., Ltd. , 4-2-1, Takarazuka , Hyogo 665-8555 , Japan
| | - Toshiyuki Katagi
- Bioscience Research Laboratory , Sumitomo Chemical Co., Ltd. , 3-1-98, Kasugade-naka 3-chome, Konohana-ku , Osaka-city, Osaka 554-8558 , Japan
| |
Collapse
|
87
|
Reichenbach T, Kalyani D, Gandini R, Svartström O, Aspeborg H, Divne C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018; 13:e0204703. [PMID: 30261037 PMCID: PMC6160142 DOI: 10.1371/journal.pone.0204703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.
Collapse
Affiliation(s)
- Tom Reichenbach
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dayanand Kalyani
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olov Svartström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Henrik Aspeborg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
88
|
Bakunina I, Slepchenko L, Anastyuk S, Isakov V, Likhatskaya G, Kim N, Tekutyeva L, Son O, Balabanova L. Characterization of Properties and Transglycosylation Abilities of Recombinant α-Galactosidase from Cold-Adapted Marine Bacterium Pseudoalteromonas KMM 701 and Its C494N and D451A Mutants. Mar Drugs 2018; 16:E349. [PMID: 30250010 PMCID: PMC6213131 DOI: 10.3390/md16100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
A novel wild-type recombinant cold-active α-d-galactosidase (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site of the enzyme, using the crystal structure of the α-galactosidase from Lactobacillus acidophilus as a template. The circular dichroism spectra of the wild α-PsGal and mutant C494N were approximately identical. The C494N mutation decreased the efficiency of retaining the affinity of the enzyme to standard p-nitrophenyl-α-galactopiranoside (pNP-α-Gal). Thin-layer chromatography, matrix-assisted laser desorption/ionization mass spectrometry, and nuclear magnetic resonance spectroscopy methods were used to identify transglycosylation products in reaction mixtures. α-PsGal possessed a narrow acceptor specificity. Fructose, xylose, fucose, and glucose were inactive as acceptors in the transglycosylation reaction. α-PsGal synthesized -α(1→6)- and -α(1→4)-linked galactobiosides from melibiose as well as -α(1→6)- and -α(1→3)-linked p-nitrophenyl-digalactosides (Gal₂-pNP) from pNP-α-Gal. The D451A mutation in the active center completely inactivated the enzyme. However, the substitution of C494N discontinued the Gal-α(1→3)-Gal-pNP synthesis and increased the Gal-α(1→4)-Gal yield compared to Gal-α(1→6)-Gal-pNP.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Stanislav Anastyuk
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Vladimir Isakov
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Natalya Kim
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| |
Collapse
|
89
|
You S, Tu T, Ma R, Huang HQ, Wang Y, Bai YG, Su XY, Cai HY, Yao B, Luo HY. Functional Analysis of a Highly Active β-Glucanase from Bispora sp. MEY-1 Using Its C-terminally Truncated Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9728-9737. [PMID: 30043608 DOI: 10.1021/acs.jafc.8b01928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A β-1,3-1,4-glucanase-encoding gene, Bisglu16B, was identified in Bispora sp. MEY-1. The deduced BisGlu16B consists of an N-terminal signal peptide, a catalytic module of glycoside hydrolase family 16 (GH16), and a C-terminal serine/proline-rich module. After expression in Pichia pastoris GS115, the purified recombinant BisGlu16B showed maximal activity at pH 4.0 and 55 °C and had broad substrate specificity (β-1,3-/β-1,4-mixed, β-1,3-, β-1,4-, and β-1,6-linked glucan, and β-1,4-mannan). The enzyme possessed high specific activities toward barley β-glucan (34 700 U·mg-1), lichenan (23 900 U·mg-1), and laminarin (9 000 U·mg-1). After removing the C-terminal module, the truncated mutant, BisGlu16B-ΔC, retained similar enzymatic properties to the wild type but displayed significantly enhanced activities (up to 2.5-fold). Functional and structural analyses indicated that the C-terminal module plays a key role in the substrate binding of BisGlu16B. This study provided an excellent candidate glucanase for industrial purposes and revealed the functions of a C-terminal serine/proline-rich region.
Collapse
Affiliation(s)
- Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Huo-Qing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ying-Guo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiao-Yun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hui-Yi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hui-Ying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
90
|
Sun J, Wang W, Yao C, Dai F, Zhu X, Liu J, Hao J. Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 β-glucosidase from the marine bacterium Alteromonas sp. L82. J Microbiol 2018; 56:656-664. [PMID: 30141158 DOI: 10.1007/s12275-018-8018-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A novel gene (bgl) encoding a cold-adapted β-glucosidase was cloned from the marine bacterium Alteromonas sp. L82. Based on sequence analysis and its putative catalytic conserved region, Bgl belonged to the glycoside hydrolase family 1. Bgl was overexpressed in E. coli and purified by Ni2+ affinity chromatography. The purified recombinant β-glucosidase showed maximum activity at temperatures between 25°C to 45°C and over the pH range 6 to 8. The enzyme lost activity quickly after incubation at 40°C. Therefore, recombinant β-glucosidase appears to be a cold-adapted enzyme. The addition of reducing agent doubled its activity and 2 M NaCl did not influence its activity. Recombinant β-glucosidase was also tolerant of 700 mM glucose and some organic solvents. Bgl had a Km of 0.55 mM, a Vmax of 83.6 U/mg, a kcat of 74.3 s-1 and kcat/Km of 135.1 at 40°C, pH 7 with 4-nitrophenyl-β-D-glucopyranoside as a substrate. These properties indicate Bgl may be an interesting candidate for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Wei Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Congyu Yao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China.,Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Fangqun Dai
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Xiangjie Zhu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China.,Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Junzhong Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China. .,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China. .,Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, 222005, P. R. China.
| |
Collapse
|
91
|
von Freiesleben P, Spodsberg N, Stenbæk A, Stålbrand H, Krogh KBRM, Meyer AS. Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:194. [PMID: 30026809 PMCID: PMC6048861 DOI: 10.1186/s13068-018-1184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Softwood is a promising feedstock for lignocellulosic biorefineries, but as it contains galactoglucomannan efficient mannan-degrading enzymes are required to unlock its full potential. RESULTS Boosting of the saccharification of pretreated softwood (Canadian lodgepole pine) was investigated for 10 fungal endo-β(1→4)-mannanases (endomannanases) from GH5 and GH26, including 6 novel GH26 enzymes. The endomannanases from Trichoderma reesei (TresMan5A) and Podospora anserina (PansMan26) were investigated with and without their carbohydrate-binding module (CBM). The pH optimum and initial rates of enzyme catalysed hydrolysis were determined on pure β-mannans, including acetylated and deacetylated spruce galactoglucomannan. Melting temperature (Tm) and stability of the endomannanases during prolonged incubations were also assessed. The highest initial rates on the pure mannans were attained by GH26 endomannanases. Acetylation tended to decrease the enzymatic rates to different extents depending on the enzyme. Despite exhibiting low rates on the pure mannan substrates, TresMan5A with CBM1 catalysed highest release among the endomannanases of both mannose and glucose during softwood saccharification. The presence of the CBM1 as well as the catalytic capability of the TresMan5A core module itself seemed to allow fast and more profound degradation of portions of the mannan that led to better cellulose degradation. In contrast, the presence of the CBM35 did not change the performance of PansMan26 in softwood saccharification. CONCLUSIONS This study identified TresMan5A as the best endomannanase for increasing cellulase catalysed glucose release from softwood. Except for the superior performance of TresMan5A, the fungal GH5 and GH26 endomannanases generally performed on par on the lignocellulosic matrix. The work also illustrated the importance of using genuine lignocellulosic substrates rather than simple model substrates when selecting enzymes for industrial biomass applications.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| | | | - Anne Stenbæk
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | - Anne S. Meyer
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
92
|
Daas MJA, Nijsse B, van de Weijer AHP, Groenendaal BWAJ, Janssen F, van der Oost J, van Kranenburg R. Engineering Geobacillus thermodenitrificans to introduce cellulolytic activity; expression of native and heterologous cellulase genes. BMC Biotechnol 2018; 18:42. [PMID: 29945583 PMCID: PMC6020330 DOI: 10.1186/s12896-018-0453-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/14/2018] [Indexed: 11/28/2022] Open
Abstract
Background Consolidated bioprocessing (CBP) is a cost-effective approach for the conversion of lignocellulosic biomass to biofuels and biochemicals. The enzymatic conversion of cellulose to glucose requires the synergistic action of three types of enzymes: exoglucanases, endoglucanases and β-glucosidases. The thermophilic, hemicellulolytic Geobacillus thermodenitrificans T12 was shown to harbor desired features for CBP, although it lacks the desired endo and exoglucanases required for the conversion of cellulose. Here, we report the expression of both endoglucanase and exoglucanase encoding genes by G. thermodenitrificans T12, in an initial attempt to express cellulolytic enzymes that complement the enzymatic machinery of this strain. Results A metagenome screen was performed on 73 G. thermodenitrificans strains using HMM profiles of all known CAZy families that contain endo and/or exoglucanases. Two putative endoglucanases, GE39 and GE40, belonging to glucoside hydrolase family 5 (GH5) were isolated and expressed in both E. coli and G. thermodenitrificans T12. Structure modeling of GE39 revealed a folding similar to a GH5 exo-1,3-β-glucanase from S. cerevisiae. However, we determined GE39 to be a β-xylosidase having pronounced activity towards p-nitrophenyl-β-d-xylopyranoside. Structure modelling of GE40 revealed its protein architecture to be similar to a GH5 endoglucanase from B. halodurans, and its endoglucanase activity was confirmed by enzymatic activity against 2-hydroxyethylcellulose, carboxymethylcellulose and barley β-glucan. Additionally, we introduced expression constructs into T12 containing Geobacillus sp. 70PC53 endoglucanase gene celA and both endoglucanase genes (M1 and M2) from Geobacillus sp. WSUCF1. Finally, we introduced expression constructs into T12 containing the C. thermocellum exoglucanases celK and celS genes and the endoglucanase celC gene. Conclusions We identified a novel G. thermodenitrificans β-xylosidase (GE39) and a novel endoglucanase (GE40) using a metagenome screen based on multiple HMM profiles. We successfully expressed both genes in E. coli and functionally expressed the GE40 endoglucanase in G. thermodenitrificans T12. Additionally, the heterologous production of active CelK, a C. thermocellum derived exoglucanase, and CelA, a Geobacillus derived endoglucanase, was demonstrated with strain T12. The native hemicellulolytic activity and the heterologous cellulolytic activity described in this research provide a good basis for the further development of G. thermodenitrificans T12 as a host for consolidated bioprocessing. Electronic supplementary material The online version of this article (10.1186/s12896-018-0453-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martinus J A Daas
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | | | - Bart W A J Groenendaal
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Fons Janssen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands. .,Corbion, Arkelsedijk 46, 4206, AC, Gorinchem, The Netherlands.
| |
Collapse
|
93
|
Kim CH. Immune regulation by microbiome metabolites. Immunology 2018; 154:220-229. [PMID: 29569377 PMCID: PMC5980225 DOI: 10.1111/imm.12930] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article.
Collapse
Affiliation(s)
- Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy CenterUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
94
|
Guo L, Katiyo W, Lu L, Zhang X, Wang M, Yan J, Ma X, Yang R, Zou L, Zhao W. Glycyrrhetic Acid 3-O-Mono-β-d
-glucuronide (GAMG): An Innovative High-Potency Sweetener with Improved Biological Activities. Compr Rev Food Sci Food Saf 2018; 17:905-919. [DOI: 10.1111/1541-4337.12353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Lichun Guo
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Wendy Katiyo
- Dept. of Food Science; Univ. of Pretoria; Hatfield 0028 South Africa
| | - Liushen Lu
- School of Biotechnology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Mingming Wang
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Jiai Yan
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Xiaoyun Ma
- School of Foreign Studies; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Long Zou
- Bunge Ingredient Innovation Center; 725 North Kinzie Avenue Bradley IL 60915 U.S.A
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| |
Collapse
|
95
|
Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol 2018; 111:667-679. [DOI: 10.1016/j.ijbiomac.2018.01.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
|
96
|
Burse A, Boland W. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application? ACTA ACUST UNITED AC 2018; 72:417-427. [PMID: 28593879 DOI: 10.1515/znc-2017-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
The drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.
Collapse
|
97
|
A novel β-glucosidase isolated from the microbial metagenome of Lake Poraquê (Amazon, Brazil). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:569-579. [DOI: 10.1016/j.bbapap.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022]
|
98
|
Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Vajravijayan S, Pletnev S, Mani N, Pletneva N, Nandhagopal N, Gunasekaran K. Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. Int J Biol Macromol 2018; 113:329-337. [PMID: 29481953 DOI: 10.1016/j.ijbiomac.2018.02.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
The conversion of starch to maltose is catalysed in plants by β-amylase. The enzymatic mechanism has been well-characterized for the soybean and barley enzymes, which utilise a glutamic acid-glutamate pair. In the present study, we present a surprise observation of maltotetraose at the active site, the presence of which elucidates the clear role of Thr344 as a conformational "switch" between substrate binding and product release during hydrolysis. This observation is confirmed by the selection of maltotetraose by the crystallized enzyme although that carbohydrate was present in only trace amounts. The conformation of the residues in the substrate-binding site changed upon substrate binding, leading to the movement of threonine, glutamic acid, and the loop conformation, elucidating a missing link in the existing mechanism. By aligning our substrate-free and maltotetraose-bound structures with other existing structures, the sequence of events from substrate binding to hydrolysis can be visualized. Apart from this, the evolutionary relationship among β-amylases of bacterial and amyloplastic origin could be established. The presence of a sugar-binding domain in the bacterial enzyme and its absence in the plant counterpart could be attributed to a carbohydrate-rich environment. Interestingly, cladogram analysis indicates the presence of N-terminal additions in some plant β-amylases. Based on sequence similarity, we postulate that the role of such additions is important for the regulation of enzymatic activity, particularly under stress conditions.
Collapse
Affiliation(s)
- S Vajravijayan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - S Pletnev
- Macromolecular Crystallography Laboratory, National Cancer Institute, and Basic Science Program, Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - N Mani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - N Pletneva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - N Nandhagopal
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| | - K Gunasekaran
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
100
|
Increased activity of β -glucuronidase variants produced by site-directed mutagenesis. Enzyme Microb Technol 2018; 109:20-24. [DOI: 10.1016/j.enzmictec.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 11/22/2022]
|