51
|
Abstract
Adaptation to conditions of limited oxygen availability (hypoxia) is a critical determinant of cell and tissue viability in several physiological and pathophysiological conditions. The hypoxia-inducible factor (HIF) is an oxygen-sensitive transcriptional activator that, under hypoxia, upregulates the expression of genes involved in the control of glucose metabolism, angiogenesis and cellular proliferation, among others. Activation of HIF to a fully competent transcriptional regulatory protein complex is a multi-step process that involves control of protein stability, subcellular localization, DNA-binding and interaction with transcriptional coregulators. The identity, regulation and hierarchy of interactions between several components of the HIF signal transduction pathway has been the object of intense study over the past decade and will be the subject of this review. Particular emphasis is given to the process of coordinated coactivator recruitment within the cell nucleus. The implications for future development of angiogenic/antiangiogenic therapeutic strategies of HIF activation/inactivation are discussed.
Collapse
Affiliation(s)
- Jorge L Ruas
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | |
Collapse
|
52
|
Kim EY, Iwata H, Suda T, Tanabe S, Amano M, Miyazaki N, Petrov EA. Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) expression in Baikal seal (Pusa sibirica) and association with 2,3,7,8-TCDD toxic equivalents and CYP1 expression levels. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:281-91. [PMID: 16111922 DOI: 10.1016/j.cca.2005.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/28/2005] [Accepted: 07/06/2005] [Indexed: 11/19/2022]
Abstract
Most toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are mediated by ligand-activated aryl hydrocarbon receptor (AHR) signaling pathway. To understand the regulation mechanism of AHR and AHR nuclear translocator (ARNT) expression in wild Baikal seal (Pusa sibirica) population contaminated by PHAHs, the present study investigated hepatic mRNA expression levels of AHR and its heterodimer, ARNT genes, in association with biological index (age, gender and body weight), PHAH accumulation and expression levels of cytochrome P450 (CYP) 1A and 1B. While there was no gender difference, the AHR mRNA expression levels were increased with ages (p = 0.014) and body weights (p = 0.015), indicating that AHR expression might be affected by these biological factors. The AHR mRNA expression levels exhibited significant positive correlations with total TEQs and most of individual congener TEQs derived from polychorinated dibenzo-p-dioxins, dibenzofurans and non-ortho coplanar polychorinated biphenyls (PCBs), indicating the transcriptional up-regulation of AHR expression by these congeners. On the other hand, there was no significant correlation between individual TEQs from mono-ortho coplanar PCBs and AHR expression. These results imply the structure-related transcriptional activity of AHR among PHAHs congeners. AHR mRNA levels showed positive correlations with both CYP1A protein (p = 0.039) and CYP1A1 mRNA expression levels (p = 0.046). In contrast to AHR expression, neither the total nor individual congener TEQs influenced ARNT at the transcriptional level. ARNT mRNA showed significant negative correlations with CYP1A/1B protein (p = 0.027 and p = 0.006) and CYP1A1 mRNA expression levels (p = 0.039), implying the existence of different transcriptional regulation between AHR and ARNT genes and negative regulation by CYP1A/1B-mediated signaling pathways. The present findings may render significant insight on the basic mechanisms underlying regulation of AHR and ARNT expressions associated with biological factors and PHAH exposure in wild mammalian populations.
Collapse
Affiliation(s)
- Eun-Young Kim
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama 790-0003, Japan
| | | | | | | | | | | | | |
Collapse
|
53
|
Sonnenfeld MJ, Delvecchio C, Sun X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Dev Genes Evol 2005; 215:221-9. [PMID: 15818484 DOI: 10.1007/s00427-004-0462-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
Basic-helix-loop-helix-PAS transcription factors play important roles in diverse biological processes including cellular differentiation and specification, oxygen tension regulation and dioxin metabolism. Drosophila tango is orthologous to mammalian Arnt and acts as a common dimerization partner for bHLH-PAS proteins during embryogenesis. A transient transfection assay using Drosophila S2 tissue culture cells and wild-type and mutant Drosophila tango cDNAs was used to localize the activation domain of the Tango protein. An activation domain was identified in the C-terminus of TGO consisting of poly-glutamine and histidine-proline repeats. Transcriptional activation of the fibroblast growth factor receptor (breathless) gene required an intact TGO C-terminus, in vitro. Co-expression assays of trachealess and tgo in the developing eye imaginal disc showed a requirement for the C-terminal transactivation domain of TGO for a cellular response. Genetic analysis of tgo(3) shows that the paired repeat is necessary for tracheal tubule formation in all branches. Lastly, expression of a C-terminal truncated tgo transgene specifically in the CNS midline and trachea resulted in reductions in the number of breathless-expressing cells. These results together identify TGO's transactivation domain and establish its importance for proper target gene regulation and cellular specification.
Collapse
Affiliation(s)
- Margaret J Sonnenfeld
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada K1H 8M5.
| | | | | |
Collapse
|
54
|
Brahimi-Horn MC, Pouysségur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. ACTA ACUST UNITED AC 2005; 242:157-213. [PMID: 15598469 DOI: 10.1016/s0074-7696(04)42004-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hypoxia-inducible factor (HIF) is a transcription factor that plays a key role in the response of cells to oxygen levels. HIF is a heterodimer of alpha- and beta-subunits where the alpha-subunit is translated constitutively but has a very short half-life under normal oxygen concentrations. Negative regulation of the half-life and activity of the alpha-subunit is dependent on its posttranslational hydroxylation by hydroxylases that are dependent on oxygen for activity. Thus under low oxygen (hypoxic) conditions the hydroxylases are inactive and the alpha-subunit is stable and able to interact with the beta-subunit to bind and induce transcription of target genes. Hypoxic conditions are encountered in development and in disease states such as cancer. Tumors that have outstripped their blood supply become hypoxic and express high levels of HIF. HIF in turn targets genes that induce survival, glycolysis, and angiogenesis, a form of neovascularization, which ensures the tumor with a continued supply of oxygen and nutrients for further growth.
Collapse
Affiliation(s)
- M Christiane Brahimi-Horn
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 06189 Nice, France
| | | |
Collapse
|
55
|
Lee KH, Park JW, Chun YS. Non-hypoxic transcriptional activation of the aryl hydrocarbon receptor nuclear translocator in concert with a novel hypoxia-inducible factor-1alpha isoform. Nucleic Acids Res 2004; 32:5499-511. [PMID: 15479785 PMCID: PMC524291 DOI: 10.1093/nar/gkh880] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) belongs to the basic helix-loop-helix Per-Arnt-Sim (bHLH PAS) protein which dimerizes with other PAS proteins. Although it has a transactivation domain (TAD), ARNT functions as an assistant partner of main factors, such as aryl hydrocarbon receptor and hypoxia-inducible factors, rather than acting as a straightforward transcription factor. However, ARNT may function as an active transcription factor using its TAD either in association with itself, single-minded protein 1, or trachealess protein. In the present study, we identified a novel ARNT partner, a HIF-1alpha variant, which is ubiquitously expressed in human tissues and cancer cell lines. The HIF-1alpha variant, designated HIF-1alpha417, bound to ARNT and, moreover, stimulated the transcription of the erythropoietin enhancer reporter gene. This stimulation was markedly augmented by ARNT but not by the ARNT603 mutant lacking the TAD. Thus, augmentation by ARNT suggests that ARNT determined the transcriptional activity. HIF-1alpha417 was found to be associated with ARNT and to bind to the hypoxia response element containing the E-box core. Moreover, HIF-1alpha417 promoted the nuclear translocation of ARNT, and conversely ARNT stabilized HIF-1alpha417. Taken together, our results suggest that HIF-1alpha417 is a novel partner that is required for transcription activity of ARNT.
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Department of Pharmacology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea
| | | | | |
Collapse
|
56
|
Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 2004; 36:189-204. [PMID: 14643885 DOI: 10.1016/s1357-2725(03)00211-5] [Citation(s) in RCA: 433] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Basic helix-loop-helix (bHLH)/PAS proteins are critical regulators of gene expression networks underlying many essential physiological and developmental processes. These include transcriptional responses to environmental pollutants and low oxygen tension, mediated by the aryl hydrocarbon (Dioxin) receptor and hypoxia inducible factors (HIF), respectively, and controlling aspects of neural development, mediated by the single minded (SIM) proteins. bHLH proteins must dimerise to form functional DNA binding complexes and bHLH/PAS proteins are distinguished from other members of the broader bHLH superfamily by the dimerisation specificity conferred by their PAS homology domains. bHLH/PAS proteins tend to be ubiquitous, latent signal-regulated transcription factors that often recognise variant forms of the classic E-box enhancer sequence bound by other bHLH proteins. Two closely related forms of each of the hypoxia inducible factors alpha and single minded proteins and the general partner protein, aryl hydrocarbon receptor nuclear translocator (ARNT), are present in many cell types. Despite high sequence conservation within their DNA binding and dimerisation domains, and having very similar DNA recognition specificities, the homologues are functionally non-redundant and biologically essential. While the mechanisms controlling partner choice and target gene activation that determine this functional specificity are poorly understood, interactions mediated by the PAS domains are essential. Information on structures and protein/protein interactions for members of the steroid hormone/nuclear receptor superfamily has contributed to our understanding of the way these receptors function and assisted the development of highly specific agonists and antagonists. Similarly, it is anticipated that developing a detailed mechanistic and structural understanding of bHLH/PAS proteins will ultimately facilitate drug design.
Collapse
Affiliation(s)
- Robyn J Kewley
- School of Molecular and Biomedical Science (Biochemistry), University of Adelaide, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
57
|
Gorr TA, Cahn JD, Yamagata H, Bunn HF. Hypoxia-induced Synthesis of Hemoglobin in the Crustacean Daphnia magna Is Hypoxia-inducible Factor-dependent. J Biol Chem 2004; 279:36038-47. [PMID: 15169764 DOI: 10.1074/jbc.m403981200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Of the four known globin genes that exist in the fresh-water crustacean Daphnia magna, several are individually induced by hypoxia, lending pale normoxic animals a visible red color when challenged by oxygen deprivation. The promoter regions of the Daphnia globin genes each contain numerous hypoxia response elements (HREs) as potential binding sites for hypoxia-inducible factors (HIFs). Daphnia HIF, bound to human HRE sequences, was detected in extracts from hypoxic (red), but not normoxic (pale), animals. Taking advantage of the phylogenetically conserved HIF/HRE recognition, we employed heterologous transfections of HIF-expressing human and Drosophila cells to model HIF signaling in Daphnia. These experiments revealed that three functional HREs within the promoter of the D. magna globin-2 gene cooperate for maximal hypoxic induction of a downstream luciferase reporter gene. Two of these three cis-elements, at promoter positions -258 and -107, are able to specifically bind human, Drosophila, or Daphnia HIF complexes in vitro. The same two sites are also necessary for maximal induction of reporter transcription under low oxygen tension in the presence of either endogenous human or overexpressed Drosophila HIF proteins. The third motif of the globin-2 gene promoter, a CACGTG palindrome at position -146, functions as a docking site for an unknown constitutive transcription factor. In human cells, this -146 complex interferes with HIF occupancy at the adjacent -107 HRE and thus controls the extent of HIF-mediated hypoxic activation of the downstream target.
Collapse
Affiliation(s)
- Thomas A Gorr
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
58
|
Tan Z, Huang M, Puga A, Xia Y. A critical role for MAP kinases in the control of Ah receptor complex activity. Toxicol Sci 2004; 82:80-7. [PMID: 15272135 DOI: 10.1093/toxsci/kfh228] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterodimeric complex of aromatic hydrocarbon receptor (AHR) and Ah receptor nuclear translocator (ARNT) plays a pivotal role in controlling the expression of drug metabolism genes, such as the cytochromes p450 (Cyp) 1a1 and 1b1, believed to be responsible for most toxic effects of the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this study, we show that activation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) modulates ARNT transcription activity and potentiates the transcriptional activity of AHR/ARNT complexes. Inhibition of ERK by chemical compounds and ablation of JNK caused significant decreases in CYP1A1 induction by TCDD. Compared to wild type, JNK2 ablation significantly reduced TCDD-stimulated CYP1A1 expression in mouse thymus and testis, but not in liver. In contrast, CYP1B1 expression was unaffected in all three tissues of the knockout mice. These data suggest that JNK and ERK modulate ARNT activity and AHR/ARNT-dependent gene expression, contributing to the gene-specific and tissue-specific toxicity of environmental contaminants.
Collapse
Affiliation(s)
- Zongqing Tan
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
| | | | | | | |
Collapse
|
59
|
Sogawa K, Numayama-Tsuruta K, Takahashi T, Matsushita N, Miura C, Nikawa JI, Gotoh O, Kikuchi Y, Fujii-Kuriyama Y. A novel induction mechanism of the rat CYP1A2 gene mediated by Ah receptor-Arnt heterodimer. Biochem Biophys Res Commun 2004; 318:746-55. [PMID: 15144902 DOI: 10.1016/j.bbrc.2004.04.090] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Indexed: 11/21/2022]
Abstract
We have identified an enhancer responsible for induction by 3-methylcholanthrene in the upstream region of the CYP1A2 gene. The enhancer does not contain the invariant core sequence of XREs that are binding sites for the Ah receptor (AhR) and Arnt heterodimer. The enhancer did not show any inducible expression in Hepa-1-derived cell lines, C4 and C12, deficient of Arnt and AhR, respectively. On the other hand, bacterially expressed AhR-Arnt heterodimer could not bind to the enhancer. Mutational analysis of the enhancer revealed that a repeated sequence separated by six nucleotides is important for expression. A factor binding specifically to the enhancer was found by using gel shift assays. Bacterially expressed AhR-Arnt heterodimer interacted with the factor. A dominant negative mutant of the AhR to XRE activated the enhancer. Collectively, these results demonstrate that a novel induction mechanism is present in which the AhR-Arnt heterodimer functions as a coactivator.
Collapse
Affiliation(s)
- Kazuhiro Sogawa
- Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Wang G, Reisdorph R, Clark RE, Miskimins R, Lindahl R, Miskimins WK. Cyclin dependent kinase inhibitor p27(Kip1) is upregulated by hypoxia via an ARNT dependent pathway. J Cell Biochem 2004; 90:548-60. [PMID: 14523989 DOI: 10.1002/jcb.10621] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of cyclin dependent kinase (Cdk) inhibitor p27(Kip1), which blocks cell cycle progression from G(1) to S phase, can be regulated via multiple mechanisms including transcription, protein degradation, and translation. Recently, it was shown that p27(Kip1) plays an important role in the cellular response to hypoxia. However, the mechanisms involved in the hypoxia-induced regulation of p27(Kip1) expression are still not clear. In this study, we compare the expression of p27(Kip1) in two related murine hepatoma cell lines, Hepa-1 and c4. Hepa-1 produces functional aryl hydrocarbon receptor nuclear translocator (ARNT). c4 cells are derived from Hepa-1, but are ARNT deficient. Interestingly, we observed cell line-dependent effects of hypoxia on the expression of p27(Kip1). The level of p27(Kip1) protein in Hepa-1 cells is enhanced by hypoxia, but is reduced by hypoxia in c4 cells. Further investigation demonstrated that hypoxia-induced, ARNT-mediated, transactivation of the p27(Kip1) gene in Hepa-1 cells is responsible for the increase in p27(Kip1) protein. Once c4 cells were stably transfected with the wild type ARNT gene, a hypoxia-induced increase in p27(Kip1) mRNA was observed and reduction of p27(Kip1) protein caused by hypoxia was blocked. Hence, our data indicate that ARNT is involved in transcriptional upregulation of the p27(Kip1) gene under hypoxic conditions.
Collapse
Affiliation(s)
- Gang Wang
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | | | | | | | | | |
Collapse
|
61
|
Kinoshita K, Kikuchi Y, Sasakura Y, Suzuki M, Fujii-Kuriyama Y, Sogawa K. Altered DNA binding specificity of Arnt by selection of partner bHLH-PAS proteins. Nucleic Acids Res 2004; 32:3169-79. [PMID: 15190133 PMCID: PMC434443 DOI: 10.1093/nar/gkh637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Ah receptor (AhR) and HLF are transcription factors involved in xenobiotic metabolism and hypoxic response, respectively. AhR and HLF heterodimerize with Arnt as the common partner, and bind to asymmetric E-boxes termed XRE and HRE, respectively. In order to investigate nucleotide preference of the heterodimers, reporter plasmids with oligonucleotides for XREs or HREs with systematic mutations were constructed and their activity was determined. Comparison of the activity revealed that DNA length and nucleotide preference recognized by Arnt subunit in the two heterodimers were largely different between XRE and HRE. We expressed AhR-Arnt and HLF-Arnt in Escherichia coli and used them for DNA binding. The dissociation constant of HLF-Arnt-HRE was 10.4 +/- 1.6 nM. Competition activity of mutated XREs or HREs with wild type was consistent with their transcription activity. Bending of XRE and HRE induced by binding of the relevant heterodimers was observed with stronger bending of XRE than of HRE. By deletional and mutational analyses, an alanine and three arginine (Ala 8, Arg 9, Arg 11 and Arg 12) residues in the basic sequence of HLF were found to be indispensable for the transcriptional activity.
Collapse
Affiliation(s)
- Koshi Kinoshita
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
62
|
Thomae TL, Glover E, Bradfield CA. A maternal Ahr null genotype sensitizes embryos to chemical teratogenesis. J Biol Chem 2004; 279:30189-94. [PMID: 15145931 DOI: 10.1074/jbc.m403690200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (encoded by the Ahr locus) is a ligand-activated transcription factor that mediates the toxicology and teratology of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin). In an effort to understand the role of the maternal compartment in dioxin teratology, we designed a breeding strategy that allowed us to compare the teratogenic response in embryos from Ahr(-/-) (null) and Ahr(+/+) (wild-type) dams. Using this strategy, we demonstrate that embryos from the Ahr(-/-) dams are 5-fold more sensitive to dioxin-induced cleft palate and hydronephrosis as compared with embryos from an Ahr(+/+) dam. Moreover, this increased teratogenic sensitivity extends beyond dioxin, because embryos from Ahr(-/-) dams exhibited a 9-fold increase in their sensitivity to the fetotoxic effects of the glucocorticoid, dexamethasone. In searching for an explanation for this increased sensitivity, we found that more dioxin and dexamethasone reached the embryos from Ahr(-/-) dams as compared with embryos from Ahr(+/+) dams. We propose that increased deposition of teratogens/fetotoxicants to the embryonic compartment is the result of porto-systemic shunting and/or blocked P4501A induction in Ahr(-/-) dams. In addition to demonstrating the importance of maternal AHR in teratogenesis, these data may have implications that reach beyond the mechanism of action of dioxin. In this regard, the Ahr(-/-) mouse may provide a system that allows pharmacological agents and toxicants to be more easily studied in a model where first pass clearance is a significant obstacle.
Collapse
Affiliation(s)
- Tami L Thomae
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
63
|
Chapman-Smith A, Lutwyche JK, Whitelaw ML. Contribution of the Per/Arnt/Sim (PAS) Domains to DNA Binding by the Basic Helix-Loop-Helix PAS Transcriptional Regulators. J Biol Chem 2004; 279:5353-62. [PMID: 14638687 DOI: 10.1074/jbc.m310041200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix (bHLH) PAS transcriptional regulators control critical developmental and metabolic processes, including transcriptional responses to stimuli such as hypoxia and environmental pollutants, mediated respectively by hypoxia inducible factors (HIF-alpha) and the dioxin (aryl hydrocarbon) receptor (DR). The bHLH proteins contain a basic DNA binding sequence adjacent to a helix-loop-helix dimerization domain. Dimerization among bHLH.PAS proteins is additionally regulated by the PAS region, which controls the specificity of partner choice such that HIF-alpha and DR must dimerize with the aryl hydrocarbon nuclear translocator (Arnt) to form functional DNA binding complexes. Here, we have analyzed purified bacterially expressed proteins encompassing the N-terminal bHLH and bHLH.PAS regions of Arnt, DR, and HIF-1alpha and evaluated the contribution of the PAS domains to DNA binding in vitro. Recovery of functional DNA binding proteins from bacteria was dramatically enhanced by coexpression of the bHLH.PAS regions of DR or HIF-1alpha with the corresponding region of Arnt. Formation of stable protein-DNA complexes by DR/Arnt and HIF-1alpha/Arnt heterodimers with their cognate DNA sequences required the PAS A domains and exhibited KD values of 0.4 nM and approximately 50 nM, respectively. In contrast, the presence of the PAS domains of Arnt had little effect on DNA binding by Arnt homodimers, and these bound DNA with a KD of 45 nM. In the case of the DR, both high affinity DNA binding and dimer stability were specific to its native PAS domain, since a chimera in which the PAS A domain was substituted with the equivalent domain of Arnt generated a destabilized protein that bound DNA poorly.
Collapse
Affiliation(s)
- Anne Chapman-Smith
- School of Molecular and Biomedical Science (Biochemistry), University of Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
64
|
Tomita S, Jiang HB, Ueno T, Takagi S, Tohi K, Maekawa SI, Miyatake A, Furukawa A, Gonzalez FJ, Takeda J, Ichikawa Y, Takahama Y. T cell-specific disruption of arylhydrocarbon receptor nuclear translocator (Arnt) gene causes resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced thymic involution. THE JOURNAL OF IMMUNOLOGY 2004; 171:4113-20. [PMID: 14530333 DOI: 10.4049/jimmunol.171.8.4113] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The arylhydrocarbon receptor nuclear translocator (ARNT) is a member of the basic helix-loop-helix, PER-ARNT-SIM family of heterodimeric transcription factors, and serves as a dimerization partner for arylhydrocarbon receptor (AHR) and hypoxia-inducible factor-1alpha. To assess the function of ARNT in T cells, we disrupted the Arnt gene specifically in T cells of mice by conditional gene targeting using T cell-specific p56(lck)-Cre (Lck-Cre) transgenic Arnt-floxed mice. Thus generated, T cell-specific Arnt-disrupted mice (Lck-Cre;Arnt(flox/Delta) transgenic mice) exhibited complete loss of the expression of ARNT protein only in T cells, and were viable and appeared normal. The Arnt-disrupted T cells in the thymus were phenotypically and histologically normal. The Arnt-deficient T cells in the spleen were capable of responding to TCR stimulation in vitro. However, unlike normal mice in which exposure to the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an AHR ligand, resulted in thymic involution, the thymus of Lck-Cre;Arnt(flox/Delta) mice were resistant to TCDD treatment in vivo. In contrast, benzo(a)pyrene, another AHR ligand, still caused thymic involution in Lck-Cre;Arnt(flox/Delta) mice. Finally, fetal thymus organ culture using Lck-Cre;Arnt(flox/Delta) and K5-Cre;Arnt(flox/Delta) (epithelial cell-specific Arnt-disrupted mice) showed that thymocytes rather than thymic epithelial cells are predominantly responsible for TCDD-induced thymic atrophy. Our results indicate that ARNT in T lineage cells is essential for TCDD-mediated thymic involution.
Collapse
Affiliation(s)
- Shuhei Tomita
- Department of Biochemistry, Kagawa Medical University, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Takagi S, Tojo H, Tomita S, Sano S, Itami S, Hara M, Inoue S, Horie K, Kondoh G, Hosokawa K, Gonzalez FJ, Takeda J. Alteration of the 4-sphingenine scaffolds of ceramides in keratinocyte-specific Arnt-deficient mice affects skin barrier function. J Clin Invest 2003; 112:1372-82. [PMID: 14597763 PMCID: PMC228437 DOI: 10.1172/jci18513] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT), a transcription factor of the Per/AHR/ARNT/Sim family, regulates gene expression in response to environmental stimuli including xenobiotics and hypoxia. To examine its role in the epidermis, the Cre-loxP system was used to disrupt the Arnt gene in a keratinocyte-specific manner. Gene-targeted, newborn mice with almost normal appearance died neonatally of severe dehydration caused by water loss. Histology showed small changes in the architecture of cornified layers, with apparently preserved intercorneocyte lamellar structures responsible for the skin barrier function. In contrast, HPLC/ion-trap mass spectrometry revealed significant alterations in the compositions of ceramides, the major components of the lamellae. The murine epidermal ceramides normally contain 4-sphingenine and 4-hydroxysphinganine. In Arnt-null epidermis, 4-sphingenine was largely replaced by sphinganine and the amounts of ceramides with 4-hydroxysphinganine were greatly decreased, suggesting deficiency of dihydroceramide desaturases that catalyze the formation of both 4-sphingenyl and 4-hydroxysphinganyl moieties. A desaturase isoenzyme, DES-1, prefers desaturation, but DES-2 catalyzes both reactions to a similar extent. Transcript levels of Des-2, but not Des-1, were considerably decreased in cultured keratinocytes from Arnt-null epidermis. These results indicate that proper ceramide compositions through 4-desaturation regulated by ARNT are crucial for maintaining the epidermal barrier function.
Collapse
Affiliation(s)
- Satoshi Takagi
- Department of Social and Environmental Medicine H3, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Takagi S, Tojo H, Tomita S, Sano S, Itami S, Hara M, Inoue S, Horie K, Kondoh G, Hosokawa K, Gonzalez FJ, Takeda J. Alteration of the 4-sphingenine scaffolds of ceramides in keratinocyte-specific Arnt-deficient mice affects skin barrier function. J Clin Invest 2003. [DOI: 10.1172/jci200318513] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
67
|
Aklillu E, Carrillo JA, Makonnen E, Hellman K, Pitarque M, Bertilsson L, Ingelman-Sundberg M. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 2003; 64:659-69. [PMID: 12920202 DOI: 10.1124/mol.64.3.659] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP1A2 polymorphism has been well studied in white persons and Asians but not in Africans. We performed CYP1A2 genotype and phenotype analysis using caffeine in Ethiopians living in Ethiopia (n = 100) or in Sweden (n = 73). We sequenced the CYP1A2 gene using genomic DNA from 12 subjects, which revealed a novel intron 1 single-nucleotide polymorphism (SNP), -730C>T. We developed SNP-specific polymerase chain reaction-restriction fragment length polymorphism genotyping and molecular haplotyping methods for the intron 1 SNPs, and four different haplotypes were identified: CYP1A2*1A (wild-type for all SNPs), CYP1A2*1F (-164A), CYP1A2*1J (-740G and -164A), and CYP1A2*1K (-730T, -740G, and -164A), having frequencies of 39.9, 49.6, 7.5, and 3.0%, respectively. The frequency of CYP1A2*1J and CYP1A2*1K among Saudi Arabians (n = 136) was 5.9% and 3.6%, and among Spaniards (n = 117) 1.3% and 0.5%, respectively. Functional significance of the different intron 1 haplotypes was analyzed. Subjects with CYP1A2*1K had significantly decreased CYP1A2 activity in vivo, and reporter constructs with this haplotype had significantly less inducibility with 2,3,7,8-tetrachlorodibenzo-p-dioxin in human B16A2 hepatoma cells. Electrophoretic mobility shift assay using nuclear extracts from B16A2 cells revealed a specific DNA binding protein complex to an Ets element. Efficient competition was obtained using oligonucleotide probes carrying the wt sequence and Ets consensus probe, whereas competition was abolished using probes with the -730C>T SNP alone or in combination with -740T>G (CYP1A2*1K). The results indicate a novel polymorphism in intron 1 of importance for Ets-dependent CYP1A2 expression in vivo and inducibility of the enzyme, which might be of critical importance for determination of interindividual differences in drug metabolism and sensitivity to carcinogens activated by CYP1A2.
Collapse
Affiliation(s)
- Eleni Aklillu
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
68
|
Pollenz RS. The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 2002; 141:41-61. [PMID: 12213384 DOI: 10.1016/s0009-2797(02)00065-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteolytic degradation of transcription factors is an established mechanism of regulating signal transduction pathways. Recent reports have suggested that the aryl hydrocarbon receptor (AHR) protein is rapidly downregulated (degraded) following ligand binding. The downregulation of AHR has been observed in nine distinct cells culture lines derived from human and rodent tissues and has also been observed in rodent models following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The downregulation of AHR appears to be ubiquitin mediated and occurs via the 26S proteasome pathway following nuclear export of AHR. The consequence of blocking AHR degradation in cell culture appears to be an increase in both the magnitude and duration of gene regulation by the AHR.ARNT complex. Thus, the physiological role of AHR degradation may be to modulate AHR-mediated gene regulation. This review provides analysis of the studies that have focused on the degradation of AHR in vivo and in vitro and the hypothesis that the downregulation of AHR is critical in the attenuation of AHR-mediated gene regulation.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Biology, University of South Florida, 4202 E Fowler Avenue, SCA 110, Tampa 33620-5200, USA.
| |
Collapse
|
69
|
Swanson HI. DNA binding and protein interactions of the AHR/ARNT heterodimer that facilitate gene activation. Chem Biol Interact 2002; 141:63-76. [PMID: 12213385 DOI: 10.1016/s0009-2797(02)00066-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene activation by the aryl hydrocarbon receptor (AHR) and its DNA binding partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) requires a number of sequential steps that occur following the binding of ligand and entry of the AHR into the nuclear compartment. This includes heterodimerization of the AHR and ARNT, formation of the appropriate amino acid/nucleotide contacts at the GCGTG recognition site and interactions between either the AHR or ARNT with proteins that facilitate changes in chromatin structure. The majority of these steps are likely modulated by changes in both phosphorylation and oxidation status of the AHR, ARNT and associated proteins. Studies of both the basic helix-loop-helix transcription factors and the nuclear hormone receptor family can provide significant insights into how this unique signaling pathway activates its target genes.
Collapse
Affiliation(s)
- Hollie I Swanson
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, MS 303, Lexington 40536, USA.
| |
Collapse
|
70
|
Miyoshi M, Okazaki K, Takiguchi M, Kida H, Hashimoto A. The immediate early gene of canine herpesvirus is transcribed through early and late phases. J Vet Med Sci 2002; 64:627-31. [PMID: 12185320 DOI: 10.1292/jvms.64.627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immediate early (IE) gene of canine herpesvirus (CHV), homologue of the infected cell protein 4 (ICP4) gene of herpes simplex virus 1, is transcribed as a 4.9kb mRNA during IE phase. The IE gene was further transcribed as a 4.8kb mRNA through early (E) and late (L) phases of productive infection. Transcription of the 4.8kb mRNA initiated from downstream of the TATA box in an intron which was spliced out during IE phase. The reverse transcription-polymerase chain reaction revealed that the IE promoter was turned off during L phase at a permissive temperature. We, thus, propose to redesignate the IE gene of CHV as CICP4 gene.
Collapse
Affiliation(s)
- Masahiro Miyoshi
- Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
71
|
Powell WH, Hahn ME. Identification and functional characterization of hypoxia-inducible factor 2alpha from the estuarine teleost, Fundulus heteroclitus: interaction of HIF-2alpha with two ARNT2 splice variants. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:17-29. [PMID: 11932946 DOI: 10.1002/jez.10074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypoxia-inducible factors (HIFs) are dimeric transcription factors that mediate changes in gene expression during adaptation of animals to oxygen stress. Both alpha (HIFalpha) and beta (ARNT) subunits are members of the basic helix-loop-helix/Per-ARNT-Sim family of proteins. Mammals have at least three different HIF-alpha subunits, paralogous proteins expressed in tissue-specific fashion (HIF-1alpha, HIF-2alpha, and HIF-3alpha). However, the diversity and functional properties of teleost HIFs are poorly understood. In efforts to characterize mechanisms of hypoxia adaptation in estuarine fish, we have isolated cDNAs encoding HIF subunits from Fundulus heteroclitus (Atlantic killifish or mummichog), including a HIF-2alpha homolog and ARNT2alt, a splice variant of ARNT2 that contains an additional exon encoding 16 amino acids near the amino terminus. HIF-2alpha protein synthesized in vitro binds cognate DNA elements in concert with either Fundulus ARNT2 splice variant or murine ARNT1. HIF-2alpha, ARNT2, and ARNT2alt mRNAs are expressed in all organs examined. The HIF-2alpha cDNA encodes a protein of 96.4 kDa, sharing 53-54% identity with mammalian and avian orthologs. The oxygen-dependent degradation domain, however, exhibits substantial divergence from well-conserved mammalian sequences, suggesting the possibility of important functional differences, perhaps in the sensitivity to induction of activity by hypoxia. Hypoxia-tolerant fishes such as F. heteroclitus represent a unique opportunity for the study of functional and evolutionary aspects of adaptation to hypoxia at the molecular, cellular, and organismal levels. This study extends the understanding of hypoxia signaling in fish, the evolution and diversity of HIF function, and the evolution of the PAS family of proteins.
Collapse
Affiliation(s)
- Wade H Powell
- Biology Department, Kenyon College, Gambier, Ohio 43022, USA.
| | | |
Collapse
|
72
|
Woods SL, Whitelaw ML. Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Cross-talk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors. J Biol Chem 2002; 277:10236-43. [PMID: 11782478 DOI: 10.1074/jbc.m110752200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix/Per-Arnt-Sim homology (bHLH/PAS) protein family comprises a group of transcriptional regulators that often respond to a variety of developmental and environmental stimuli. Two murine members of this family, Single Minded 1 (SIM1) and Single Minded 2 (SIM2), are essential for postnatal survival but differ from other prototypical family members such as the dioxin receptor (DR) and hypoxia-inducible factors, in that they behave as transcriptional repressors in mammalian one-hybrid experiments and have yet to be ascribed a regulating signal. In cell lines engineered to stably express SIM1 and SIM2, we show that both are nuclear proteins that constitutively complex with the general bHLH/PAS partner factor, ARNT. We report that the murine SIM factors, in combination with ARNT, attenuate transcription from the hypoxia-inducible erythropoietin (EPO) enhancer during hypoxia. Such cross-talk between coexpressed bHLH/PAS factors can occur through competition for ARNT, which we find evident in SIM repression of DR-induced transcription from a xenobiotic response element reporter gene. However, SIM1/ARNT, but not SIM2/ARNT, can activate transcription from the EPO enhancer at normoxia, implying that the SIM proteins have the ability to bind hypoxia response elements and affect either activation or repression of transcription. This notion is supported by co-immunoprecipitation of EPO enhancer sequences with the SIM2 protein. SIM protein levels decrease with hypoxia treatment in our stable cell lines, although levels of the transcripts encoding SIM1 and SIM2 and the approximately 2-h half-lives of each protein are unchanged during hypoxia. Inhibition of protein synthesis, known to occur in cells during hypoxic stress in order to decrease ATP utilization, appears to account for the fall in SIM levels. Our data suggest the existence of a hypoxic switch mechanism in cells that coexpress hypoxia-inducible factor and SIM proteins, where up-regulation and activation of hypoxia-inducible factor-1alpha is concomitant with attenuation of SIM activities.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Epitopes
- Genes, Reporter
- Genetic Vectors
- Helix-Loop-Helix Motifs
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunoblotting
- Kidney/cytology
- Kidney/embryology
- Luciferases/metabolism
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/metabolism
- Response Elements
- Sequence Homology, Amino Acid
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Susan L Woods
- Department of Molecular BioSciences, Center for the Molecular Genetics of Development, Adelaide University, South Australia 5005, Australia
| | | |
Collapse
|
73
|
Huffman JL, Mokashi A, Bächinger HP, Brennan RG. The basic helix-loop-helix domain of the aryl hydrocarbon receptor nuclear transporter (ARNT) can oligomerize and bind E-box DNA specifically. J Biol Chem 2001; 276:40537-44. [PMID: 11502749 DOI: 10.1074/jbc.m105675200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a basic helix-loop-helix (bHLH) protein that contains a Per-Arnt-Sim (PAS) domain. ARNT heterodimerizes in vivo with other bHLH PAS proteins to regulate a number of cellular activities, but a physiological role for ARNT homodimers has not yet been established. Moreover, no rigorous studies have been done to characterize the biochemical properties of the bHLH domain of ARNT that would address this issue. To begin this characterization, we chemically synthesized a 56-residue peptide encompassing the bHLH domain of ARNT (residues 90-145). In the absence of DNA, the ARNT-bHLH peptide can form homodimers in lower ionic strength, as evidenced by dynamic light scattering analysis, and can bind E-box DNA (CACGTG) with high specificity and affinity, as determined by fluorescence anisotropy. Dimers and tetramers of ARNT-bHLH are observed bound to DNA in equilibrium sedimentation and dynamic light scattering experiments. The homodimeric peptide also undergoes a coil-to-helix transition upon E-box DNA binding. Peptide oligomerization and DNA affinity are strongly influenced by ionic strength. These biochemical and biophysical studies on the ARNT-bHLH reveal its inherent ability to form homodimers at concentrations supporting a physiological function and underscore the significant biochemical differences among the bHLH superfamily.
Collapse
Affiliation(s)
- J L Huffman
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
74
|
Nie M, Blankenship AL, Giesy JP. Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2001; 10:17-27. [PMID: 11382553 DOI: 10.1016/s1382-6689(01)00065-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most if not all of the toxic responses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated through the AhR, which requires ARNT to regulate gene expression. ARNT is also required by HIF-1alpha to enhance the expression of various genes in response to hypoxia. Since both the AhR and hypoxia transcriptional pathways require ARNT, some of the effects of TCDD and similar types of ligands could be explained by interaction between the AhR and hypoxia pathways involving ARNT. The studies on which we report here were conducted to test the hypothesis that there is cross talk between AhR- and HIF-1-mediated transcription pathways. TCDD significantly reduced the hypoxia-mediated reporter gene activity in B-1 cells. Reciprocally, the hypoxia response inducers desferrioxamine or CoCl(2) inhibited AhR-mediated CYP1A1 enzyme activity in B-1 and Hepa 1 cells, and the AhR-mediated luciferase reporter gene activity in H1L1.1c2 cells. The inhibition of AhR-mediated transcription by hypoxia inducers, however, was not observed in H4IIE-luc cells. The interaction between the AhR- and HIF-1-mediated transcription can be attributed to changes in DNA binding activities. TCDD-induced protein binding to dioxin responsive element (DRE) was diminished by desferrioxamine, and TCDD reduced the binding activity to HIF-1 binding site in desferrioxamine-treated Hepa 1 cells. This mutual repression may provide an underlying mechanism for many TCDD-induced toxic responses. The results reported here indicate that there is cross talk between ARNT-requiring pathways. Since ARNT is possibly required by a number of pathways, this type of interaction may explain some of the pleiotropic effects caused by TCDD.
Collapse
Affiliation(s)
- M Nie
- National Food Safety and Toxicology Center, Department of Zoology and Institute for Environmental Toxicology, Michigan State University, 48824-1311, East Lansing, MI, USA
| | | | | |
Collapse
|
75
|
Krones A, Jungermann K, Kietzmann T. Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology 2001; 142:2707-18. [PMID: 11356723 DOI: 10.1210/endo.142.6.8200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The signals oxygen and glucose play an important role in metabolism, angiogenesis, tumorigenesis, and embryonic development. Little is known about an interaction of these two signals. We demonstrate here the cross-talk between oxygen and glucose in the regulation of L-type pyruvate kinase (L-PK) gene expression in the liver. In the liver the periportal to perivenous drop in O(2) tension was proposed to be an endocrine key regulator for the zonated gene expression. In primary rat hepatocyte cultures the expression of the L-PK gene on mRNA and on protein level was induced by venous pO(2), whereas its glucose-dependent induction occurred predominantly under arterial pO(2). It was shown by transient transfection of L-PK promoter luciferase and glucose response element (Glc(PK)RE) SV40 promoter luciferase gene constructs that the modulation by O(2) of the glucose-dependent induction occurred at the Glc(PK)RE in the L-PK gene promoter. The reduction of the glucose-dependent induction of the L-PK gene expression under venous pO(2) appeared to be mediated via an interference between hypoxia inducible factor-1 (HIF-1) and upstream stimulating factor at the Glc(PK)RE. The glucose response element also functioned as an hypoxia response element which was confirmed in cotransfection assays with Glc(PK)RE luciferase gene constructs and HIF-1alpha expression vectors. Furthermore, it was found by gel shift and supershift assay that HIF-1alpha and USF-1 or USF-2 could bind to the Glc(PK)RE. Our findings implicate that the cross-talk between oxygen and glucose might have a fundamental role in the regulation of several physiological and pathophysiological processes.
Collapse
Affiliation(s)
- A Krones
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
76
|
Wang F, Samudio I, Safe S. Transcriptional activation of cathepsin D gene expression by 17beta-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol Cell Endocrinol 2001; 172:91-103. [PMID: 11165043 DOI: 10.1016/s0303-7207(00)00379-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
17beta-estradiol (E2) induces cathepsin D gene expression in MCF-7 human breast cancer cells and this response is inhibited by aryl hydrocarbon receptor (AhR) agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Analysis of the cathepsin D gene promoter initially identified a pentanucleotide GCGTG core dioxin responsive element (DRE) that blocked E2 action by inhibiting formation of a transcriptionally active estrogen receptor (ER)-Sp1 complex. A second functional downstream inhibitory DRE (iDRE2) (-130 to -126) has now been identified in the cathepsin D gene promoter and inhibition of E2-induced transactivation involves inhibitory AhR crosstalk with the E2-responsive adenovirus major late promoter element (MLPE) at -124 to -104 in the cathepsin D gene promoter. The MLPE site primarily binds USF1/USF2 and ERalpha, and gel mobility shift and DNA footprinting assays show that the AhR complex decreases binding of these transcription factors to the MLPE.
Collapse
Affiliation(s)
- F Wang
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
77
|
Sojka KM, Kern CB, Pollenz RS. Expression and subcellular localization of the aryl hydrocarbon receptor nuclear translocator (ARNT) protein in mouse and chicken over developmental time. THE ANATOMICAL RECORD 2000; 260:327-34. [PMID: 11074397 DOI: 10.1002/1097-0185(200012)260:4<326::aid-ar10>3.0.co;2-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a basic-helix-loop-helix/Per- ARNT-Sim (bHLH/PAS) transcription factor that is involved in multiple signaling pathways. This study focuses on the tissue distribution and subcellular localization of ARNT during embryological development of the mouse and chicken. Two different species were chosen to determine the consistency of the ARNT staining pattern. Immunohistochemical techniques were used to stain sections of embryos over three developmental time points for each species. Mouse tissues evaluated from embryonic day 10.5, 12.5, and 15, exhibited predominant nuclear staining with little change in expression patterns over time. Chicken tissues evaluated from embryonic day 2, 4, and 10 also showed predominant nuclear staining within all cells and little change in expression over developmental time, as well as, low levels of cytoplasmic ARNT staining in some cells. Importantly, in all tissues, the level of ARNT staining within the nuclear compartment was greater than staining observed in the cytoplasm. Thus, the overall conclusions from these studies are that i) the predominant subcellular localization of ARNT protein is nuclear, and ii) that mouse and chicken appear to maintain ARNT protein expression in many cell types over developmental time. These data support vertebrate ARNT as a nuclear transcription factor and a model in which dimerization partners require nuclear localization for interaction.
Collapse
Affiliation(s)
- K M Sojka
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | |
Collapse
|
78
|
Tomita S, Sinal CJ, Yim SH, Gonzalez FJ. Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha. Mol Endocrinol 2000; 14:1674-81. [PMID: 11043581 DOI: 10.1210/mend.14.10.0533] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To determine the function of the aryl hydrocarbon receptor nuclear translocator (ARNT), a conditional gene knockout mouse was made using the Cre-loxP system. Exon 6, encoding the conserved basic-helix-loop-helix domain of the protein, was flanked by loxP sites and introduced into the Arnt gene by standard gene disruption techniques using embryonic stem cells. Mice homozygous for the floxed allele were viable and had no readily observable phenotype. The Mx1-Cre transgene, in which Cre is under control of the interferon-gamma promoter, was introduced into the Arnt-floxed mouse line. Treatment with polyinosinic-polycytidylic acid to induce expression of Cre resulted in complete disruption of the Arnt gene and loss of ARNT messenger RNA (mRNA) expression in liver. To determine the role of ARNT in gene control in the intact animal mouse liver, expression of target genes under control of an ARNT dimerization partner, the aryl hydrocarbon receptor (AHR), was monitored. Induction of CYP1A1, CYP1A2, and UGT1*06 mRNAs by the AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin was absent in livers of Arnt-floxed/Mx1-Cre mice treated with polyinosinic-polycytidylic. These data demonstrate that ARNT is required for AHR function in the intact animal. Partial deletion of the Arnt allele was found in kidney, heart, intestine, and lung. Despite more than 80% loss of the ARNT expression in lung, maximal induction of CYP1A1 was found, indicating that the expression level of ARNT is not limiting to AHR signaling. Cobalt chloride induction of the glucose transporter-1 and heme oxygenase-1 mRNAs was also markedly abrogated in mice lacking ARNT expression, suggesting an inhibition of HIF-1alpha activity. These studies establish a critical role for ARNT in AHR and HIF-1alpha signal transduction in the intact mouse.
Collapse
Affiliation(s)
- S Tomita
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
79
|
Sadek CM, Jalaguier S, Feeney EP, Aitola M, Damdimopoulos AE, Pelto-Huikko M, Gustafsson JA. Isolation and characterization of AINT: a novel ARNT interacting protein expressed during murine embryonic development. Mech Dev 2000; 97:13-26. [PMID: 11025203 DOI: 10.1016/s0925-4773(00)00415-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) proteins form dimeric transcription factors to mediate diverse biological functions including xenobiotic metabolism, hypoxic response, circadian rhythm and central nervous system midline development. The Ah receptor nuclear translocator protein (ARNT) plays a central role as a common heterodimerization partner. Herein, we describe a novel, embryonically expressed, ARNT interacting protein (AINT) that may be a member of a larger coiled-coil PAS interacting protein family. The AINT C-terminus mediates interaction with the PAS domain of ARNT in yeast and interacts in vitro with ARNT and ARNT2 specifically. AINT localizes to the cytoplasm and overexpression leads to non-nuclear localization of ARNT. A dynamic pattern of AINT mRNA expression during embryogenesis and cerebellum ontogeny supports a role for AINT in development.
Collapse
Affiliation(s)
- C M Sadek
- Department of Biosciences, Center for Biotechnology, Novum, Karolinska Institute, 141 57, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
80
|
Kitamura Y, Takata K, Kakimura J, Umeki M, Azukawa S, Suzuki S, Taniguchi T. Aryl hydrocarbon receptor nuclear translocator is induced by kainic acid in rat hippocampal glial cells. Neurosci Lett 2000; 291:117-20. [PMID: 10978588 DOI: 10.1016/s0304-3940(00)01412-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The localization and function of aryl hydrocarbon receptor nuclear translocator (ARNT) in the brain are still unclear. In this study, we examined changes of ARNT protein in rat hippocampus, by immunoblotting and immunohistochemical analysis using anti-ARNT antibody. Treatment of kainic acid (KA) induced marked increase in ARNT protein in both cytosolic and organellar fractions. ARNT immunoreactivity was markedly increased, predominantly in microglia and partly in astrocytes, similar to the immunoreactivity of heme oxygenase-1. In contrast, protein level of dioxin receptor did not change and hypoxia-inducible factor-1alpha protein was undetectable. These results suggest that ARNT expression in glial cells may participate in KA-induced episodes in the hippocampus.
Collapse
Affiliation(s)
- Y Kitamura
- Department of Neurobiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, 607-8412, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
81
|
Fairchild CD, Schumaker MA, Quail PH. HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 2000; 14:2377-91. [PMID: 10995393 PMCID: PMC316929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Phytochromes are informational photoreceptors through which plants adapt their growth and development to prevailing light conditions. These adaptations are effected primarily through phytochrome regulation of gene expression by mechanisms that remain unclear. We describe a new mutant, hfr1 (long hypocotyl in far-red), that exhibits a reduction in seedling responsiveness specifically to continuous far-red light (FRc), thereby suggesting a locus likely to be involved in phytochrome A (phyA) signal transduction. Using an insertionally tagged allele, we cloned the HFR1 gene and subsequently confirmed its identity with additional alleles derived from a directed genetic screen. HFR1 encodes a nuclear protein with strong similarity to the bHLH family of DNA-binding proteins but with an atypical basic region. In contrast to PIF3, a related bHLH protein previously shown to bind phyB, HFR1 did not bind either phyA or B. However, HFR1 did bind PIF3, suggesting heterodimerization, and both the HFR1/PIF3 complex and PIF3 homodimer bound preferentially to the Pfr form of both phytochromes. Thus, HFR1 may function to modulate phyA signaling via heterodimerization with PIF3. HFR1 mRNA is 30-fold more abundant in FRc than in continuous red light, suggesting a potential mechanistic basis for the specificity of HFR1 to phyA signaling.
Collapse
Affiliation(s)
- C D Fairchild
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
82
|
Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, Fujii-Kuriyama Y. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 2000; 5:739-47. [PMID: 10971655 DOI: 10.1046/j.1365-2443.2000.00363.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Arnt3 (also termed as BMAL1 or MOP3)/Clock heterodimer is a positive regulator of circadian rhythm and activates the transcription of target genes such as per1 and vasopressin. RESULTS We investigated the transcriptional mechanism of mArnt3/mClock heterodimer. While mClock did not possess any distinct activation domain, mArnt3 contained a transcriptional activation domain at the most C-terminal end, the activity of which was not expressed, even in the one hybrid system, until it was bound by mClock. It has been suggested that mClock plays a regulatory or structural role in exerting a transcription enhancing effect of the mArnt3/mClock heterodimer. Deletion proceeding from amino acids 559-492 of mClock markedly reduced the transactivation activity of mArnt3/mClock heterodimer, in consistence with the results of the Clock-delta 19 mutant. Yeast and mammalian two-hybrid systems revealed that CBP and p300 interacted with mArnt3 via the CREB binding domain. The In vivo interaction between mArnt3 and CBP was confirmed by the GST pull down assay. CONCLUSION Taken together, these results suggest that the mArnt3/mClock heterodimer exerted its transactivation activity via CBP or p300 interacting with mArnt3 in the heterodimer with mClock playing a structural or regulatory role in the transactivation process.
Collapse
Affiliation(s)
- S Takahata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 2000; 40:519-61. [PMID: 10836146 DOI: 10.1146/annurev.pharmtox.40.1.519] [Citation(s) in RCA: 756] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, PAS domains have been identified in dozens of signal transduction molecules and various forms have been found in animals, plants, and prokaryotes. In this review, we summarize this rapidly expanding research area by providing a detailed description of three signal transduction pathways that utilize PAS protein heterodimers to drive their transcriptional output. It is hoped that these model pathways can provide a framework for use in understanding the biology of the less well-understood members of this emerging superfamily, as well as of those to be characterized in the days to come. We use this review to develop the idea that most eukaryotic PAS proteins can be classified by functional similarities, as well as by predicted phylogenetic relationships. We focus on the alpha-class proteins, which often act as sensors of environmental signals, and the beta-class proteins, which typically act as broad-spectrum partners that target these heterodimers to their genomic targets.
Collapse
Affiliation(s)
- Y Z Gu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine, Madison 53706, USA.
| | | | | |
Collapse
|
84
|
Powell WH, Hahn ME. The evolution of aryl hydrocarbon signaling proteins: diversity of ARNT isoforms among fish species. MARINE ENVIRONMENTAL RESEARCH 2000; 50:39-44. [PMID: 11460724 DOI: 10.1016/s0141-1136(00)00046-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) mediates aryl hydrocarbon signaling and toxicity by dimerizing with the ligand-activated aryl hydrocarbon receptor (AHR), forming a complex that binds specific DNA elements and alters transcription of target genes. Two genes encode different forms of ARNT in rodents: ARNT1, which is widely expressed, and ARNT2, which exhibits a very restricted expression pattern. In an effort to characterize aryl hydrocarbon signaling mechanisms in fishes, we previously isolated an ARNT cDNA from Fundulus heteroclitus and discovered that this species expresses ARNT2 ubiquitously. This situation differs not only from mammals, but also from rainbow trout, which expresses a divergent ARNT gene that we hypothesized was peculiar to salmonids (rtARNTa/b). In this communication, we examine the ARNT sequences of multiple fish species, including a newly isolated cDNA from scup (Stenotomus chrysops). Our phylogenetic analysis demonstrates that zebrafish ARNT, like the Fundulus protein, is an ARNT2. Contrary to expectations, the scup ARNT is closely related to the rainbow trout protein, demonstrating that the existence of this ARNT isoform predates the divergence of salmonids from the other teleosts. Thus, different species of fish express distinct and highly conserved isoforms of ARNT. The number, type, and expression pattern of ARNT proteins may contribute to interspecies differences in aryl hydrocarbon toxicity, possibly through distinct interactions with additional PAS-family proteins.
Collapse
Affiliation(s)
- W H Powell
- Biology Department, MS#32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | |
Collapse
|
85
|
Abstract
The Drosophila salivary gland is proving to be an excellent experimental system for understanding how cells commit to specific developmental programs and, once committed, how cells implement such decisions. Through genetic studies, the factors that determine where salivary glands will form, the number of cells committed to a salivary gland fate, and the distinction between the two major cell types (secretory cells and duct cells) have been discovered. Within the next few years, we will learn the molecular details of the interactions among the salivary gland regulators and salivary gland target genes. We will also learn how the early-expressed salivary gland genes coordinate their activities to mediate the morphogenetic movements required to form the salivary gland and the changes in cell physiology required for high secretory activity.
Collapse
Affiliation(s)
- D J Andrew
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA.
| | | | | |
Collapse
|
86
|
Guigal N, Seree E, Bourgarel-Rey V, Barra Y. Induction of CYP1A1 by serum independent of AhR pathway. Biochem Biophys Res Commun 2000; 267:572-6. [PMID: 10631103 DOI: 10.1006/bbrc.1999.1959] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CYP1A1 is implicated in the bioactivation of procarcinogens such as polycyclic aromatic hydrocarbons. To date, no physiological compounds have been described as inducers of this gene. In this study, we have examined the role of serum in the regulation of CYP1A1 gene expression. After treatment of CaCo-2 cells with fetal bovine serum, CYP1A1 mRNA level increased to the same extent as that observed after 3-methylcholanthrene induction. The same effect was obtained after treatment with adult bovine or human serum. Evaluation of hnRNA level performed on CaCo-2 cells indicates that CYP1A1 induction by serum acts at least in part through transcriptional activation. Promoter region containing the XRE (1.56 kb) was tested in the CAT assay. No stimulation of this reporter gene was detected after serum treatment. These results demonstrate for the first time that physiological compound(s) contained in serum induces CYP1A1 gene expression by transcriptional activation independent of the AhR pathway.
Collapse
Affiliation(s)
- N Guigal
- Faculté de Pharmacie, UPRES A CNRS 6032, 27 boulevard Jean Moulin, Marseille Cedex 05, 13385, France
| | | | | | | |
Collapse
|
87
|
Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol 2000; 20:402-15. [PMID: 10594042 PMCID: PMC85095 DOI: 10.1128/mcb.20.1.402-415.2000] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factor 1alpha (HIF-1alpha) functions as a transcription factor that is activated by decreased cellular oxygen concentrations to induce expression of a network of genes involved in angiogenesis, erythropoiesis, and glucose homeostasis. Here we demonstrate that two members of the SRC-1/p160 family of transcriptional coactivators harboring histone acetyltransferase activity, SRC-1 and transcription intermediary factor 2 (TIF2), are able to interact with HIF-1alpha and enhance its transactivation potential in a hypoxia-dependent manner. HIF-1alpha contains within its C terminus two transactivation domains. The hypoxia-inducible activity of both these domains was enhanced by either SRC-1 or the CREB-binding protein (CBP)/p300 coactivator. Moreover, at limiting concentrations, SRC-1 produced this effect in synergy with CBP. Interestingly, this effect was strongly potentiated by the redox regulatory protein Ref-1, a dual-function protein harboring DNA repair endonuclease and cysteine reducing activities. These data indicate that all three proteins, CBP, SRC-1, and Ref-1, are important components of the hypoxia signaling pathway and have a common function in regulation of HIF-1alpha function in hypoxic cells. Given the absence of cysteine residues in one of the Ref-1-regulated transactivation domains of HIF-1alpha, it is thus possible that Ref-1 functions in hypoxic cells by targeting critical steps in the recruitment of the CBP-SRC-1 coactivator complex.
Collapse
Affiliation(s)
- P Carrero
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
88
|
Davarinos NA, Pollenz RS. Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J Biol Chem 1999; 274:28708-15. [PMID: 10497241 DOI: 10.1074/jbc.274.40.28708] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that dimerizes with the AHR nuclear translocator protein to mediate gene regulation. However, the AHR protein is rapidly depleted in vitro and in vivo following exposure to ligands. The purpose of the studies in this report was to characterize the mechanism of AHR degradation and determine the consequence of blocking the degradation process. Western blot and immunological analysis of rat smooth muscle (A7), murine Hepa-1, and human HepG2 cells show that ligand-induced degradation of AHR is blocked when the proteasome is inhibited by MG-132. AHR degradation is also blocked in Hepa-1 and HepG2 cells when nuclear export is inhibited with leptomycin B. Mutation of a putative nuclear export signal present in the AHR results in the accumulation of AHR in the nucleus and reduced levels of degradation following ligand exposure. In addition, inhibition of AHR degradation results in an increase in the concentration of AHR.AHR nuclear translocator complexes associated with DNA and extends the duration that the complex resides in the nucleus. These findings show that nuclear export and degradation of the AHR protein are two additional steps in the AHR-mediated signal transduction pathway and suggest novel areas for regulatory control.
Collapse
Affiliation(s)
- N A Davarinos
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | |
Collapse
|
89
|
Lees MJ, Whitelaw ML. Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt. Mol Cell Biol 1999; 19:5811-22. [PMID: 10409767 PMCID: PMC84430 DOI: 10.1128/mcb.19.8.5811] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dioxin receptor is a ligand-activated transcription factor belonging to an emerging class of basic helix-loop-helix/PAS proteins which show interaction with the molecular chaperone hsp90 in their latent states and require heterodimerization with a general cofactor, Arnt, to form active DNA binding complexes. Upon binding of polycyclic aromatic hydrocarbons typified by dioxin, the dioxin receptor translocates from the cytoplasm to the nucleus to allow interaction with Arnt. Here we have bypassed the nuclear translocation step by creating a cell line which expresses a constitutively nuclear dioxin receptor, which we find remains in a latent form, demonstrating that ligand has functional roles beyond initiating nuclear import of the receptor. Treatment of the nuclear receptor with dioxin induces dimerization with Arnt to form an active transcription factor complex, while in stark contrast, treatment with the hsp90 ligand geldanamycin results in rapid degradation of the receptor. Inhibition of degradation by a proteasome inhibitor allowed geldanamycin to transform the nuclear dioxin receptor to a heterodimer with Arnt (DR-Arnt). Our results indicate that unchaperoned dioxin receptor is extremely labile and is consistent with a concerted nuclear mechanism for receptor activation whereby hsp90 is released from the ligand-bound dioxin receptor concomitant with Arnt dimerization. Strikingly, artificial transformation of the receptor by geldanamycin provided a DR-Arnt complex capable of binding DNA but incapable of stimulating transcription. Limited proteolysis of DR-Arnt heterodimers indicated different conformations for dioxin versus geldanamycin-transformed receptors. Our studies of intracellular dioxin receptor transformation indicate that ligand plays multiple mechanistic roles during receptor activation, being important for nuclear translocation, transformation to an Arnt heterodimer, and maintenance of a structural integrity key for transcriptional activation.
Collapse
Affiliation(s)
- M J Lees
- Department of Biochemistry, University of Adelaide, Adelaide 5005, South Australia, Australia
| | | |
Collapse
|
90
|
Swanson HI, Yang JH. Specificity of DNA binding of the c-Myc/Max and ARNT/ARNT dimers at the CACGTG recognition site. Nucleic Acids Res 1999; 27:3205-12. [PMID: 10454619 PMCID: PMC148549 DOI: 10.1093/nar/27.15.3205] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Basic helix-loop-helix proteins that interact with the DNA recognition site CACGTG include the c-Myc/Max heterodimer and the ARNT (Ahreceptornucleartranslocator) homodimer. We have utilized a PCR-based protocol to identify high affinity binding sites of either the c-Myc/Max or ARNT/ARNT dimers and analyzed the ability of these dimers to interact with their derived consensus sequences and activate genes. chi(2)analysis of the selected DNA recognition sites revealed that DNA binding of the ARNT homodimer is symmetric, resulting in the consensus sequence RTCACGTGAY. Gel shift analysis demonstrated that the flanking nucleotides play an important role in dictating DNA binding affinity of the ARNT homodimer. These flanking sequences also regulate the ability of ARNT to competitively displace the c-Myc/Max heterodimer from a CACGTG-containing sequence. However, transient transfection analyses in CV-1 cells revealed that ARNT and c-Myc/Max exhibited similar abilities to activate transcription through each other's consensus sequences. Taken together, these results indicate that although binding affinity of these dimers for the CACGTG core sequences may be differentially influenced by flanking nucleotides, transcriptional activity may also be determined by other factors, such as cellular concentrations of these proteins and their co-activators.
Collapse
Affiliation(s)
- H I Swanson
- Department of Pharmacology, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
91
|
Lee C, Bae K, Edery I. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol Cell Biol 1999; 19:5316-25. [PMID: 10409723 PMCID: PMC84375 DOI: 10.1128/mcb.19.8.5316] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila CLOCK (dCLOCK) and CYCLE (CYC) (also referred to as dBMAL1) proteins are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) superfamily of transcription factors and are required for high-level expression of the circadian clock genes period (per) and timeless (tim). Several lines of evidence indicate that PER, TIM, or a PER-TIM heterodimer somehow inhibit the transcriptional activity of a putative dCLOCK-CYC complex, generating a negative-feedback loop that is a core element of the Drosophila circadian oscillator. In this report we show that PER and/or TIM inhibits the binding of a dCLOCK-CYC heterodimer to an E-box-containing DNA fragment that is present in the 5' nontranscribed region of per and acts as a circadian enhancer element. Surprisingly, inhibition of this DNA binding activity by PER, TIM, or both is not accompanied by disruption of the association between dCLOCK and CYC. The results suggest that the interaction of PER, TIM, or both with the dCLOCK-CYC heterodimer induces a conformational change or masks protein regions in the heterodimer, leading to a reduction in DNA binding activity. Together with other findings, our results strongly suggest that daily cycles in the association of PER and TIM with the dCLOCK-CYC complex probably contribute to rhythmic expression of per and tim.
Collapse
Affiliation(s)
- C Lee
- Graduate Program in Microbiology and Molecular Genetics, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
92
|
Necela B, Pollenz RS. Functional analysis of activation and repression domains of the rainbow trout aryl hydrocarbon receptor nuclear translocator (rtARNT) protein isoforms. Biochem Pharmacol 1999; 57:1177-90. [PMID: 11230806 DOI: 10.1016/s0006-2952(99)00036-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) protein is involved in many signaling pathways. Rainbow trout express isoforms of ARNT protein that are divergent in their C-terminal domains due to alternative RNA splicing. Rainbow trout ARNT(b) (rtARNT(b)) contains a C-terminal domain rich in glutamine and asparagine (QN), whereas the C-terminal domain of rtARNT(a) is rich in proline, serine, and threonine (PST). rtARNT(b) functions positively in AH receptor-mediated signaling, whereas rtARNT(a) functions negatively. Studies were performed to understand how changes in the C-terminal domains of the two rtARNT isoforms affect function. Deletion of the QN-rich C-terminal domain of rtARNT(b) did not affect function in aryl hydrocarbon receptor (AHR)-mediated signaling, whereas deletion of the PST-rich domain of rtARNT(a) restored function. Expression of the PST-rich domain on truncated rtARNT(b) or mouse ARNT (mARNT) reduced function of this protein by 50-80%. Gel shift assays revealed that the PST-rich domain affected AHR-mediated signaling by inhibiting DNA binding of the AHR*ARNT heterodimer. Gal4 transactivation assays revealed a potent transactivation domain in the QN-rich domain of rtARNT(b). In contrast, Gal4 proteins containing the PST-rich domain of rtARNT(a) did not transactivate because the proteins did not bind to DNA. Secondary structure analysis of the PST-rich domain revealed hydrophilic and hydrophobic regions. Truncation of the hydrophobic domain that spanned the final 20-40 amino acids of the rtARNT(a) restored function to the protein, suggesting that repressor function was related to protein misfolding or masking of the basic DNA binding domain. Functional diversity within the C-terminal domain is consistent with other negatively acting transcription factors and illustrates a common biological theme.
Collapse
Affiliation(s)
- B Necela
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
93
|
Long WP, Chen X, Perdew GH. Protein kinase C modulates aryl hydrocarbon receptor nuclear translocator protein-mediated transactivation potential in a dimer context. J Biol Chem 1999; 274:12391-400. [PMID: 10212212 DOI: 10.1074/jbc.274.18.12391] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC)- and protein kinase A (PKA)-mediated modulation of the transactivation potential of human aryl hydrocarbon receptor nuclear translocator (hARNT), a basic helix-loop-helix (bHLH)-PAS transcription factor, and the bHLH-ZIP transcription factors USF-1 (for upstream regulatory factor 1) and c-Myc were examined. An 81 nM dose of the PKC activator phorbol-12-myristate-13-acetate (PMA), shown here to specifically activate PKC in COS-1 cells, or a 1 nM dose of the PKA activator 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) results in 2. 6- and 1.9-fold enhancements, respectively, in hARNT-mediated transactivation of the class B, E-box-driven reporter pMyc3E1bLuc relative to identically transfected, carrier solvent-treated COS-1 cells. In contrast, 81 nM PMA and 1 nM 8-Br-cAMP did not enhance transactivation of pMyc3E1bLuc-driven by USF-1 and c-Myc expression relative to identically transfected, carrier-treated COS-1 cells. Co-transfection of pcDNA3/ARNT-474-Flag, expressing a hARNT carboxyl-terminal transactivation domain deletion, and pMyc3E1bLuc does not result in induction of reporter activity, suggesting PMA's effects do not involve formation of unknown hARNT-protein heterodimers. Additionally, PMA had no effect on hARNT expression relative to Me2SO-treated cells. Metabolic 32P labeling of hARNT in cells treated with carrier solvent or 81 nM PMA demonstrates that PMA does not increase the overall phosphorylation level of hARNT. These results demonstrate, for the first time, that the transactivation potential of ARNT in a dimer context can be specifically modulated by PKC or PKA stimulation and that the bHLH-PAS and bHLH-ZIP transcription factors are differentially regulated by these pathways in COS-1 cells.
Collapse
Affiliation(s)
- W P Long
- Center for Molecular Toxicology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
94
|
Powell WH, Karchner SI, Bright R, Hahn ME. Functional diversity of vertebrate ARNT proteins: identification of ARNT2 as the predominant form of ARNT in the marine teleost, Fundulus heteroclitus. Arch Biochem Biophys 1999; 361:156-63. [PMID: 9882441 DOI: 10.1006/abbi.1998.0992] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a member of the bHLH/PAS protein superfamily. ARNT dimerizes with several PAS superfamily members, including the ligand-activated aryl hydrocarbon receptor (AHR), forming a complex that alters transcription by binding specific elements within the promoters of target genes. Two genes encode different forms of the protein in rodents: ARNT1, which is widely expressed, and ARNT2, which is limited to the brain and kidneys of adults and specific neural and branchial tissues of embryos. In an effort to characterize aryl hydrocarbon signaling mechanisms in Fundulus heteroclitus, a marine teleost that can develop heritable xenobiotic resistance, we have isolated a liver cDNA encoding an ARNT homolog. The protein exhibits AHR-dependent DNA binding capability typical of other vertebrate ARNTs. Unexpectedly, phylogenetic analysis reveals that the cDNA encodes an ARNT2. This is the only detectable ARNT sequence in Fundulus liver, gill, ovary, and brain, suggesting that ARNT2 is the predominant form of ARNT in this species. Also surprising is the relative lack of sequence identity with another fish ARNT protein, rainbow trout ARNTb, which we show forms a distinct branch outside the ARNT1 and ARNT2 clades in phylogenetic analyses. Functional diversity of ARNT proteins in fish may have important implications for the assessment of aryl hydrocarbon effects on natural populations. The increasing use of fish models in developmental and toxicological studies underscores the importance of identifying taxon-specific roles of ARNT proteins and their potential dimeric partners in the PAS superfamily.
Collapse
Affiliation(s)
- W H Powell
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | | | | | | |
Collapse
|
95
|
Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 1998; 17:6573-86. [PMID: 9822602 PMCID: PMC1171004 DOI: 10.1093/emboj/17.22.6573] [Citation(s) in RCA: 485] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In response to decreased cellular oxygen concentrations the basic helix-loop-helix (bHLH)/PAS (Per, Arnt, Sim) hypoxia-inducible transcription factor, HIF-1alpha, mediates activation of networks of target genes involved in angiogenesis, erythropoiesis and glycolysis. Here we demonstrate that the mechanism of activation of HIF-1alpha is a multi-step process which includes hypoxia-dependent nuclear import and activation (derepression) of the transactivation domain, resulting in recruitment of the CREB-binding protein (CBP)/p300 coactivator. Inducible nuclear accumulation was shown to be dependent on a nuclear localization signal (NLS) within the C-terminal end of HIF-1alpha which also harbors the hypoxia-inducible transactivation domain. Nuclear import of HIF-1alpha was inhibited by either deletion or a single amino acid substitution within the NLS sequence motif and, within the context of the full-length protein, these mutations also resulted in inhibition of the transactivation activity of HIF-1alpha and recruitment of CBP. However, nuclear localization per se was not sufficient for transcriptional activation, since fusion of HIF-1alpha to the heterologous GAL4 DNA-binding domain generated a protein which showed constitutive nuclear localization but required hypoxic stimuli for function as a CBP-dependent transcription factor. Thus, hypoxia-inducible nuclear import and transactivation by recruitment of CBP can be functionally separated from one another and play critical roles in signal transduction by HIF-1alpha.
Collapse
Affiliation(s)
- P J Kallio
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
96
|
Wang F, Gao JX, Mimura J, Kobayashi A, Sogawa K, Fujii-Kuriyama Y. Structure and expression of the mouse AhR nuclear translocator (mArnt) gene. J Biol Chem 1998; 273:24867-73. [PMID: 9733792 DOI: 10.1074/jbc.273.38.24867] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) nuclear translocator (Arnt) gene has been isolated and characterized from a mouse genomic DNA library. The gene is about 60 kilobases long and split into 22 exons. An unusual exon/intron junctional sequence was found in the 11th intron of the gene that begins with GC at its 5'-end. The exon/intron arrangement of mArnt gene differs greatly from those of the other members of the same basic-helix-loop-helix/PAS family. The gene is TATA-less and has several transcription start sites. The promoter region of the mArnt gene is GC-rich and contains a number of putative regulatory DNA sequences such as two GC-boxes, a cAMP-responsive element, E-box, AP-1 site, and CAAT-box. Deletion experiments revealed that all these DNA elements made substantial contributions to a high level of expression of the gene, except for the cAMP-responsive element. Of all, two GC-boxes displayed the most dominant enhancing effects. It was demonstrated that there exist specific factors binding to these DNA elements in the nuclear extracts of HeLa cells. Among them, Sp1 and Sp3, and CAAT-box binding factor-A were identified to bind the GC-boxes and CAAT-box, respectively. Expression of MyoD in HeLa cells stimulated the Arnt promoter activity by binding to the E-box.
Collapse
Affiliation(s)
- F Wang
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Wilson CL, Safe S. Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses. Toxicol Pathol 1998; 26:657-71. [PMID: 9789953 DOI: 10.1177/019262339802600510] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a member of a broad group of halogenated aromatic hydrocarbons (HAHs) that is known to induce a wide range of toxic and biochemical responses in laboratory animals and humans. The effects of HAH exposure are mediated by binding to the cytosolic aryl hydrocarbon receptor (AhR), which is expressed in a tissue- and cell type-specific manner. The AhR is a ligand-activated transcription factor belonging to the basic helix-loop-helix/Per-AhR-Arnt-Sim (bHLH/PAS) superfamily of proteins. The mechanism of induction of gene transcription by TCDD involves ligand recognition and binding by the AhR, nuclear translocation, and dimerization with the AhR cofactor, AhR nuclear translocator (Arnt). The nuclear heterodimer interacts with cognate xenobiotic responsive elements (XREs) in promoter/enhancer regions of multiple Ah-responsive genes. Subsequent changes in chromatin structure and/or interaction of the AhR complex with the basal transcriptional machinery play a significant role in AhR-mediated gene expression. Although Arnt is a necessary component of a functional nuclear AhR complex, this protein also forms transcriptionally active heterodimers with other bHLH/PAS factors, including those involved in the transcriptional response to hypoxia. Arnt is ubiquitously expressed in mammalian systems, and results from transgenic mouse studies suggest that this protein plays a vital role in early mammalian embryonic development. Similar experiments suggest that the AhR may be involved in development of various organ systems. Thus, molecular mechanistic studies of TCDD action have contributed significantly to an improved understanding of the role of at least 2 bHLH/PAS proteins, as well as organ- and tissue-specific biochemical and toxic responses to this class of environmental toxins.
Collapse
Affiliation(s)
- C L Wilson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | |
Collapse
|
98
|
Voelkel NF, Cool C, Lee SD, Wright L, Geraci MW, Tuder RM. Primary pulmonary hypertension between inflammation and cancer. Chest 1998; 114:225S-230S. [PMID: 9741573 DOI: 10.1378/chest.114.3_supplement.225s] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We believe that the monoclonal cell expansion in primary pulmonary hypertension is the result of autonomous growth of stem cell-like endothelial cells, whereas the polyclonal proliferation in secondary pulmonary hypertension occurs as a response of endothelial cells to exogenous stimuli (like viral infection or high shear stress). In this context, we propose that different transcriptional and translational events govern the growth and expansion of monoclonal when compared with polyclonal pulmonary endothelial cells. The availability of antibodies directed against specific tyrosine kinase proteins involved in vasculogenesis/angiogenesis now permits the identification and localization of the components of such a misguided angiogenesis cell proliferation program in the pulmonary hypertensive vascular lesions.
Collapse
Affiliation(s)
- N F Voelkel
- Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
99
|
Shimba S, Todoroki K, Aoyagi T, Tezuka M. Depletion of arylhydrocarbon receptor during adipose differentiation in 3T3-L1 cells. Biochem Biophys Res Commun 1998; 249:131-7. [PMID: 9705844 DOI: 10.1006/bbrc.1998.9100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arylhydrocarbon receptor (AhR) is the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although a physiological ligand for AhR has yet to be identified, several lines of evidence suggest that AhR may play an important role not only in the regulation of xenobiotic metabolism but also in the maintenance of homeostatic functions. When TCDD is administrated in vivo, this compound is primarily deposited in adipose tissue. Therefore, it is critical to know the states of AhR in adipose cells for assessing the expression of toxicities of TCDD and related compounds in vivo. In this report, we examined the levels of AhR protein and its associated protein (Arnt) during the adipose differentiation in 3T3-L1 cells. The level of AhR protein was found to decrease with ongoing adipose differentiation in 3T3-L1 cells. The binding activity to the xenobiotic response element and the cellular response to TCDD were also lowered as a result of adipose differentiation. These results indicate that the depletion of AhR is a novel event associated with adipose differentiation in 3T3-L1 cells and that the magnitude of the depletion of AhR is sufficient for 3T3-L1 cells to lose the functional response to xenobiotics. We also found a population of 3T3-L1 cells which have an adipose differentiation capability in the presence of high doses of TCDD. These cells lack nuclear AhR but not cytoplasmic AhR, suggesting a possible negative role of liganded nuclear AhR in adipose differentiation. The level of the Arnt protein also decreased as a result of the differentiation. However, the pattern of the depletion of the Arnt protein was distinct from that of the AhR protein. The data presented in this study will provide opportunities to carry out studies to better understand the roles of AhR in adipose cells which are the primary targets of TCDD.
Collapse
Affiliation(s)
- S Shimba
- Department of Hygienic Chemistry, College of Pharmacy, Nihon University, Chiba, Japan
| | | | | | | |
Collapse
|
100
|
Ballario P, Talora C, Galli D, Linden H, Macino G. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol 1998; 29:719-29. [PMID: 9723912 DOI: 10.1046/j.1365-2958.1998.00955.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes coding for white collar-1 and white collar-2 (wc-1 and wc-2) have been isolated previously, and their products characterized as Zn-finger transcription factors involved in the control of blue light-induced genes. Here, we show that the PAS dimerization domains present in both proteins enable the WC-1 and WC-2 proteins to dimerize in vitro. Homodimers and heterodimers are formed between the white collar (WC) proteins. A computer analysis of WC-1 reveals a second domain, called LOV, also identified in NPH1, a putative blue light photoreceptor in plants and conserved in redox-sensitive proteins and in the phytochromes. The WC-1 LOV domain does not dimerize with canonical PAS domains, but it is able to self-dimerize. The isolation of three blind wc-1 strains, each with a single amino acid substitution only in the LOV domain, reveals that this region is essential for blue light responses in Neurospora. The demonstration that the WC-1 proteins in these LOV mutants are still able to self-dimerize suggests that this domain plays an additional role, essential in blue light signal transduction.
Collapse
Affiliation(s)
- P Ballario
- Dipartimento di Genetica e Biologia Molecolare, Centro di Studio per gli Acidi Nucleici, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|