51
|
Balogh G, Maulucci G, Gombos I, Horváth I, Török Z, Péter M, Fodor E, Páli T, Benkő S, Parasassi T, De Spirito M, Harwood JL, Vígh L. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS One 2011; 6:e21182. [PMID: 21698159 PMCID: PMC3116874 DOI: 10.1371/journal.pone.0021182] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/22/2011] [Indexed: 02/05/2023] Open
Abstract
Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Benkő
- First Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Marco De Spirito
- Istituto di Fisica, Universitá Cattolica Sacro Cuore, Rome, Italy
| | - John L. Harwood
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
- * E-mail: (LV); (JLH)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (LV); (JLH)
| |
Collapse
|
52
|
Yang FL, Yang YL, Wu SH. Structure and function of glycolipids in thermophilic bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:367-80. [PMID: 21618118 DOI: 10.1007/978-1-4419-7877-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | |
Collapse
|
53
|
Discovery of a role for Hsp82 in Histoplasma virulence through a quantitative screen for macrophage lethality. Infect Immun 2011; 79:3348-57. [PMID: 21606189 DOI: 10.1128/iai.05124-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of forward genetics can reveal new factors required for the virulence of intracellular pathogens. To facilitate such virulence screens, we developed macrophage cell lines with which the number of intact host cells following infection with intracellular pathogens can be rapidly and easily ascertained through the expression of a constitutive lacZ transgene. Using known virulence mutants of Francisella novicida and Histoplasma capsulatum, we confirmed the applicability of these host cells for the quantitative assessment of bacterial and fungal virulence, respectively. To identify new genes required for Histoplasma virulence, we employed these transgenic macrophage cells to screen a collection of individual transfer DNA (T-DNA) insertion mutants. Among the mutants showing decreased virulence in macrophages, we identified an insertion in the locus encoding the Histoplasma Hsp82 homolog. The lesion caused by the T-DNA insertion localizes to the promoter region, resulting in significantly decreased HSP82 expression. Reduced HSP82 expression markedly attenuates the virulence of Histoplasma yeast in vivo. While the HSP82 hypomorph grows normally in vitro at 37°C and under acid and salinity stresses, its ability to recover from high-temperature stress is impaired. These results provide genetic proof of the role of stress chaperones in the virulence of a thermally dimorphic fungal pathogen.
Collapse
|
54
|
Akiyama H, Sasaki N, Hanazawa S, Gotoh M, Kobayashi S, Hirabayashi Y, Murakami-Murofushi K. Novel sterol glucosyltransferase in the animal tissue and cultured cells: evidence that glucosylceramide as glucose donor. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:314-22. [PMID: 21397038 DOI: 10.1016/j.bbalip.2011.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/09/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Cholesteryl glucoside (CG), a membrane glycolipid, regulates heat shock response. CG is rapidly induced by heat shock before the activation of heat shock transcription factor 1 (HSF1) and production of heat shock protein 70 (HSP70), and the addition of CG in turn induces HSF1 activation and HSP70 production in human fibroblasts; thus, a reasonable correlation is that CG functions as a crucial lipid mediator in stress responses in the animal. In this study, we focused on a CG-synthesizing enzyme, animal sterol glucosyltransferase, which has not yet been identified. In this study, we describe a novel type of animal sterol glucosyltransferase in hog stomach and human fibroblasts (TIG-3) detected by a sensitive assay with a fluorescence-labeled substrate. The cationic requirement, inhibitor resistance, and substrate specificity of animal sterol glucosyltransferase were studied. Interestingly, animal sterol glucosyltransferase did not use uridine diphosphate glucose (UDP-glucose) as an immediate glucose donor, as has been shown in plants and fungi. Among the glycolipids tested in vitro, glucosylceramide (GlcCer) was the most effective substrate for CG formation in animal tissues and cultured cells. Using chemically synthesized [U-((13))C]Glc-β-Cer as a glucose donor, we confirmed by mass spectrometry that [U-((13))C]CG was synthesized in hog stomach homogenate. These results suggest that animal sterol glucosyltransferase transfers glucose moiety from GlcCer to cholesterol. Additionally, using GM-95, a mutant B16 melanoma cell line that does not express ceramide glucosyltransferase, we showed that GlcCer is an essential substrate for animal sterol glucosyltransferase in the cell.
Collapse
Affiliation(s)
- Hisako Akiyama
- Graduate School of Humanities and Sciences, Department of Life Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Vega VL, Charles W, De Maio A. A new feature of the stress response: increase in endocytosis mediated by Hsp70. Cell Stress Chaperones 2010; 15:517-27. [PMID: 20043217 PMCID: PMC3006637 DOI: 10.1007/s12192-009-0165-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022] Open
Abstract
The expression of heat shock proteins (HSP) is a conserved cellular response to a variety of stresses. These proteins have been found to refold denatured polypeptides and stabilize critical cellular processes. In this study, we introduce a new component of the stress response: the increase of receptor-mediated uptake of macromolecules from the external environment. We observed that endocytosis of transferrin, which is involved in the delivery of iron to the cell, was increased after stress induced by heat shock or after incubation with inhibitors of Hsp90 function. In both cases, the increase in endocytosis was reverted by inhibition of transcription, suggesting that gene expression is required. Transfection of cells with Hsp70 gene or inhibition of its expression by siRNA confirmed the role of this HSP in the increase of endocytosis. The mechanism for the enhancement of transferrin uptake was related to an accelerated internalization of the ligand-receptor complex as well as an increase in receptor recycling. These observations constitute a new paradigm for the cellular protection induced by HSP.
Collapse
Affiliation(s)
- Virginia L. Vega
- UCSD Department of Surgery, University of California San Diego, 9500 Gilman Drive, 0739, La Jolla, CA 92093-0739 USA
| | - Wisler Charles
- UCSD Department of Surgery, University of California San Diego, 9500 Gilman Drive, 0739, La Jolla, CA 92093-0739 USA
| | - Antonio De Maio
- UCSD Department of Surgery, University of California San Diego, 9500 Gilman Drive, 0739, La Jolla, CA 92093-0739 USA
| |
Collapse
|
56
|
Balogh G, Péter M, Liebisch G, Horváth I, Török Z, Nagy E, Maslyanko A, Benko S, Schmitz G, Harwood JL, Vígh L. Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1036-47. [PMID: 20430110 DOI: 10.1016/j.bbalip.2010.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/17/2022]
Abstract
Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A(2) and C). A phospholipase C-diacylglycerol lipase-monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii. EUKARYOTIC CELL 2010; 9:915-25. [PMID: 20418381 DOI: 10.1128/ec.00047-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.
Collapse
|
58
|
Tereshina VM, Memorskay AS, Kotlova ER, Feofilov EP. Membrane lipid and cytosol carbohydrate composition in Aspergillus niger under heat shock. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710010066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
59
|
Genetic modification of the Salmonella membrane physical state alters the pattern of heat shock response. J Bacteriol 2010; 192:1988-98. [PMID: 20139186 DOI: 10.1128/jb.00988-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now recognized that membranes are not simple physical barriers but represent a complex and dynamic environment that affects membrane protein structures and their functions. Recent data emphasize the role of membranes in sensing temperature changes, and it has been shown that the physical state of the plasma membrane influences the expression of a variety of genes such as heat shock genes. It has been widely shown that minor alterations in lipid membranes are critically involved in the conversion of signals from the environment to the transcriptional activation of heat shock genes. Previously, we have proposed that the composition, molecular arrangement, and physical state of lipid membranes and their organization have crucial roles in cellular responses during stress caused by physical and chemical factors as well as in pathological states. Here, we show that transformation of Salmonella enterica serovar Typhimurium LT2 (Salmonella Typhimurium) with a heterologous Delta(12)-desaturase (or with its trans-membrane regions) causes major changes in the pathogen's membrane dynamic. In addition, this pathogen is strongly impaired in the synthesis of major stress proteins (heat shock proteins) under heat shock. These data support the hypothesis that the perception of temperature in Salmonella is strictly controlled by membrane order and by a specific membrane lipid/protein ratio that ultimately causes transcriptional activation of heat shock genes. These results represent a previously unrecognized mode of sensing temperature variation used by this pathogen at the onset of infection.
Collapse
|
60
|
Changes in membrane fluid state and heat shock response cause attenuation of virulence. J Bacteriol 2010; 192:1999-2005. [PMID: 20139193 DOI: 10.1128/jb.00990-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
So far attenuation of pathogens has been mainly obtained by chemical or heat treatment of microbial pathogens. Recently, live attenuated strains have been produced by genetic modification. We have previously demonstrated that in several prokaryotes as well as in yeasts and mammalian cells the heat shock response is controlled by the membrane physical state (MPS). We have also shown that in Salmonella enterica serovar Typhimurium LT2 (Salmonella Typhimurium) overexpression of a Delta(12)-desaturase gene alters the MPS, inducing a sharp impairment of transcription of major heat shock genes and failure of the pathogen to grow inside macrophage (MPhi) (A. Porta et al., J. Bacteriol. 192:1988-1998, 2010). Here, we show that overexpression of a homologous Delta(9)-desaturase sequence in the highly virulent G217B strain of the human fungal pathogen Histoplasma capsulatum causes loss of its ability to survive and persist within murine MPhi along with the impairment of the heat shock response. When the attenuated strain of H. capsulatum was injected in a mouse model of infection, it did not cause disease. Further, treated mice were protected when challenged with the virulent fungal parental strain. Attenuation of virulence in MPhi of two evolutionarily distant pathogens was obtained by genetic modification of the MPS, suggesting that this is a new method that may be used to produce attenuation or loss of virulence in both other intracellular prokaryotic and eukaryotic pathogens. This new procedure to generate attenuated forms of pathogens may be used eventually to produce a novel class of vaccines based on the genetic manipulation of a pathogen's membrane fluid state and stress response.
Collapse
|
61
|
Rupčić J, Jurešić GČ. Influence of stressful fermentation conditions on neutral lipids of a Saccharomyces cerevisiae brewing strain. World J Microbiol Biotechnol 2010; 26:1331-6. [DOI: 10.1007/s11274-009-0297-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
62
|
Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. THE PLANT CELL 2009; 21:2829-43. [PMID: 19773386 PMCID: PMC2768932 DOI: 10.1105/tpc.108.065318] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 05/17/2023]
Abstract
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Collapse
Affiliation(s)
- Younousse Saidi
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
| | - Maude Muriset
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
| | - Zohar Bromberg
- Hadassah Hebrew University, School of Medicine, Hebrew University of Jerusalem, Jerusalem il-91120, Israel
| | - Yoram G. Weiss
- Hadassah Hebrew University, School of Medicine, Hebrew University of Jerusalem, Jerusalem il-91120, Israel
- University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104–2646
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
| |
Collapse
|
63
|
Liu Y, Liu H, Pan Q, Yang H, Zhan J, Huang W. The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves. PLANTA 2009; 229:1087-98. [PMID: 19225806 DOI: 10.1007/s00425-009-0897-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 01/26/2009] [Indexed: 05/15/2023]
Abstract
The plasma membrane H(+)-ATPase (PM H(+)-ATPase, EC.3.6.1.35) plays a key role in the plant response to environmental stress. In this study, a possible mechanistic link between the PM H(+)-ATPase and salicylic acid (SA)-induced thermotolerance was investigated in pea (Pisum sativum L. cv. NingXia) leaves. The burst of free SA in response to heat acclimation (38 +/- 0.5 degrees C) was observed, and peaks appeared subsequently both in activity and amount of PM H(+)-ATPase in pea leaves during heat acclimation. Similarly, exogenous SA also triggered the two peaks in the room temperature (25 +/- 0.5 degrees C). Paclobutrazol (PAC) was employed to infiltrate onto pea leaves prior to heat acclimation treatment. The results showed that the peaks of both free SA and activity of PM H(+)-ATPase still occurred after the PAC pretreatment. In acquired thermotolerance assessment (malondialdehyde content and degree of wilting), spraying SA and fusicoccin (FC, the activator of PM H(+)-ATPase) separately could protect pea leaves from heat injury. Results from RT-PCR and western blotting analysis indicated that the increase in activity of the PM H(+)-ATPase was due to its transcriptional and translational regulation. The subcellular localizations of PM H(+)-ATPase after the FC or SA pretreatment also showed that the PM H(+)-ATPase is important to maintain the integrity of plasma membrane against the heat stress. Taken together, these results suggest PM H(+)-ATPase is related to the development of SA-induced thermotolerance in pea leaves.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua Dong Lu, Haidian District, 100083 Beijing, China
| | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Königshofer H, Tromballa HW, Löppert HG. Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. PLANT, CELL & ENVIRONMENT 2008; 31:1771-80. [PMID: 18761700 DOI: 10.1111/j.1365-3040.2008.01880.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Alterations in membrane fluidity are among the early events in plants that detect changes in ambient temperature. However, signal transduction downstream of the membrane-associated processes is still not well understood. We have focused here on the role of hydrogen peroxide (H(2)O(2)) in high-temperature signalling in relation to changes in membrane fluidity in cells of tobacco (Nicotiana tabacum L.) cv. Bright Yellow 2 (BY2). As final indicators of the heat-signalling cascade, we have monitored the synthesis of small heat-shock proteins (sHSPs). Elevation of temperature between 32 and 38 degrees C resulted in a fast, transient stimulation of H(2)O(2) production in the tobacco cells. A similar H(2)O(2) burst could be induced at lower temperatures (28-32 degrees C) by membrane fluidization using benzyl alcohol (BA). Diphenylene iodonium (DPI), a NADPH oxidase inhibitor, prevented both the heat- and BA-triggered H(2)O(2) rise. The synthesis of sHSPs (14.5 and 16 kDa) was shifted to lower temperatures by BA application and was suppressed by DPI treatment in the same way. The results indicate that H(2)O(2) is an early component of the heat-signalling pathway, which responds rapidly to changes in membrane fluidity and is required for the activation of sHSP synthesis.
Collapse
Affiliation(s)
- Helga Königshofer
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Applied Life Sciences Vienna, Gregor Mendel Str. 33, 1180 Vienna, Austria.
| | | | | |
Collapse
|
66
|
Gueta-Dahan Y, Avsian-Kretchmer O, Ben-Hayyim G. The involvement of calcium in the regulation of GPX1 expression. PLANTA 2008; 228:725-34. [PMID: 18607628 DOI: 10.1007/s00425-008-0774-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Detrimental effects of salinity on plants are known to be partially alleviated by external Ca(2+). Previously we demonstrated that in citrus cells, phospholipid hydroperoxide glutathione peroxidase (GPX1) is induced by salt and its activation can be monitored by pGPX1::GUS fusion in transformed tobacco cells. In this paper we further characterized the induction of GPX1 by additional treatments, which are known to affect Ca(2+) transport. Omission of Ca(2+) changed the pattern of the transient salt-induced expression of GPX1 and chelation of Ca(2+) by EGTA, or treatment with caffeine, abolished the salt-induced GPX1 transcript. On the other hand, La(3+) was found to be as potent as NaCl in inducing GPX1 transcription and the combined effect of La(3+) and NaCl seemed to be additive. Pharmacological perturbation of either external or internal Ca(2+) pools by La(3+), EGTA, caffeine, Ca(2+) channel blockers, or a Ca(2+)-ATPase inhibitor rendered the imposed salt stress more severe. Except for La(3+), all these Ca(2+) effectors had no effect on their own. In addition, the fluidizer benzyl alcohol dramatically increased the NaCl-induced GPX1 transcription. Taken together, our results show that: 1) the mode of action of La(3+) on GPX1 expression differs from its established role as a Ca(2+) channel blocker, 2) membrane integrity has an important role in the perception of salt stress, and 3) internal stores of Ca(2+) are involved in activating GPX1 expression in response to salt stress. We propose that the common basis for these effects lies in the membrane bound Ca(2+).
Collapse
Affiliation(s)
- Yardena Gueta-Dahan
- Department of Plant Sciences, ARO, The Volcani Center, P.O. Box 6, 50250, Bet Dagan, Israel
| | | | | |
Collapse
|
67
|
Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. PHOTOSYNTHESIS RESEARCH 2008; 98:541-50. [PMID: 18649006 DOI: 10.1007/s11120-008-9331-0] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/07/2008] [Indexed: 05/18/2023]
Abstract
The primary targets of thermal damage in plants are the oxygen evolving complex along with the associated cofactors in photosystem II (PSII), carbon fixation by Rubisco and the ATP generating system. Recent investigations on the combined action of moderate light intensity and heat stress suggest that moderately high temperatures do not cause serious PSII damage but inhibit the repair of PSII. The latter largely involves de novo synthesis of proteins, particularly the D1 protein of the photosynthetic machinery that is damaged due to generation of reactive oxygen species (ROS), resulting in the reduction of carbon fixation and oxygen evolution, as well as disruption of the linear electron flow. The attack of ROS during moderate heat stress principally affects the repair system of PSII, but not directly the PSII reaction center (RC). Heat stress additionally induces cleavage and aggregation of RC proteins; the mechanisms of such processes are as yet unclear. On the other hand, membrane linked sensors seem to trigger the accumulation of compatible solutes like glycinebetaine in the neighborhood of PSII membranes. They also induce the expression of stress proteins that alleviate the ROS-mediated inhibition of repair of the stress damaged photosynthetic machinery and are required for the acclimation process. In this review we summarize the recent progress in the studies of molecular mechanisms involved during moderate heat stress on the photosynthetic machinery, especially in PSII.
Collapse
Affiliation(s)
- Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | | | |
Collapse
|
68
|
Puca AA, Andrew P, Novelli V, Anselmi CV, Somalvico F, Cirillo NA, Chatgilialoglu C, Ferreri C. Fatty acid profile of erythrocyte membranes as possible biomarker of longevity. Rejuvenation Res 2008; 11:63-72. [PMID: 18160025 DOI: 10.1089/rej.2007.0566] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Offspring of long-lived individuals are a useful model to discover biomarkers of longevity. The lipid composition of erythrocyte membranes from 41 nonagenarian offspring was compared with 30 matched controls. Genetic loci were also tested in 280 centenarians and 280 controls to verify a potential genetic predisposition in determining unique lipid profile. Gas chromatography was employed to determine fatty acid composition, and genotyping was performed using Taqman assays. Outcomes were measured for erythrocyte membrane percentage content of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids (omega-6 and omega-3), geometrical isomers of arachidonic and oleic acids, and total trans-fatty acids. Also, allele and genotyping frequencies at endothelial-nitric oxide synthase and delta-5/delta-6 and delta-9 desaturase loci were considered. Erythrocyte membranes from nonagenarian offspring had significantly higher content of C16:1 n-7, trans C18:1 n-9, and total trans-fatty acids, and reduced content of C18:2 n-6 and C20:4 n-6. No association was detected at endothelial-nitric oxide synthase and delta-5/delta-6 and delta-9 desaturase loci that could justify genetic predisposition for the increased trans C18:1 n-9, monounsaturated fatty acids and decreased omega-6 synthesis. We concluded that erythrocyte membranes derived from nonagenarian offspring have a different lipid composition (reduced lipid peroxidation and increased membrane integrity) to that of the general population.
Collapse
|
69
|
Effect of active dry wine yeast storage upon viability and lipid composition. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9779-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
70
|
Rajamohan A, Sinclair BJ. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:708-18. [PMID: 18342328 PMCID: PMC2384116 DOI: 10.1016/j.jinsphys.2008.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 05/09/2023]
Abstract
We quantified the variation and plasticity in cold tolerance among four larval stages of four laboratory strains of Drosophila melanogaster in response to both acute (<2h of cold exposure) and chronic ( approximately 7h of cold exposure) cold exposure. We observed significant differences in basal cold tolerance between the strains and among larval stages. Early larval instars were generally more tolerant of acute cold exposures than third-instar larvae. However, wandering larvae were more tolerant of chronic cold exposures than the other stages. Early stages also displayed a more pronounced rapid cold-hardening response than the later stages. Heat pre-treatment did not confer a significant increase in cold tolerance to any of the strains at any stage, pointing to different mechanisms being involved in resolving heat- and cold-elicited damage. However, when heat pre-treatment was combined with rapid cold-hardening as sequential pre-treatments, both positive (heat first) and negative (heat second) effects on cold tolerance were observed. We discuss possible mechanisms underlying cold-hardening and the effects of acute and chronic cold exposures.
Collapse
Affiliation(s)
| | - Brent J. Sinclair
- Corresponding Author: Tel: 1−519−661−2111 ext 83138, fax 1−519−661−3935
| |
Collapse
|
71
|
Horváth I, Multhoff G, Sonnleitner A, Vígh L. Membrane-associated stress proteins: more than simply chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1653-64. [PMID: 18371297 DOI: 10.1016/j.bbamem.2008.02.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
Abstract
The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, Hungary
| | | | | | | |
Collapse
|
72
|
Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 2008; 12:829-75. [PMID: 18266954 PMCID: PMC4401130 DOI: 10.1111/j.1582-4934.2008.00281.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Dept of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Suri SS, Dhindsa RS. A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. PLANT, CELL & ENVIRONMENT 2008; 31:218-26. [PMID: 17996015 DOI: 10.1111/j.1365-3040.2007.01754.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A heat-activated MAP kinase (HAMK), immunologically related to the extracellular signal-regulated kinase (ERK) super-family of protein kinases, has been identified in BY2 cells of tobacco. The activation of HAMK at 37 degrees C was transient and detected within 2 min and reached a maximum level within 5 min. Ca(2+) chelators and channel blockers, and the known inhibitors of MEK, a MAP kinase kinase, prevented the heat activation of HAMK. This suggests that HAMK activation is part of a heat-triggered MAP kinase cascade that requires Ca(2+) influx. The heat shock protein HSP70 accumulated at 37 degrees C, but not when HAMK activation was prevented with the inhibitors of MEK or with Ca(2+) chelators or channel blockers. As previously shown for heat activation of HAMK, heat-induced accumulation of HSP70 requires membrane fluidization and reorganization of cytoskeleton. We concluded that heat-triggered HAMK cascade might play an essential role in the launching of heat shock response and hsp gene expression in tobacco cells.
Collapse
Affiliation(s)
- Sarabjeet S Suri
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
74
|
Puca AA, Chatgilialoglu C, Ferreri C. Lipid metabolism and diet: Possible mechanisms of slow aging. Int J Biochem Cell Biol 2008; 40:324-33. [PMID: 17509925 DOI: 10.1016/j.biocel.2007.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/22/2022]
Abstract
The ability to survive to an extremely old age is a consequence of complex interactions among genes, environment, lifestyle and luck. In the last two centuries, life expectancy in western countries has doubled, increasing from 40 to 81 years (79 for males and 82 for females). The candidate factors to determine such mortality reduction are reduced exposure to infections and the subsequent reduction in inflammatory responses, and to some extent, improvement in diet and nutrition. Among the people born at the beginning of the previous century, a small portion of individuals (1 in 10,000 born) have reached 100 years, surviving approximately 20 years more than the general population. The successful longevity of these individuals shows a familial component, possibly genetic, as underlined by the centenarian sibling's increased chance of reaching 100 years of age compared to the general population. Genetic studies on long living individuals have led to the discovery of potential genetic causes of extreme longevity. These discoveries have highlighted the role of lipid metabolism as a potential key player in the ability to survive to extreme old age. Additional studies on the longevity phenotype have confirmed the role of lipids and lipid-associated cell activities in the predisposition to longevity, from lower eukaryotes to humans. The main focus of this review is the appreciation of demographic survival data and changes in recent diet with the above mentioned genetic and phenotypic biomarkers of longevity, in order to elucidate hypotheses on mechanisms of slow aging and disease resistance.
Collapse
|
75
|
Moulin M, Carpentier S, Levade T, Arrigo AP. Potential roles of membrane fluidity and ceramide in hyperthermia and alcohol stimulation of TRAIL apoptosis. Apoptosis 2007; 12:1703-20. [PMID: 17610065 DOI: 10.1007/s10495-007-0096-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We recently reported that a mild heat shock induces a long lasting stimulation of TRAIL-induced apoptosis of leukemic T-lymphocytes and myeloid cell lines, but not normal T-lymphocytes, which correlates with an enhanced ability of TRAIL to recognize its receptors. As shown here, this phenomenon could be inhibited by the xanthogenate agent D609, a sphingomyelin/ceramide pathway inhibitor. A caspase-dependent and D609-sensitive two-fold increase in ceramide level was elicited by heat shock plus TRAIL combined treatment. One day after heat shock, a similar increase in ceramide was induced by TRAIL. Sphingolipids/ceramides are known to regulate membrane integrity, and heat shock increases membrane fluidity. In this regard, the heat shock plus TRAIL combined treatment resulted in a D609-sensitive membrane fluidization which was far more intense than that induced by heat shock only. We also report that membrane fluidizers, that mimic the effect of heat shock, such benzyl alcohol and ethanol, potently stimulated TRAIL-induced apoptosis. As heat shock, these alcohols increased, in a D609-sensitive manner, membrane fluidity in the presence of TRAIL, the recognition of TRAIL death receptors, and ceramide levels. These results suggest that stress agents that trigger ceramide production and an overall increase in membrane fluidity are stimulators of TRAIL apoptosis.
Collapse
Affiliation(s)
- Maryline Moulin
- Laboratoire Stress, Chaperons et Mort cellulaire, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, Lyon-1, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
76
|
Zarnowski R, Dobrzyn A, Ntambi JM, Woods JP. Neutral storage lipids of Histoplasma capsulatum: effect of culture age. Curr Microbiol 2007; 56:110-4. [PMID: 17960460 DOI: 10.1007/s00284-007-9052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 07/24/2007] [Indexed: 11/29/2022]
Abstract
Lipids contribute significantly to the pathogenesis of fungal infectious diseases and an understanding of lipid metabolism occurring in fungal pathogens can help the development of more efficient antifungal therapeutic strategies. In this study, the effect of culture age on the distribution of fatty acids among different neutral lipid (NL) classes in the dimorphic fungus Histoplasma capsulatum was investigated. Yeast cells of the G217B strain grown in two different media were collected after 4 and 7 days of growth, which roughly correspond to log and stationary culture growth phases, respectively. Neither culture age nor medium type had any influence on qualitative fatty acid (FA) profiles; however, the FA percentage composition varied with culture growth. A culture age-related decrease in the content of unsaturated FAs could be observed in all four of the NL classes examined, but the most intensive changes were detected in diacylglycerol and free FA fractions. Conversely, an increase in saturated FAs was observed. The transcriptional analysis of two major delta 9- and delta 12-FA desaturase genes, ode1 and sde1, showed no differences in their expression levels under experimental conditions. These results showing the dynamics of changes in FA composition in the NL fraction were concomitant with nutrient exhaustion in aging H. capsulatum cultures. Overall, the results presented in this work not only have implications for our knowledge of basic lipid biochemistry of H. capsulatum, but also will contribute to better understanding of biology and pathogenesis of this fungus and, consequently, can help in the discovery of more effective antifungal drugs.
Collapse
Affiliation(s)
- Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, 416 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
77
|
Vígh L, Török Z, Balogh G, Glatz A, Piotto S, Horváth I. Membrane-regulated stress response: a theoretical and practical approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:114-31. [PMID: 17205680 DOI: 10.1007/978-0-387-39975-1_11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Anumber of observations have lent support to a model in which thermal stress is transduced into a signal at the level of the cellular membranes. Our alternative, but not exclusive, approach is based on the concept that the initial stress-sensing events are associated with the physical state and lipid composition of cellular membranes, i.e., the subtle alteration(s) of membrane fluidity, phase state, and/or microheterogeneity may operate as a cellular thermometer. In fact, various pathological states and aging are associated with typical "membrane defects" and simultaneous dysregulation of heat shock protein synthesis. The discovery of nonproteotoxic membrane-lipid interacting compounds, capable of modulating membrane microdomains engaged in primary stress sensing may be of paramount importance for the design of new drugs with the ability to induce or attenuate the level of particular heat shock proteins.
Collapse
Affiliation(s)
- László Vígh
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6726, Szeged, Temesvári Krt. 62, Hungary.
| | | | | | | | | | | |
Collapse
|
78
|
Nadeau SI, Landry J. Mechanisms of Activation and Regulation of the Heat Shock-Sensitive Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:100-13. [PMID: 17205679 DOI: 10.1007/978-0-387-39975-1_10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heat shock (HS), like many other stresses, induces specific and highly regulated signaling cascades that promote cellular homeostasis. The three major mitogen-activated protein kinases (MAPK) and protein kinase B (PKB/Akt) are the most notable of these HS-stimulated pathways. Their activation occurs rapidly and sooner than the transcriptional upregulation of heat shock proteins (Hsp), which generate a transient state of extreme resistance against subsequent thermal stress. The direct connection of these signaling pathways to cellular death or survival mechanisms suggests that they contribute importantly to the HS response. Some of them may counteract early noxious effects of heat, while others may bolster key apoptosis events. The triggering events responsible for activating these pathways are unclear. Protein denaturation, specific and nonspecific receptor activation, membrane alteration and chromatin structure perturbation are potential initiating factors.
Collapse
Affiliation(s)
- Sébastien Ian Nadeau
- Centre de recherche en cancérologie de I'Université Laval, L'Hôtel-Dieu de Québec, 9, rue McMahon, Québec, Canada G1 R 2J6
| | | |
Collapse
|
79
|
Nagy E, Balogi Z, Gombos I, Åkerfelt M, Björkbom A, Balogh G, Török Z, Maslyanko A, Fiszer-Kierzkowska A, Lisowska K, Slotte PJ, Sistonen L, Horváth I, Vígh L. Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc Natl Acad Sci U S A 2007; 104:7945-50. [PMID: 17470815 PMCID: PMC1876552 DOI: 10.1073/pnas.0702557104] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Indexed: 12/21/2022] Open
Abstract
Targeting of the Hsp function in tumor cells is currently being assessed as potential anticancer therapy. An improved understanding of the molecular signals that trigger or attenuate the stress protein response is essential for advances to be made in this field. The present study provides evidence that the membrane fluidizer benzyl alcohol (BA), a documented nondenaturant, acts as a chaperone inducer in B16(F10) melanoma cells. It is demonstrated that this effect relies basically on heat shock transcription factor 1 (HSF1) activation. Under the conditions tested, the BA-induced Hsp response involves the up-regulation of a subset of hsp genes. It is shown that the same level of membrane fluidization (estimated in the core membrane region) attained with the closely analogous phenethyl alcohol (PhA) does not generate a stress protein signal. BA, at a concentration that activates heat shock genes, exerts a profound effect on the melting of raft-like cholesterol-sphingomyelin domains in vitro, whereas PhA, at a concentration equipotent with BA in membrane fluidization, has no such effect. Furthermore, through the in vivo labeling of melanoma cells with a fluorescein labeled probe that inserts into the cholesterol-rich membrane domains [fluorescein ester of polyethylene glycol-derivatized cholesterol (fPEG-Chol)], we found that, similarly to heat stress per se, BA, but not PhA, initiates profound alterations in the plasma membrane microdomain structure. We suggest that, apart from membrane hyperfluidization in the deep hydrophobic region, a distinct reorganization of cholesterol-rich microdomains may also be required for the generation and transmission of stress signals to activate hsp genes.
Collapse
Affiliation(s)
- Enikő Nagy
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Zsolt Balogi
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Imre Gombos
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Malin Åkerfelt
- Department of Biology, Turku Center for Biotechnology, and
| | - Anders Björkbom
- Department of Biochemistry and Pharmacy, Abo Akademi University, FI-20500, Turku, Finland; and
| | - Gábor Balogh
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Zsolt Török
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Andriy Maslyanko
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Anna Fiszer-Kierzkowska
- Department of Tumor Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Gliwice, Poland
| | - Katarzyna Lisowska
- Department of Tumor Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Gliwice, Poland
| | - Peter J. Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, FI-20500, Turku, Finland; and
| | - Lea Sistonen
- Department of Biology, Turku Center for Biotechnology, and
| | - Ibolya Horváth
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - László Vígh
- *Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| |
Collapse
|
80
|
Aguilera J, Randez-Gil F, Prieto JA. Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 2007; 31:327-41. [PMID: 17298585 DOI: 10.1111/j.1574-6976.2007.00066.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The response of yeast cells to sudden temperature downshifts has received little attention compared with other stress conditions. Like other organisms, both prokaryotes and eukaryotes, in Saccharomyces cerevisiae a decrease in temperature induces the expression of many genes involved in transcription and translation, some of which display a cold-sensitivity phenotype. However, little is known about the role played by many cold-responsive genes, the sensing and regulatory mechanisms that control this response or the biochemical adaptations at or near 0 degrees C. This review focuses on the physiological significance of cold-shock responses, emphasizing the molecular mechanisms that generate and transmit cold signals. There is now enough experimental evidence to conclude that exposure to low temperature protects yeast cells against freeze injury through the cold-induced accumulation of trehalose, glycerol and heat-shock proteins. Recent results also show that changes in membrane fluidity are the primary signal triggering the cold-shock response. Notably, this signal is transduced and regulated through classical stress pathways and transcriptional factors, the high-osmolarity glycerol mitogen-activated protein kinase pathway and Msn2/4p. Alternative cold-stress generators and transducers will also be presented and discussed.
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
81
|
Hayward SAL, Murray PA, Gracey AY, Cossins AR. Beyond the lipid hypothesis: mechanisms underlying phenotypic plasticity in inducible cold tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:132-42. [PMID: 17205681 DOI: 10.1007/978-0-387-39975-1_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The physiological adjustment of organisms in response to temperature variation is a crucial part of coping with environmental stress. An important component of the cold response is the increase in membrane lipid unsaturation, and this has been linked to an enhanced resistance to the debilitating or lethal effects of cold. Underpinning the lipid response is the upregulation of fatty acid desaturases (des), particularly those introducing double bonds at the 9-10 position of saturated fatty acids. For plants and microbes there is good genetic evidence that regulation of des genes, and the consequent changes in lipid saturation, are causally linked to generation of a cold-tolerant phenotype. In animals, however, supporting evidence is almost entirely limited to correlations of saturation with cold conditions. We describe our recent attempts to provide a direct test of this relationship by genetic manipulation of the nematode Caenorhabditis elegans. We show that this species displays a strong cold tolerant phenotype induced by prior conditioning to cold, and that this is directly linked to upregulated des activity. However, whilst genetic disruption of des activity and lipid unsaturation significantly reduced cold tolerance, animals retained a substantial component of their stress tolerant phenotype produced by cold conditioning. This indicates that mechanisms other than lipid unsaturation play an important role in cold adaptation.
Collapse
Affiliation(s)
- Scott A L Hayward
- School of Biological Sciences, Liverpool University, The Biosciences Building, Crown St., Liverpool, L69 7ZB, UK
| | | | | | | |
Collapse
|
82
|
Moraitis C, Curran BPG. Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states? Yeast 2007; 24:653-66. [PMID: 17533621 DOI: 10.1002/yea.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study we used a heat-shock (HS) reporter gene to demonstrate that respiring cells are intrinsically less sensitive (by 5 degrees C) than their fermenting counterparts to a sublethal heat shock. We also used an oxidant-sensitive fluorescent probe to demonstrate that this correlates with lower levels of sublethal reactive oxygen species (ROS) accumulation in heat-stressed respiring cells. Moreover, this relationship between HS induction of the reporter gene and ROS accumulation extends to respiring cells that have had their ROS levels modified by treatment with the anti-oxidant ascorbic acid and the pro-oxidant H(2)O(2). Thus, by demonstrating that the ROS/HSR correlation previously demonstrated in fermenting cells also holds for respiring cells (despite their greater HS insensitivity and higher level of intrinsic thermotolerance), we provide evidence that the intracellular redox state may influence both the sensitivity of the heat-shock response (HSR) and stress tolerance in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christos Moraitis
- School of Biological and Chemical Sciences, Queen Mary College, University of London, Mile End Road, London E1 4NS, U.K
| | | |
Collapse
|
83
|
Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 2007; 73:110-6. [PMID: 17071783 PMCID: PMC1797130 DOI: 10.1128/aem.01360-06] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022] Open
Abstract
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Delta(9) position. We expressed two sunflower (Helianthus annuus) oleate Delta(12) desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Delta(9,12), the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15 degrees C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp(+) or Trp(-) strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30 degrees C or 15 degrees C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.
Collapse
Affiliation(s)
- Sonia Rodríguez-Vargas
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, E-46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
84
|
Merwald H, Kokesch C, Klosner G, Matsui M, Trautinger F. Induction of the 72-kilodalton heat shock protein and protection from ultraviolet B-induced cell death in human keratinocytes by repetitive exposure to heat shock or 15-deoxy-delta(12,14)-prostaglandin J2. Cell Stress Chaperones 2006; 11:81-8. [PMID: 16572732 PMCID: PMC1400615 DOI: 10.1379/csc-89r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been demonstrated that hyperthermia protects keratinocytes from ultraviolet B (UVB)-induced cell death in culture and in vivo. This effect is mediated by the antiapoptotic effect of heat shock proteins that are transiently induced after exposure to heat at sublethal temperatures. Consequently, induction of Hsp has been proposed as a novel means of photoprotection. However, in the face of daily UVB exposure of human skin in vivo, this approach would not be useful if keratinocytes become less sensitive to Hsp induction with repeated exposure to the inducing agent. The aim of this study was to investigate whether repeated exposure to hyperthermia or to the stress protein activating cyclopentenone prostaglandin 15-deoxy-delta(12,14)-prostaglandin J2 (15dPGJ2) leads to adaptation of the cells, attenuation of the heat shock response, and abrogation of the protective effect. Normal human epidermal keratinocytes (NHEK) and the carcinoma-derived cell line A431 were exposed to either 42 degrees C or to 15dPGJ2 for 4 hours at 24-hour intervals for 4 consecutive days. The intracellular level of the 72-kDa heat shock protein (Hsp72) was determined by enzyme-linked immunosorbent assay (ELISA). Cells were exposed to UVB from a metal halide source after the last heat or 15dPGJ2 treatment, and survival was determined 24 hours after exposure by a MTT assay. Our results demonstrate that (1) heat shock and 15dPGJ2 are potent inducers of Hsp72 expression and lead to increased resistance to UVB-induced cell death in human keratinocytes; (2) re-exposure to heat shock leads to a superinduction without attenuation of the absolute increase in Hsp72 and of its UVB-protective effect; (3) the UVB tolerance induced by 15dPGJ2 is enhanced by repeated exposure without a further increase of Hsp72; (4) repeated heat shock and 15dPGJ2 up to a concentration of 1 microg/mL have no influence on cell growth over a period of 4 days. We conclude that through repeated exposure to Hsp-inducing factors, stress tolerance can be maintained without additional toxicity in human keratinocytes. These results provide a basis for the development of nontoxic Hsp inducers that can be repeatedly applied without loss of effect.
Collapse
Affiliation(s)
- Helga Merwald
- Department of Dermatology, Division of Special and Environmental Dermatology, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
85
|
Maresca B, Schwartz JH. Sudden origins: a general mechanism of evolution based on stress protein concentration and rapid environmental change. ACTA ACUST UNITED AC 2006; 289:38-46. [PMID: 16437551 DOI: 10.1002/ar.b.20089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major theme in Darwinian evolutionary theory is that novelty arises through a process in which organisms and their features are gradually transformed. Morgan provided Darwinism and the evolutionary synthesis with the idea that minor mutations produce the minuscule morphological variations on which natural selection then acts, and that, although mutation is random, once a process of gradual genetic modification begins, it becomes directional and leads to morphological, and consequently organismal, transformation. In contrast, studies on the role of cell membrane physical states in regulating the expression of stress proteins in response to environmental shifts indicate the existence of a downstream mechanism that prevents or corrects genetic change (i.e., maintains "DNA homeostasis"). However, episodic spikes in various kinds of environmental stress that exceed an organism's cells' thresholds for expression of proper amounts of stress proteins responsible for protein folding (including stochastically occurring DNA repair) may increase mutation rate and genetic change, which in turn will alter the pattern of gene expression during development. If severe stress disrupts DNA homeostasis during meiosis (gametogenesis), this could allow for the appearance of significant mutational events that would otherwise be corrected or suppressed. In evolutionary terms, extreme spikes in environmental stress make possible the emergence of new genetic and consequent developmental and epigenetic networks, and thus also the emergence of potentially new morphological traits, without invoking geographic or other isolating mechanisms.
Collapse
Affiliation(s)
- Bruno Maresca
- Department of Pharmaceutical Sciences, University of Salerno, Salerno, Italy.
| | | |
Collapse
|
86
|
Kaliszewski P, Ferreira T, Gajewska B, Szkopinska A, Berges T, Żołądek T. Enhanced levels of Pis1p (phosphatidylinositol synthase) improve the growth of Saccharomyces cerevisiae cells deficient in Rsp5 ubiquitin ligase. Biochem J 2006; 395:173-81. [PMID: 16363994 PMCID: PMC1409703 DOI: 10.1042/bj20051726] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Rsp5 ubiquitin ligase plays a role in many cellular processes including the biosynthesis of unsaturated fatty acids. The PIS1 (phosphatidylinositol synthase gene) encoding the enzyme Pis1p which catalyses the synthesis of phosphatidylinositol from CDP-diacyglycerol and inositol, was isolated in a screen for multicopy suppressors of the rsp5 temperature sensitivity phenotype. Suppression was allele non-specific. Interestingly, expression of PIS1 was 2-fold higher in the rsp5 mutant than in wild-type yeast, whereas the introduction of PIS1 in a multicopy plasmid increased the level of Pis1p 6-fold in both backgrounds. We demonstrate concomitantly that the expression of INO1 (inositol phosphate synthase gene) was also elevated approx. 2-fold in the rsp5 mutant as compared with the wild-type, and that inositol added to the medium improved growth of rsp5 mutants at a restrictive temperature. These results suggest that enhanced phosphatidylinositol synthesis may account for PIS1 suppression of rsp5 defects. Analysis of lipid extracts revealed the accumulation of saturated fatty acids in the rsp5 mutant, as a consequence of the prevention of unsaturated fatty acid synthesis. Overexpression of PIS1 did not correct the cellular fatty acid content; however, saturated fatty acids (C(16:0)) accumulated preferentially in phosphatidylinositol, and (wild-type)-like fatty acid composition in phosphatidylethanolamine was restored.
Collapse
Affiliation(s)
- Pawel Kaliszewski
- *Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Thierry Ferreira
- †Laboratoire de Génétique de la Levure, CNRS-UMR6161, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Beata Gajewska
- ‡Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Anna Szkopinska
- §Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Thierry Berges
- †Laboratoire de Génétique de la Levure, CNRS-UMR6161, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Teresa Żołądek
- *Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- To whom correspondence should be addressed (email )
| |
Collapse
|
87
|
Vilaprinyo E, Alves R, Sorribas A. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock. BMC Bioinformatics 2006; 7:184. [PMID: 16584550 PMCID: PMC1524994 DOI: 10.1186/1471-2105-7-184] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 04/03/2006] [Indexed: 01/26/2023] Open
Abstract
Background Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Collapse
Affiliation(s)
- Ester Vilaprinyo
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| |
Collapse
|
88
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
89
|
Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA. A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae. J Biol Chem 2006; 281:4638-45. [PMID: 16371351 DOI: 10.1074/jbc.m512736200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p was dependent on Pbs2p, the MAPK kinase (MAPKK) of the high osmolarity glycerol (HOG) pathway, and Ssk1p, the response regulator of the two-component system Sln1p-Ypd1p. However, Sho1p was not required. Interestingly, phosphorylation of Hog1p was stimulated at 30 degrees C in cells exposed to the membrane rigidifier agent dimethyl sulfoxide. Moreover, Hog1p activation occurred specifically through the Sln1 branch. This suggests that Sln1p monitors changes in membrane fluidity caused by cold. Quite remarkably, activation of Hog1p at low temperatures affected the transcriptional response to cold shock. Indeed, the absence of Hog1p impaired the cold-instigated expression of genes for trehalose- and glycerol-synthesizing enzymes and small chaperones. Moreover, a downward transfer to 12 or 4 degrees C stimulated the overproduction of glycerol in a Hog1p-dependent manner. However, hog1Delta mutant cells showed no growth defects at 12 degrees C as compared with the wild type. On the contrary, deletion of HOG1 or GPD1 decreased tolerance to freezing of wild-type cells preincubated at a low temperature, whereas no differences could be detected in cells shifted directly from 30 to -20 degrees C. Thus, exposure to low temperatures triggered a Hog1p-dependent accumulation of glycerol, which is essential for freeze protection.
Collapse
Affiliation(s)
- Joaquín Panadero
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, P. O. Box 73, E-46100-Burjassot Valencia, Spain
| | | | | | | | | |
Collapse
|
90
|
Balogh G, Horváth I, Nagy E, Hoyk Z, Benkõ S, Bensaude O, Vígh L. The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J 2006; 272:6077-86. [PMID: 16302971 DOI: 10.1111/j.1742-4658.2005.04999.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The concentrations of two structurally distinct membrane fluidizers, the local anesthetic benzyl alcohol (BA) and heptanol (HE), were used at concentrations so that their addition to K562 cells caused identical increases in the level of plasma membrane fluidity as tested by 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy. The level of membrane fluidization induced by the chemical agents on isolated membranes at such concentrations corresponded to the membrane fluidity increase seen during a thermal shift up to 42 degrees C. The formation of isofluid membrane states in response to the administration of BA or HE resulted in almost identical downshifts in the temperature thresholds of the heat shock response, accompanied by increases in the expression of genes for stress proteins such as heat shock protein (HSP)-70 at the physiological temperature. Similarly to thermal stress, the exposure of the cells to these membrane fluidizers elicited nearly identical increases of cytosolic Ca2+ concentration in both Ca2+-containing and Ca2+-free media and also closely similar extents of increase in mitochondrial hyperpolarization. We obtained no evidence that the activation of heat shock protein expression by membrane fluidizers is induced by a protein-unfolding signal. We suggest, that the increase of fluidity in specific membrane domains, together with subsequent alterations in key cellular events are converted into signal(s) leading to activation of heat shock genes.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
91
|
Guyot S, Ferret E, Gervais P. Responses of Saccharomyces cerevisiae to thermal stress. Biotechnol Bioeng 2005; 92:403-9. [PMID: 16028292 DOI: 10.1002/bit.20600] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied the mechanisms involved in heat gradient-induced thermotolerance of Saccharomyces cerevisiae. Yeasts were slowly heated in a nutrient medium from 25 to 50 degrees C at 0.5 degrees C/min or immediately heat shocked at 50 degrees C, and both sets of cultures were maintained at this temperature for 1 h. Cells that had been slowly heated showed a 50-fold higher survival rate than the rapidly heated cells. Such thermotolerance was found not to be related to protein synthesis. Indeed Hsp104 a known protein involved in yeast thermal resistance induced by a preconditioning mild heat treatment, was not synthesized and cycloheximide addition, a protein synthesis inhibitor, did not affect the thermoprotective effect. Moreover, a rapid cooling from 50 to 25 degrees C applied immediately after the heat slope treatment inhibited the mechanisms involved in thermotolerance. Such observations lead us to conclude that heat gradient-induced thermal resistance is not directly linked to mechanisms involving intracellular molecules synthesis or activity such as proteins (Hsps, enzymes) or osmolytes (trehalose). Other factors such as plasma membrane phospholipid denaturation could be involved in this phenomenon.
Collapse
Affiliation(s)
- Stéphane Guyot
- Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, Dijon, France
| | | | | |
Collapse
|
92
|
Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146:769-80. [PMID: 16170327 PMCID: PMC1751210 DOI: 10.1038/sj.bjp.0706396] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/03/2005] [Accepted: 08/15/2005] [Indexed: 12/31/2022] Open
Abstract
Chaperones (stress proteins) are essential proteins to help the formation and maintenance of the proper conformation of other proteins and to promote cell survival after a large variety of environmental stresses. Therefore, normal chaperone function is a key factor for endogenous stress adaptation of several tissues. However, altered chaperone function has been associated with the development of several diseases; therefore, modulators of chaperone activities became a new and emerging field of drug development. Inhibition of the 90 kDa heat shock protein (Hsp)90 recently emerged as a very promising tool to combat various forms of cancer. On the other hand, the induction of the 70 kDa Hsp70 has been proved to be an efficient help in the recovery from a large number of diseases, such as, for example, ischemic heart disease, diabetes and neurodegeneration. Development of membrane-interacting drugs to modify specific membrane domains, thereby modulating heat shock response, may be of considerable therapeutic benefit as well. In this review, we give an overview of the therapeutic approaches and list some of the key questions of drug development in this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Csaba Sõti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Enikõ Nagy
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zoltán Giricz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary
| |
Collapse
|
93
|
Vigh L, Escribá PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horváth I, Harwood JL. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog Lipid Res 2005; 44:303-44. [PMID: 16214218 DOI: 10.1016/j.plipres.2005.08.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have implications during stress and in relation to certain human diseases. A particular stress is that of temperature which may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins. This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone (heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods have been shown to have benefit. In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational methods advance they will have more application by revealing the very subtle interactions that take place between the lipid and protein components of membranes - and which are so essential to their function.
Collapse
Affiliation(s)
- Làszló Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Shabtay A, Arad Z. Ectothermy and endothermy: evolutionary perspectives of thermoprotection by HSPs. J Exp Biol 2005; 208:2773-81. [PMID: 16000546 DOI: 10.1242/jeb.01705] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SUMMARY
Living organisms respond to heat exposure by selectively expressing heat shock proteins (HSPs). Accumulation of HSPs confers thermotolerance in cell cultures and in ectotherms and is an important component of the heat shock response. This response, however, has not been directly examined in relation to different `thermal states', namely ectothermy vs endothermy. By using avian development as a model system for transition from ectothermy to endothermy, we show that, in contrast to the ectothermic state, in the endothermic state the organism is more resistant to heat but relies less on HSPs as a first-line thermoprotective mechanism. Moreover, intraspecific,real-time, in vivo measurements in genetically diverse fowl strains relate improvement of thermoresistance in endotherms to improved body temperature (Tb) regulation, with a concomitant delay in the expression of HSPs. The time course of this delay and the Tb at which it occurs imply that the ontogenetic and evolutionary pathways leading to improved thermoresistance may have followed two, apparently non-related, parallel routes – cellular and peripheral(non-cellular). In search of other cellular components that differentially participate in the heat shock response, we revealed a significant expression of fatty acid synthase (FAS) in heat-exposed endotherms but not in ectotherms.
Collapse
Affiliation(s)
- Ariel Shabtay
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
95
|
Ooie T, Kajimoto M, Takahashi N, Shinohara T, Taniguchi Y, Kouno H, Wakisaka O, Yoshimatsu H, Saikawa T. Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sci 2005; 77:869-81. [PMID: 15921703 DOI: 10.1016/j.lfs.2004.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 12/13/2004] [Indexed: 11/15/2022]
Abstract
We investigated the effects of insulin resistance on the expression of heat-shock proteins (HSPs) and myocardial protection against ischemia/reperfusion injury. Male Sprague-Dawley rats received normal chow (CNT) or high-fat (HiF) diet. HiF diet for 6 weeks resulted in the development of insulin resistance, which was evaluated by oral glucose test and insulin tolerance test. Twenty-four hour after oral administration of geranylgeranylacetone (GGA) (200 mg/kg), the heart was isolated and perfused retrogradely with two different doses of insulin (0.1 or 1 mU/ml). Myocardial expression of HSP72 was examined using Western blot analysis. In the HiF group, the expression of HSP72 in response to GGA was decreased. The recovery of left ventricular developed pressure (LVDP) 30 min after reperfusion was tended to be lower in HiF group than in CNT group. Although GGA improved the recovery of LVDP in both CNT and HiF rats, LVDP during reperfusion period was significantly lower in HiF group than in CNT group. High-dose insulin perfusion caused deterioration of post-ischemic functional recovery and LVDP was not different between the two groups, but GGA-induced cardioprotection was preserved irrespective of the dose of insulin both in the CNT and HiF rats. This is the first demonstration that expression of HSP72 was depressed in the heart and that reduced HSP72 was related with less cardioprotection against ischemic insult in high-fat diet-induced insulin resistance rats.
Collapse
Affiliation(s)
- Tatsuhiko Ooie
- Department of Laboratory Medicine, Faculty of Medicine, Oita University, 1-1, Hasama, Oita, 879-5593, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Shigapova N, Török Z, Balogh G, Goloubinoff P, Vígh L, Horváth I. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem Biophys Res Commun 2005; 328:1216-23. [PMID: 15708006 DOI: 10.1016/j.bbrc.2005.01.081] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.
Collapse
Affiliation(s)
- Natalia Shigapova
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
97
|
Morgan-Sagastume F, Allen DG. Physicochemical properties and stability of activated sludge flocs under temperature upshifts from 30 to 45 °C. J Colloid Interface Sci 2005; 281:136-45. [PMID: 15567389 DOI: 10.1016/j.jcis.2004.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Accepted: 08/06/2004] [Indexed: 11/18/2022]
Abstract
The impacts of temperature shifts from 30 to 45 degrees C on the structural stability and surface charge of activated sludge flocs were assessed in four sequencing batch reactors (SBRs) treating pulp and paper mill effluent. The improvement in floc stability was tested by sludge magnesium enrichment in one SBR and by operating another reactor at a high sludge retention time (SRT) of 33 days. Floc stability was characterized by dissociation constants with solutions of CaCl(2), KCl, urea, and ethylenediamine tetraacetate (EDTA). Surface charge was assessed by cationic-anionic titration and metals concentrations were also determined. The temperature shift consistently caused an increase in the negative sludge surface charge from approximately -0.180 to -0.300 meq/g MLSS. Magnesium enrichment and a high SRT of 33 days promoted less negatively charged sludge, dampened the increase in negative sludge surface charge, and yielded structurally stronger flocs; however, sludge deflocculation still occurred. Manganese and iron appeared to be released by sludge under the temperature shift. It was concluded that the temperature shift deteriorates the flocculating physicochemical properties of the sludge and that better floc stability achieved by magnesium enrichment and a high SRT is not enough to stop deflocculation. Further research is required to clarify the origin of the increase in negative sludge surface charge, the role of metals, and the governing factors in sludge deflocculation under such temperature shifts.
Collapse
Affiliation(s)
- F Morgan-Sagastume
- Department of Chemical Engineering and Applied Chemistry, Pulp & Paper Centre, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | | |
Collapse
|
98
|
Michaud MR, Denlinger D. Molecular modalities of insect cold survival: current understanding and future trends. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.08.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
99
|
Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:142-57. [PMID: 15519313 DOI: 10.1016/j.bbamem.2004.08.002] [Citation(s) in RCA: 527] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that ultimately lead to acclimation. The mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the analysis of genome-wide gene expression using DNA microarrays has provided a powerful new approach to studies of the contribution of membrane fluidity to gene expression and to the identification of environmental sensors. In this review, we focus on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, and on the subsequent expression of genes that ensures acclimation to a new set of environmental conditions.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | |
Collapse
|
100
|
Krishnamurthy S, Plaine A, Albert J, Prasad T, Prasad R, Ernst JF. Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans. Microbiology (Reading) 2004; 150:1991-2003. [PMID: 15184585 DOI: 10.1099/mic.0.27029-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conditions in the infected human host trigger virulence attributes of the fungal pathogenCandida albicans. Specific inducers and elevated temperatures lead to hyphal development or regulate chlamydospore development. To explore if these processes are affected by membrane lipids, an investigation of the functions of the Ole1 fatty acid desaturase (stearoyl-CoA desaturase) inC. albicans, which synthesizes oleic acid, was undertaken. A conditional strain expressingOLE1from the regulatableMET3promoter was unable to grow in repressing conditions, indicating thatOLE1is an essential gene. In contrast, a mutant lacking both alleles ofOLE2, encoding a Ole1p homologue, was viable and had no apparent phenotypes. Partial repression ofMET3p–OLE1slightly lowered oleic acid levels and decreased membrane fluidity; these conditions permitted growth in the yeast form, but prevented hyphal development in aerobic conditions and blocked the formation of chlamydospores. In contrast, in hypoxic conditions, which trigger an alternative morphogenetic pathway, hyphal morphogenesis was unaffected. Because aerobic morphogenetic signalling and oleic acid biosynthesis require oxygen, it is proposed that oleic acid may function as a sensor activating specific morphogenetic pathways in normoxic conditions.
Collapse
Affiliation(s)
| | - Armêl Plaine
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Juliane Albert
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Tulika Prasad
- Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Joachim F Ernst
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|