51
|
Rozhkov NV, Aravin AA, Sachidanandam R, Hannon GJ, Sokolova ON, Zelentsova ES, Shostak NG, Evgen'ev MB. The RNA interference system differently responds to the same mobile element in distant Drosophila species. DOKL BIOCHEM BIOPHYS 2010; 431:79-81. [PMID: 20514868 DOI: 10.1134/s1607672910020079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- N V Rozhkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Blauth ML, Bruno RV, Abdelhay E, Loreto ELS, Valente VLS. Detection of P element transcripts in embryos of Drosophila melanogaster and D. willistoni. AN ACAD BRAS CIENC 2009; 81:679-89. [PMID: 19893894 DOI: 10.1590/s0001-37652009000400007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 03/11/2009] [Indexed: 11/22/2022] Open
Abstract
The P element is one of the most thoroughly studied transposable elements (TE). Its mobilization causes the hybrid dysgenesis that was first described in Drosophila melanogaster. While studies of the P element have mainly been done in D. melanogaster, it is believed that Drosophila willistoni was the original host species of this TE and that P was transposed to the D. melanogaster genome by horizontal transfer. Our study sought to compare the transcriptional behavior of the P element in embryos of D. melanogaster, which is a recent host, with embryos of two strains of D. willistoni, a species that has contained the P element for a longer time. In both species, potential transcripts of transposase, the enzyme responsible for the TE mobilization, were detected, as were transcripts of the 66-kDa repressor, truncated and antisense sequences, which can have the ability to prevent TEs mobilization. The truncated transcripts reveal the truncated P elements present in the genome strains and whose number seems to be related to the invasion time of the genome by the TE. No qualitative differences in antisense transcripts were observed among the strains, even in the D. willistoni strain with the highest frequency of heterochromatic P elements.
Collapse
Affiliation(s)
- Monica L Blauth
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, MT, Brasil
| | | | | | | | | |
Collapse
|
53
|
Characterization of a Novel Tc1-Like Transposon From Bream (Cyprinidae, Megalobrama) and Its Genetic Variation in the Polyploidy Progeny of Bream–Red Crucian Carp Crosses. J Mol Evol 2009; 69:395-403. [DOI: 10.1007/s00239-009-9295-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
|
54
|
Ravin VK, Sukchev MB, Zelentsova ES, Shostak NG, Evgen’ev MB. Structural and functional analysis of a new retrotransposon class in Drosophila species. Mol Biol 2009. [DOI: 10.1134/s0026893309020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Bae YA, Ahn JS, Kim SH, Rhyu MG, Kong Y, Cho SY. PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy. BMC Genomics 2008; 9:482. [PMID: 18851759 PMCID: PMC2582038 DOI: 10.1186/1471-2164-9-482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022] Open
Abstract
Background Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. Results A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 – AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s) with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Conclusion Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Korea.
| | | | | | | | | | | |
Collapse
|
56
|
Schostak N, Pyatkov K, Zelentsova E, Arkhipova I, Shagin D, Shagina I, Mudrik E, Blintsov A, Clark I, Finnegan DJ, Evgen’ev M. Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Res 2008; 36:2522-9. [PMID: 18319284 PMCID: PMC2377424 DOI: 10.1093/nar/gkm1166] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 12/15/2007] [Accepted: 12/18/2007] [Indexed: 11/12/2022] Open
Abstract
Penelope-like elements (PLEs) represent a new class of retroelements identified in more than 80 species belonging to at least 10 animal phyla. Penelope isolated from Drosophila virilis is the only known transpositionally active representative of this class. Although the size and structure of the Penelope major transcript has been previously described in both D. virilis and D. melanogaster transgenic strains, the architecture of the Penelope regulatory region remains unknown. In order to determine the localization of presumptive Penelope promoter and enhancer-like elements, segments of the putative Penelope regulatory region were linked to a CAT reporter gene and introduced into D. melanogaster by P-element-mediated transformation. The results obtained using ELISA to measure CAT expression levels and RNA studies, including RT-PCR, suggest that the active Penelope transposon contains an internal promoter similar to the TATA-less promoters of LINEs. The results also suggest that some of the Penelope regulatory sequences control the preferential expression in the ovaries of the adult flies by enhancing expression in the ovary and reducing expression in the carcass. The possible significance of the intron within Penelope for the function and evolution of PLEs, and the effect of Penelope insertions on adjacent genes, are discussed.
Collapse
Affiliation(s)
- Nataliya Schostak
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Konstantin Pyatkov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Elena Zelentsova
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Irina Arkhipova
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Dmitrii Shagin
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Irina Shagina
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Elena Mudrik
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Anatolii Blintsov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Ivan Clark
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - David J. Finnegan
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Michael Evgen’ev
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| |
Collapse
|
57
|
Eickbush TH, Jamburuthugoda VK. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 2008; 134:221-34. [PMID: 18261821 DOI: 10.1016/j.virusres.2007.12.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
Abstract
A number of abundant mobile genetic elements called retrotransposons reverse transcribe RNA to generate DNA for insertion into eukaryotic genomes. Four major classes of retrotransposons are described here. First, the long-terminal-repeat (LTR) retrotransposons have similar structures and mechanisms to those of the vertebrate retroviruses. Genes that may enable these retrotransposons to leave a cell have been acquired by these elements in a number of animal and plant lineages. Second, the tyrosine recombinase retrotransposons are similar to the LTR retrotransposons except that they have substituted a recombinase for the integrase and recombine into the host chromosomes. Third, the non-LTR retrotransposons use a cleaved chromosomal target site generated by an encoded endonuclease to prime reverse transcription. Finally, the Penelope-like retrotransposons are not well understood but appear to also use cleaved DNA or the ends of chromosomes as primer for reverse transcription. Described in the second part of this review are the enzymatic properties of the reverse transcriptases (RTs) encoded by retrotransposons. The RTs of the LTR retrotransposons are highly divergent in sequence but have similar enzymatic activities to those of retroviruses. The RTs of the non-LTR retrotransposons have several unique properties reflecting their adaptation to a different mechanism of retrotransposition.
Collapse
Affiliation(s)
- Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
58
|
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007; 8:973-82. [PMID: 17984973 DOI: 10.1038/nrg2165] [Citation(s) in RCA: 1859] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Kapitonov VV, Jurka J. Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 2007; 23:521-9. [PMID: 17850916 DOI: 10.1016/j.tig.2007.08.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 07/17/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Rolling-circle eukaryotic transposons, known as Helitron transposons, were first discovered in plants (Arabidopsis thaliana and Oryza sativa) and in the nematode Caenorhabditis elegans. To date, Helitrons have been identified in a diverse range of species, from protists to mammals. They represent a major class of eukaryotic transposons and are fundamentally different from classical transposons in terms of their structure and mechanism of transposition. Helitrons seem to have a major role in the evolution of host genomes. They frequently capture diverse host genes, some of which can evolve into novel host genes or become essential for helitron transposition.
Collapse
Affiliation(s)
- Vladimir V Kapitonov
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| | | |
Collapse
|
60
|
Blumenstiel JP. Sperm competition can drive a male-biased mutation rate. J Theor Biol 2007; 249:624-32. [PMID: 17919661 DOI: 10.1016/j.jtbi.2007.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 08/24/2007] [Indexed: 11/29/2022]
Abstract
A pattern of male-biased mutation has been found in a wide range of species. The standard explanation for this bias is that there are greater numbers of mitotic cell divisions in the history of the average sperm, compared to the average egg, and that mutations typically result from errors made during replication. However, this fails to provide an ultimate evolutionary explanation for why the male germline would tolerate more mutations that are typically deleterious. One possibility is that if there is a tradeoff between producing large numbers of sperm and expending energetic resources in maintaining a lower mutation rate, sperm competition would select for males that produce larger numbers of sperm despite a higher resulting mutation rate. Here I describe a model that jointly considers the fitness consequences of deleterious mutation and mating success in the face of sperm competition. I show that a moderate level of sperm competition can account for the observation that the male germline tolerates a higher mutation rate than the female germline.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
61
|
Klenov MS, Stolyarenko AD, Ryazansky SS, Sokolova OA, Konstantinov IN, Gvozdev VA. Role of short RNAs in regulating the expression of genes and mobile elements in germ cells. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407030058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
62
|
|
63
|
Abstract
Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal genomes, the reverse transcriptase moiety can also be found in several protists, fungi, and plants, indicating its ancient origin. A comprehensive phylogenetic analysis of PLEs was conducted, based on extended sequence alignments and a considerably expanded data set. PLEs exhibit the pattern of evolution similar to that of non-LTR retrotransposons, which form deep-branching clades dating back to the Precambrian era. However, PLEs seem to have experienced a much higher degree of lineage losses than non-LTR retrotransposons. It is suggested that PLEs and non-LTR retrotransposons are included into a larger eTPRT (eukaryotic target-primed) group of retroelements, characterized by 5' truncation, variable target-site duplication, and the potential of the 3' end to participate in formation of non-autonomous derivatives.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
64
|
Morales-Hojas R, Päällysaho S, Vieira CP, Hoikkala A, Vieira J. Comparative polytene chromosome maps of D. montana and D. virilis. Chromosoma 2006; 116:21-7. [PMID: 16906413 DOI: 10.1007/s00412-006-0075-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 10/24/2022]
Abstract
Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
65
|
Morales-Hojas R, Vieira CP, Vieira J. The Evolutionary History of the Transposable Element Penelope in the Drosophila virilis Group of Species. J Mol Evol 2006; 63:262-73. [PMID: 16830099 DOI: 10.1007/s00239-005-0213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
We have used phylogenetic techniques to study the evolutionary history of the Penelope transposable element in the Drosophila virilis species group. Two divergent types of Penelope have been detected, one previously described, clade I, and a new one which we have termed clade III. The phylogeny of some copies of the Penelope clade I element was partially consistent with the species phylogeny of the D. montana subphylad, suggesting cospeciation and allowing the estimation of the evolutionary rate of Penelope. Divergence times of elements found in different species are younger than the age of the species, suggesting horizontal transfer events.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Molecular Evolution Laboratory, IBMC, University of Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | | | | |
Collapse
|
66
|
Fudal I, Böhnert HU, Tharreau D, Lebrun MH. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 2005; 42:761-72. [PMID: 15978851 DOI: 10.1016/j.fgb.2005.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 04/21/2005] [Accepted: 05/01/2005] [Indexed: 11/30/2022]
Abstract
The ACE1 avirulence gene allele from the rice blast fungus Magnaporthe grisea was characterized in virulent isolate 2/0/3, revealing the insertion of a 1.9 kb MINE retrotransposon in the last ACE1 exon. MINE is a novel chimeric element composed of a transcribed non-coding sequence of 1.1 kb (WEIRD) fused to a 5'-truncated MGL retrotransposon. MINEs were found in high copy number in M. grisea isolates from rice (68 copies) and as a single copy in isolate CD156 from Eleusine. MINEs vary in size (1.3-6.7 kb) with conserved 5' WEIRD sequences and variable 3' MGL sequences. MGLs fused to WEIRDs correspond to different 5'-truncated MGLs with conserved 3' ends. The organization and diversity of MINEs suggest that these retrotransposons result from independent fusions between WEIRD and 5'-truncated MGLs. Such chimera could be formed during MGL reverse transcription as proposed for human U6-LINE1 chimeric retrotransposons and integrated into M. grisea genome using MGL machinery.
Collapse
Affiliation(s)
- Isabelle Fudal
- UMR2847 CNRS-Bayercropscience Bayer CropScience, F69263 Lyon Cedex 09, France
| | | | | | | |
Collapse
|
67
|
Blumenstiel JP, Hartl DL. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci U S A 2005; 102:15965-70. [PMID: 16247000 PMCID: PMC1276106 DOI: 10.1073/pnas.0508192102] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hybrid dysgenesis in Drosophila is a syndrome of gonadal atrophy, sterility, and male recombination, and it occurs in the progeny of crosses between males that harbor certain transposable elements (TEs) and females that lack them. Known examples of hybrid dysgenesis in Drosophila melanogaster result from mobilization of individual families of TEs, such as the P element, the I element, or hobo. An example of hybrid dysgenesis in Drosophila virilis is unique in that multiple, unrelated families of TEs become mobilized, but a TE designated Penelope appears to play a major role. In all known examples of hybrid dysgenesis, the paternal germ line transmits the TEs in an active state, whereas the female germ line maintains repression of the TEs. The mechanism of maternal maintenance of repression is not known. Recent evidence suggests that the molecular machinery of RNA interference may function as an important host defense against TEs. This protection is mediated by the action of endogenous small interfering RNAs (siRNAs) composed of dsRNA molecules of 21-25 nt that can target complementary transcripts for destruction. In this paper, we demonstrate that endogenous siRNA derived from the Penelope element is maternally loaded in embryos through the female germ line in D. virilis. We also present evidence that the maternal inheritance of these endogenous siRNAs may contribute to maternal repression of Penelope.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
68
|
Andrianov BV, Reznik NL, Gorelova TV, Zolotova LI. The retrotransposon Tv1 forms infectious virus-like particles in some lines of Drosophila virilis. DOKL BIOCHEM BIOPHYS 2005; 400:76-9. [PMID: 15846990 DOI: 10.1007/s10628-005-0037-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- B V Andrianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117809 Russia
| | | | | | | |
Collapse
|
69
|
Fischer C, Bouneau L, Coutanceau JP, Weissenbach J, Ozouf-Costaz C, Volff JN. Diversity and clustered distribution of retrotransposable elements in the compact genome of the pufferfish Tetraodon nigroviridis. Cytogenet Genome Res 2005; 110:522-36. [PMID: 16093705 DOI: 10.1159/000084985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 03/25/2004] [Indexed: 12/15/2022] Open
Abstract
We report the characterization and chromosomal distribution of retroelements in the compact genome of the pufferfish Tetraodon nigroviridis. We have reconstructed partial/complete retroelement sequences, established their phylogenetic relationship to other known eukaryotic retrotransposons, and performed double-color FISH analyses to gain new insights into their patterns of chromosomal distribution. We could identify 43 different reverse transcriptase retrotransposons belonging to the three major known subclasses (14 non-LTR retrotransposons from seven clades, 25 LTR retrotransposons representing the five major known groups, and four Penelope-like elements), and well as two SINEs (non-autonomous retroelements). Such a diversity of retrotransposable elements, which seems to be relatively common in fish but not in mammals, is astonishing in such a compact genome. The total number of retroelements was approximately 3000, roughly representing only 2.6% of the genome of T. nigroviridis. This is much less than in other vertebrate genomes, reflecting the compact nature of the genome of this pufferfish. Major differences in copy number were observed between different clades, indicating differential success in invading and persisting in the genome. Some retroelements displayed evidence of recent activity. Finally, FISH analysis showed that retrotransposable elements preferentially accumulate in specific heterochromatic regions of the genome of T. nigroviridis, revealing a degree of genomic compartmentalization not observed in the human genome.
Collapse
Affiliation(s)
- C Fischer
- Genoscope/Centre National de Séquençage, CNRS-UMR 8030, Evry, France.
| | | | | | | | | | | |
Collapse
|
70
|
Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 2005; 110:457-61. [PMID: 16093698 DOI: 10.1159/000084978] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 03/24/2004] [Indexed: 11/19/2022] Open
Abstract
The classification and nomenclature of retrotransposable elements is reviewed. A comparison is made between the initial classification summarized in Capy et al. (1997b), and the more recent proposal based on the classification of the viruses (Hull, 2001). Several problems, mainly relating to the position of elements belonging to the DIRS-like or Bel-like groups, are discussed. The first classification is now out of date, and must be revisited to take account of the discovery of new elements, however the second cannot be extended to the DNA elements. There is therefore, clear evidence of the need to adopt a general and a common classification.
Collapse
Affiliation(s)
- P Capy
- Laboratoire Populations, Génétique et Evolution, CNRS, Gif/Yvette, France.
| |
Collapse
|
71
|
Evgen'ev MB, Arkhipova IR. Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 2005; 110:510-21. [PMID: 16093704 DOI: 10.1159/000084984] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/27/2004] [Indexed: 11/19/2022] Open
Abstract
Here we describe a new class of retroelements termed PLE (Penelope-like elements). The only transpositionally active representative of this lineage found so far has been isolated from Drosophila virilis. This element, Penelope, is responsible for the hybrid dysgenesis syndrome in this species, characterized by simultaneous mobilization of several unrelated TE families in the progeny of dysgenic crosses. Several lines of evidence favor the hypothesis of recent Penelope invasion into D. virilis. Moreover, when D. virilisPenelope was introduced by P element-mediated transformation into the genome of D. melanogaster, it underwent extensive amplification in the new host and induced several traits of the dysgenesis syndrome, including gonadal atrophy and numerous mutations. The single ORF encoded by PLE consists of two principal domains: reverse transcriptase (RT) and endonuclease (EN), which is similar to GIY-YIG intron-encoded endonucleases. With the appearance of a large number of PLEs in genome databases from diverse eukaryotes, including amoebae, fungi, cnidarians, rotifers, flatworms, roundworms, fish, amphibia, and reptilia, it becomes possible to resolve their phylogenetic relationships with other RT groups with a greater degree of confidence. On the basis of their peculiar structural features, distinct phylogenetic placement, and structure of transcripts, we conclude that PLE constitute a novel class of eukaryotic retroelements, different from non-LTR and LTR retrotransposons.
Collapse
Affiliation(s)
- M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Moscow, Russia.
| | | |
Collapse
|
72
|
Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B. Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 2005; 170:1945-56. [PMID: 15937131 PMCID: PMC1449789 DOI: 10.1534/genetics.105.040964] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To study the possible impact of alien introgression on a recipient plant genome, we examined >6000 unbiased genomic loci of three stable rice recombinant inbred lines (RILs) derived from intergeneric hybridization between rice (cv. Matsumae) and a wild relative (Zizania latifolia Griseb.) followed by successive selfing. Results from amplified fragment length polymorphism (AFLP) analysis showed that, whereas the introgressed Zizania DNA comprised <0.1% of the genome content in the RILs, extensive and genome-wide de novo variations occurred in up to 30% of the analyzed loci for all three lines studied. The AFLP-detected changes were validated by DNA gel-blot hybridization and/or sequence analysis of genomic loci corresponding to a subset of the differentiating AFLP fragments. A BLAST analysis revealed that the genomic variations occurred in diverse sequences, including protein-coding genes, transposable elements, and sequences of unknown functions. Pairwise sequence comparison of selected loci between a RIL and its rice parent showed that the variations represented either base substitutions or small insertion/deletions. Genome variations were detected in all 12 rice chromosomes, although their distribution was uneven both among and within chromosomes. Taken together, our results imply that even cryptic alien introgression can be highly mutagenic to a recipient plant genome.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Laboratory of Molecular Epigenetics and The State Key Laboratory of Grassland and Ecology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 2005; 22:976-90. [PMID: 15647520 DOI: 10.1093/molbev/msi082] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hybridization between different species plays an important role in plant genome evolution, as well as is a widely used approach for crop improvement. McClintock has predicted that plant wide hybridization constitutes a "genomic shock" whereby cryptic transposable elements may be activated. However, direct experimental evidence showing a causal relationship between plant wide hybridization and transposon mobilization has not yet been reported. The miniature-Ping (mPing) is a recently isolated active miniature inverted-repeat transposable element transposon from rice, which is mobilized by tissue culture and gamma-ray irradiation. We show herein that mPing, together with its putative transposase-encoding partner, Pong, is mobilized in three homologous recombinant inbred lines (RILs), derived from hybridization between rice (cultivar Matsumae) and wild rice (Zizania latifolia Griseb.), harboring introgressed genomic DNA from wild rice. In contrast, both elements remain immobile in two lines sharing the same parentage to the RILs but possessing no introgressed DNA. Thus, we have presented direct evidence that is consistent with McClintock's insight by demonstrating a causal link between wide hybridization and transposon mobilization in rice. In addition, we report an atypical behavior of mPing/Pong mobilization in these lines, i.e., the exclusive absence of footprints after excision.
Collapse
Affiliation(s)
- Xiaohui Shan
- Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Affiliation(s)
- Edward B Lewis
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
75
|
Brownlie JC, Whyard S. CemaT1 is an active transposon within the Caenorhabditis elegans genome. Gene 2004; 338:55-64. [PMID: 15302406 DOI: 10.1016/j.gene.2004.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 04/13/2004] [Accepted: 05/17/2004] [Indexed: 11/30/2022]
Abstract
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike Tc transposons in mutator strains of C. elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control Tc activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome.
Collapse
Affiliation(s)
- J C Brownlie
- Division of Entomology, CSIRO GPO Box 1700, Canberra ACT 2601, Australia.
| | | |
Collapse
|
76
|
Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen'ev MB. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci U S A 2004; 101:14719-24. [PMID: 15465912 PMCID: PMC522041 DOI: 10.1073/pnas.0406281101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Indexed: 11/18/2022] Open
Abstract
Penelope-like elements are a class of retroelement that have now been identified in >50 species belonging to at least 10 animal phyla. The Penelope element isolated from Drosophila virilis is the only transpositionally active representative of this class isolated so far. The single ORF of Penelope and its relatives contains regions homologous to a reverse transcriptase of atypical structure and to the GIY-YIG, or Uri, an endonuclease (EN) domain not previously found in retroelements. We have expressed the single ORF of Penelope in a baculovirus expression system and have shown that it encodes a polyprotein with reverse transcriptase activity that requires divalent cations (Mn2+ and Mg2+). We have also expressed and purified the EN domain in Escherichia coli and have demonstrated that it has EN activity in vitro. Mutations in the conserved residues of the EN catalytic module abolish its nicking activity, whereas the DNA-binding properties of the mutant proteins remain unaffected. Only one strand of the target sequence is cleaved, and there is a certain degree of cleavage specificity. We propose that the Penelope EN cleaves the target DNA during transposition, generating a primer for reverse transcription. Our results show that an active Uri EN has been adopted by a retrotransposon.
Collapse
|
77
|
Evgen'ev MB, Zatsepina OG, Garbuz D, Lerman DN, Velikodvorskaya V, Zelentsova E, Feder ME. Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma 2004; 113:223-32. [PMID: 15480729 DOI: 10.1007/s00412-004-0312-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 07/15/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
To investigate the genetic basis of differing thermotolerance in the closely related species Drosophila virilis and Drosophila lummei, which replace one another along a latitudinal cline, we characterized the hsp70 gene cluster in multiple strains of both species. In both species, all hsp70 copies cluster in a single chromosomal locus, 29C1, and each cluster includes two hsp70 genes arranged as an inverted pair, the ancestral condition. The total number of hsp70 copies is maximally seven in the more thermotolerant D. virilis and five in the less tolerant D. lummei, with some strains of each species exhibiting lower copy numbers. Thus, maximum hsp70 copy number corresponds to hsp70 mRNA and Hsp70 protein levels reported previously and the size of heat-induced puffs at 29C1. The nucleotide sequence and spacing of the hsp70 copies are consistent with tandem duplication of the hsp70 genes in a common ancestor of D. virilis and D. lummei followed by loss of hsp70 genes in D. lummei. These and other data for hsp70 in Drosophila suggest that evolutionary adaptation has repeatedly modified hsp70 copy number by several different genetic mechanisms.
Collapse
Affiliation(s)
- Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 117984 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
78
|
Bae YA, Kong Y. Divergent long-terminal-repeat retrotransposon families in the genome of Paragonimus westermani. THE KOREAN JOURNAL OF PARASITOLOGY 2004; 41:221-31. [PMID: 14699263 PMCID: PMC2717514 DOI: 10.3347/kjp.2003.41.4.221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To gain information on retrotransposons in the genome of Paragonimus westermani, PCR was carried out with degenerate primers, specific to protease and reverse transcriptase (rt) genes of long-terminal-repeat (LTR) retrotransposons. The PCR products were cloned and sequenced, after which 12 different retrotransposon-related sequences were isolated from the trematode genome. These showed various degrees of identity to the polyprotein of divergent retrotransposon families. A phylogenetic analysis demonstrated that these sequences could be classified into three different families of LTR retrotransposons, namely, Xena, Bel, and Gypsy families. Of these, two mRNA transcripts were detected by reverse transcriptase-PCR, showing that these two elements preserved their mobile activities. The genomic distributions of these two sequences were found to be highly repetitive. These results suggest that there are diverse retrotransposons including the ancient Xena family in the genome of P. westermani, which may have been involved in the evolution of the host genome.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea.
| | | |
Collapse
|
79
|
Kikuno R, Sato A, Mayer WE, Shintani S, Aoki T, Klein J. Clustering of C-Type Lectin Natural Killer Receptor-Like Loci in the Bony Fish Oreochromis niloticus. Scand J Immunol 2004; 59:133-42. [PMID: 14871289 DOI: 10.1111/j.0300-9475.2004.01372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of the cichlid (teleost) fish Oreochromis niloticus contains a set of genes which encode group V C-type lectin proteins homologous to the mammalian NKG2/CD94 family of natural killer (NK) cell receptors. To determine the genomic organization of these killer cell-like receptor (KLR) genes, an O. niloticus BAC library was screened with a cDNA probe derived previously from an expressed sequence tag of the related cichlid species Paralabidochromis chilotes. Four distinct KLR-bearing BAC clones were analysed, three of which could be assembled into a contig. One of the clones was sequenced in its entirety, whereas the others were partially sequenced to identify the KLR loci borne by them. Altogether, 28 distinct KLR loci were identified, of which at least 26 occupy a single chromosomal region, the KLR complex. One half of the loci appear to be occupied by pseudogenes. Compared to the human NK cell receptor complex, the Oreochromis KLR complex is more compact and, apart from transposons, appears to contain only KLR loci. The gene density of the complex is one KLR locus per 18 kb of sequence. All the KLR loci constituting the complex are derived from a single most recent common ancestor, which is estimated to have existed 7.7 million years ago. The 180 kb of the determined sequence is a mosaic of blocks of similar segments reflecting a complex history of duplications, deletions and rearrangements. The transposons found in the sequenced part belong to the TC1, Xena, CR1 and TX1 families.
Collapse
Affiliation(s)
- R Kikuno
- The First Laboratory for Human Gene Research, Department of Human Gene Research, Kazusa DNA Research Institute, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A 2003; 100:6569-74. [PMID: 12743378 PMCID: PMC164487 DOI: 10.1073/pnas.0732024100] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Indexed: 01/07/2023] Open
Abstract
We report here a superfamily of "cut and paste" DNA transposons called Transib. These transposons populate the Drosophila melanogaster and Anopheles gambiae genomes, use a transposase that is not similar to any known proteins, and are characterized by 5-bp target site duplications. We found that the fly genome, which was thought to be colonized by the P element <100 years ago, harbors approximately 5 million year (Myr)-old fossils of ProtoP, an ancient ancestor of the P element. We also show that Hoppel, a previously reported transposable element (TE), is a nonautonomous derivate of ProtoP. We found that the "rolling-circle" Helitron transposons identified previously in plants and worms populate also insect genomes. Our results indicate that Helitrons were horizontally transferred into the fly or/and mosquito genomes. We have also identified a most abundant TE in the fly genome, DNAREP1_DM, which is an approximately 10-Myr-old footprint of a Penelope-like retrotransposon. We estimated that TEs are three times more abundant than reported previously, making up approximately 22% of the whole genome. The chromosomal and age distributions of TEs in D. melanogaster are very similar to those in Arabidopsis thaliana. Both genomes contain only relatively young TEs (<20 Myr old), constituting a main component of paracentromeric regions.
Collapse
Affiliation(s)
- Vladimir V Kapitonov
- Genetic Information Research Institute, 2081 Landings Drive, Mountain View, CA 94043, USA.
| | | |
Collapse
|
81
|
NUZHDIN SERGEYV, PETROV DMITRIA. Transposable elements in clonal lineages: lethal hangover from sex. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00188.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Arkhipova IR, Pyatkov KI, Meselson M, Evgen'ev MB. Retroelements containing introns in diverse invertebrate taxa. Nat Genet 2003; 33:123-4. [PMID: 12524543 DOI: 10.1038/ng1074] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 11/19/2002] [Indexed: 11/09/2022]
Abstract
We report that two structurally similar transposable elements containing reverse transcriptase (RT), Penelope in Drosophila virilis and Athena in bdelloid rotifers, have proliferated as copies containing introns. The ability of Penelope-like elements (PLEs) to retain introns, their separate phylogenetic placement and their peculiar structural features make them a novel class of eukaryotic retroelements.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
83
|
Pyatkov KI, Shostak NG, Zelentsova ES, Lyozin GT, Melekhin MI, Finnegan DJ, Kidwell MG, Evgen'ev MB. Penelope retroelements from Drosophila virilis are active after transformation of Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:16150-5. [PMID: 12451171 PMCID: PMC138580 DOI: 10.1073/pnas.252641799] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2002] [Indexed: 11/18/2022] Open
Abstract
The Penelope family of retroelements was first described in species of the Drosophila virilis group. Intact elements encode a reverse transcriptase and an endonuclease of the UvrC type, which may play a role in Penelope integration. Penelope is a key element in the induction of D. virilis hybrid dysgenesis, which involves the mobilization of several unrelated families of transposable elements. We here report the successful introduction of Penelope into the germ line of Drosophila melanogaster by P element-mediated transformation with three different constructs. Penelope is actively transcribed in the D. melanogaster genome only in lines transformed with a construct containing a full-length Penelope clone. The transcript is identical to that detected in D. virilis dysgenic hybrids. Most newly transposed Penelope elements have a very complex organization. Significant proliferation of Penelope copy number occurred in some lines during the 24-month period after transformation. The absence of copy number increase with two other constructs suggests that the 5' andor 3' UTRs of Penelope are required for successful transposition in D. melanogaster. No insect retroelement has previously been reported to be actively transcribed and to increase in copy number after interspecific transformation.
Collapse
|
84
|
Shapiro JA. Genome organization and reorganization in evolution: formatting for computation and function. Ann N Y Acad Sci 2002; 981:111-34. [PMID: 12547677 DOI: 10.1111/j.1749-6632.2002.tb04915.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This volume deals with the role of epigenetics in life and evolution. The most dynamic forms of functional genome formatting involve DNA interacting with cellular complexes that do not alter sequence information. Such important epigenetic phenomena are the main subjects of other articles in this volume. This article focuses on the long-lived form of genome formatting that lies within the DNA sequence itself. I argue for a computational view of genome function as the long-term information storage organelle of each cell. Structural formatting consists of organizing various signals and coding sequences into computationally ready systems facilitating genome expression and genome transmission. The basic features of genome organization can be understood by examining the E. coli lac operon as a paradigmatic genomic system. Multiple systems are connected through distributed signals and repetitive DNA to form higher-order genome system architectures. Molecular discoveries about mechanisms of DNA restructuring show that cells possess the natural genetic engineering functions necessary for evolutionary change by rearranging genomic components and reorganizing system architectures. The concepts of cellular computation and decision-making, genome system architecture, and natural genetic engineering combine to provide a new way of framing evolutionary theories and understanding genome sequence information.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
85
|
Dalle Nogare DE, Clark MS, Elgar G, Frame IG, Poulter RTM. Xena, a full-length basal retroelement from tetraodontid fish. Mol Biol Evol 2002; 19:247-55. [PMID: 11861884 DOI: 10.1093/oxfordjournals.molbev.a004078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mobile genetic elements are ubiquitous throughout the eukaryote superkingdom. We have sequenced a highly unusual full-length retroelement from the Fugu fish, Takifugu rubripes. This element, which we have named Xena, is similar in structure and sequence to the Penelope retroelement from Drosophila virilis and consists of a single long open reading frame containing a reverse transcriptase domain flanked by identical direct long terminal repeat (LTR) sequences. These LTRs show an organization similar to the terminal repeats already described in the Penelope retrotransposon of Drosophila but are structurally and functionally distinct from the LTRs carried by LTR-retrotransposons. In view of their distinctness, we refer to these repeats as PLTRs (Penelope-LTRs). Whereas the element contains a reverse transcriptase, no other domains or motifs commonly associated with retroelements are present. In the full-length Fugu element, the 5' direct PLTR is preceded by an inverted PLTR fragment. Additional elements, many showing various degrees of deletion, are described from the Fugu genome and from that of the freshwater pufferfish Tetraodon nigroviridis. Many of these additional elements are also preceded by inverted PLTR sequences. Xena-like elements are also described from the genomes of several other organisms. The Penelope-Xena lineage is apparently a basal group within the retrotransposons and therefore represents an evolutionarily important class of retroelement.
Collapse
|
86
|
Lyamouri M, Enerly E, Kress H, Lambertsson A. Conservation of gene order, structure and sequence between three closely linked genes in Drosophila melanogaster and Drosophila virilis. Gene 2002; 282:199-206. [PMID: 11814692 DOI: 10.1016/s0378-1119(01)00831-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.
Collapse
Affiliation(s)
- May Lyamouri
- Division of Molecular Biology, Institute of Biology, University of Oslo, P.O.B. 1031 Blindern, N-0315 Oslo, Norway
| | | | | | | |
Collapse
|
87
|
Pyatkov KI, Shostak NG, Zelentsova ES, Evgen'ev MB. Amplification of the retrotransposon penelope in interspecific transformation. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2001; 381:589-91. [PMID: 12918442 DOI: 10.1023/a:1013347026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- K I Pyatkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 117984 Russia
| | | | | | | |
Collapse
|
88
|
Evgen'ev MB, Zelentsova H, Poluectova H, Lyozin GT, Veleikodvorskaja V, Pyatkov KI, Zhivotovsky LA, Kidwell MG. Mobile elements and chromosomal evolution in the virilis group of Drosophila. Proc Natl Acad Sci U S A 2000; 97:11337-42. [PMID: 11016976 PMCID: PMC17201 DOI: 10.1073/pnas.210386297] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species of the virilis group of Drosophila differ by multiple inversions and chromosome fusions that probably accompanied, or led to, speciation. Drosophila virilis has the primitive karyotype for the group, and natural populations are exceptional in having no chromosomal polymorphisms. We report that the genomic locations of Penelope and Ulysses transposons are nonrandomly distributed in 12 strains of D. virilis. Furthermore, Penelope and Ulysses insertion sites in D. virilis show a statistically significant association with the breakpoints of inversions found in other species of the virilis group. Sixteen newly induced chromosomal rearrangements were isolated from the progeny of D. virilis hybrid dysgenic crosses, including 12 inversions, 2 translocations, and 2 deletions. Penelope and Ulysses were associated with the breakpoints of over half of these new rearrangements. Many rearrangement breakpoints also coincide with the chromosomal locations of Penelope and Ulysses insertions in the parental strains and with breakpoints of inversions previously established for other species of the group. Analysis of homologous sequences from D. virilis and Drosophila lummei indicated that Penelope insertion sites were closely, but not identically, located at the nucleotide sequence level. Overall, these results indicate that Penelope and Ulysses insert in a limited number of genomic locations and are consistent with the possibility that these elements play an important role in the evolution of the virilis species group.
Collapse
Affiliation(s)
- M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Moscow, Russia; Institute of Cellular Biophysics, Pushino, Russia
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Ashburner M, Hoy MA, Peloquin JJ. Prospects for the genetic transformation of arthropods. INSECT MOLECULAR BIOLOGY 1998; 7:201-213. [PMID: 9662469 DOI: 10.1046/j.1365-2583.1998.00084.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- M Ashburner
- Department of Genetics, University of Cambridge, UK.
| | | | | |
Collapse
|