51
|
Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, Czabotar PE, Voss AK, Strasser A. Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK. Cell 2019; 173:1217-1230.e17. [PMID: 29775594 DOI: 10.1016/j.cell.2018.04.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022]
Abstract
Intrinsic apoptosis, reliant on BAX and BAK, has been postulated to be fundamental for morphogenesis, but its precise contribution to this process has not been fully explored in mammals. Our structural analysis of BOK suggests close resemblance to BAX and BAK structures. Notably, Bok-/-Bax-/-Bak-/- animals exhibited more severe defects and died earlier than Bax-/-Bak-/- mice, implying that BOK has overlapping roles with BAX and BAK during developmental cell death. By analyzing Bok-/-Bax-/-Bak-/- triple-knockout mice whose cells are incapable of undergoing intrinsic apoptosis, we identified tissues that formed well without this process. We provide evidence that necroptosis, pyroptosis, or autophagy does not substantially substitute for the loss of apoptosis. Albeit very rare, unexpected attainment of adult Bok-/-Bax-/-Bak-/- mice suggests that morphogenesis can proceed entirely without apoptosis mediated by these proteins and possibly without cell death in general.
Collapse
Affiliation(s)
- Francine F S Ke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Hannah K Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Angus D Cowan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
52
|
Sun J, Zheng Z, Chen Q, Pan Y, Quan M, Dai Y. Fenofibrate potentiates chemosensitivity to human breast cancer cells by modulating apoptosis via AKT/NF-κB pathway. Onco Targets Ther 2019; 12:773-783. [PMID: 30774365 PMCID: PMC6353220 DOI: 10.2147/ott.s191239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Cumulatively, evidences revealed that fenofibrate used in the therapy of hyperlipidemia and hypercholesterolemia has anti-cancer effect in multiple cancer types. However, its function and underlying mechanism of chemosensitization in breast cancer remain poorly understood. Materials and methods The cytotoxicity of fenofibrate and anti-cancer drugs in breast cancer cells was determined by MTT. Apoptosis and mitochondrial membrane potential were measured using flow cytometry. Caspases and PARP cleavage, the Bcl-2 family members’ protein expression, as well as the activation of AKT and NF-κB signaling pathways were evaluated using Western blot assay. Real-time PCR was used to determine the mRNA expression of Bcl-2 family members. Results Our data indicated that fenofibrate suppressed SKBR3 and MDA-MB-231 cell growth in a dose-dependent manner, in the same way as paclitaxel, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), ABT-737, and doxorubicin. Subtoxic levels of fenofibrate significantly augmented paclitaxel, TRAIL, ABT-737, and doxorubicin-induced apoptosis in both these two cell lines. Fenofibrate-promoted chemosensitivity is predominantly mediated by caspase-9 and caspase-3 activation and mitochondrial outer membrane permeabilization. Meanwhile, chemosensitivity promoted by fenofibrate also increased the expression of Bax and Bok and decreased the expression of Mcl-1 and Bcl-xl. Mechanistically, fenofibrate effectively reduced the phosphorylation levels of AKT and NF-κB. In addition, imiquimod, an NF-κB activator, could reverse fenofibrate-induced susceptibility to ABT-737-triggered apoptosis. Conclusion The present study provided the evidence of the underlying mechanisms on chemosensitization of fenofibrate by inducing the apoptosis of breast cancer in an AKT/NF-κB-dependent manner and implicated the potential application of fenofibrate in potentiating chemosensitivity in breast cancer therapy.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China, .,Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Zhibao Zheng
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China,
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Yin Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China,
| | - Mingming Quan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China,
| | - Yuechu Dai
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China,
| |
Collapse
|
53
|
Abstract
BCL-2 family proteins interact in a network that regulates apoptosis. The BH3 amino acid sequence motif serves to bind together this conglomerate protein family, both literally and figuratively. BH3 motifs are present in antiapoptotic and proapoptotic BCL-2 homologs, and in a separate group of unrelated BH3-only proteins often appended to the BCL-2 family. BH3-containing helices mediate many of their physical interactions to determine cell death versus survival, leading to the development of BH3 mimetics as therapeutics. Here we provide an overview of BCL-2 family interactions, their relevance in health and disease, and the progress toward regulating their interactions therapeutically.
Collapse
Affiliation(s)
- Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
54
|
The rise of apoptosis: targeting apoptosis in hematologic malignancies. Blood 2018; 132:1248-1264. [DOI: 10.1182/blood-2018-02-791350] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Dysregulation of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins of the intrinsic apoptotic pathway is fundamental to the pathophysiology of many hematologic malignancies. The BCL-2 family consists of regulatory proteins that either induce apoptosis (proapoptotic) or inhibit it (prosurvival). BCL-2, myeloid cell leukemia-1, and B-cell lymphoma–extra large are prosurvival proteins that are prime targets for anticancer therapy, and molecules targeting each are in various stages of preclinical and clinical development. The US Food and Drug Administration (FDA)-approved BCL-2 inhibitor venetoclax was first proven to be highly effective in chronic lymphocytic leukemia and some B-cell non-Hodgkin lymphoma subtypes. Subsequently, venetoclax was found to be active clinically against a diverse array of hematologic malignancies including multiple myeloma, acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia, and others. Here, we give a brief introduction to BCL-2 family biology and the mechanism of action of BCL-2 Homology 3 (BH3) mimetics, and provide an overview of the clinical data for therapeutically targeting prosurvival proteins in hematologic malignancies, with a focus on BCL-2 inhibition. To prioritize novel agent combinations and predict responders, we discuss the utility of functional assays such as BH3 profiling. Finally, we provide a perspective on how therapies targeting BCL-2 family proteins may be optimally implemented into future therapeutic regimens for hematologic malignancies.
Collapse
|
55
|
Stehle D, Grimm M, Einsele-Scholz S, Ladwig F, Johänning J, Fischer G, Gillissen B, Schulze-Osthoff K, Essmann F. Contribution of BH3-domain and Transmembrane-domain to the Activity and Interaction of the Pore-forming Bcl-2 Proteins Bok, Bak, and Bax. Sci Rep 2018; 8:12434. [PMID: 30127460 PMCID: PMC6102298 DOI: 10.1038/s41598-018-30603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Central to intrinsic apoptosis signaling is the release of cytochrome c from mitochondria, which depends on the pro-apoptotic effector proteins Bax, Bak or Bok. These pore-forming effector proteins share four Bcl-2 homology (BH) domains, a functionally essential and conserved sequence of hydrophobic amino acids in their BH3-domain and a C-terminal transmembrane-domain whose specific function remains rather unknown. To elucidate the molecular basis of Bok-mediated apoptosis we analyzed apoptosis induction by transmembrane-domain deficient BokΔTM compared to the respective Bax and Bak proteins and proteins in which the first leucine in the BH3-stretch was mutated to glutamic acid. We show that deletion of the C-terminal transmembrane-domain reduces the pro-apoptotic function of each protein. Mutation of the first leucine in the BH3-domain (L78E) blocks activity of Bak, while mutation of the homologue residues in Bax or Bok (L63E and L70E respectively) does not affect apoptosis induction. Unexpectedly, combined mutation of the BH3-domain and deletion of the transmembrane-domain enhances the pro-apoptotic activity of Bok(L70E)ΔTM by abolishing the interaction with anti-apoptotic proteins, especially the primary Bok-inhibitory protein Mcl-1. These results therefore suggest a specific contribution of the transmembrane-domain to the pro-apoptotic function and interaction of Bok.
Collapse
Affiliation(s)
- Daniel Stehle
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Melanie Grimm
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Stephanie Einsele-Scholz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Friederike Ladwig
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Janina Johänning
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology (IKP), 70376, Stuttgart, Germany
| | - Gerd Fischer
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Bernhard Gillissen
- Clinical and Molecular Oncology, University Medical Center Charité, 13125, Berlin, Germany
| | - Klaus Schulze-Osthoff
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Frank Essmann
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
56
|
Campbell KJ, Tait SWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol 2018; 8:rsob.180002. [PMID: 29769323 PMCID: PMC5990650 DOI: 10.1098/rsob.180002] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022] Open
Abstract
The ability of a cell to undergo mitochondrial apoptosis is governed by pro- and anti-apoptotic members of the BCL-2 protein family. The equilibrium of pro- versus anti-apoptotic BCL-2 proteins ensures appropriate regulation of programmed cell death during development and maintains organismal health. When unbalanced, the BCL-2 family can act as a barrier to apoptosis and facilitate tumour development and resistance to cancer therapy. Here we discuss the BCL-2 family, their deregulation in cancer and recent pharmaceutical developments to target specific members of this family as cancer therapy.
Collapse
Affiliation(s)
- Kirsteen J Campbell
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
57
|
Guo XF, Liu JP, Ma SQ, Zhang P, Sun WD. Avicularin reversed multidrug-resistance in human gastric cancer through enhancing Bax and BOK expressions. Biomed Pharmacother 2018; 103:67-74. [PMID: 29635130 DOI: 10.1016/j.biopha.2018.03.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-Fu) and cisplatin (DDP) as important therapies in treatment of human gastric cancer have been widely determined. However, the therapeutic effects are usually hampered due to drug resistance or toxicity at high concentrations for application. Avicularin (AL, quercetin-3-α-l-arabinofuranoside), a bio-active flavonol isolated from a number of plants, has been reported to display diverse pharmacological properties. In this study, we explored the hypothesis by which AL reversed 5-Fu or DDP resistance in gastric cancer and the underlying molecular mechanism. Here, in vitro, the drug-resistant cancer cells were incubated to AL or DDP alone or the combination of AL and DDP. Then, MTT, colony formation, Hoechst 33258, flow cytometry and western blot analysis were used to investigate the effects of AL in the regulation of drug-resistance gastric cancer cells. The results indicated that AL treatment markedly re-sensitizes the drug resistant cells (SGC-7901/5-Fu and SGC-7901/DDP) to cytotoxicity of 5-Fu or DDP. Molecular mechanism analysis indicated that AL and DDP combination treatment enhanced apoptosis in SGC-7901/DDP cells, accompanied with the up-regulation of cleaved Caspase-3 and PARP, as well as the activation of pro-apoptotic signals, including Bax and BOK. Significantly, down regulation of Bax or BOK expressions using Bax siRNA or BOK siRNA decreased the inhibitory role of DDP in apoptosis of SGC-7901/DDP cells pretreated with AL, demonstrating that AL-reversed DDP resistance was associated with Bax and BOK expression. In vivo, AL and DDP combination significantly reduced gastric tumor growth. Immunohistochemical analysis indicated that co-treatment of AL and DDP significantly induced apoptosis, and reduced tumor cell proliferation in tumor tissue samples. Furthermore, we also found that the Bax, BOK, cleaved Caspase-3 and PARP expression in tumor tissues were highly induced by AL and DDP co-treatment. Together, our findings may provide a novel combination therapeutic strategy in treatment of human gastric cancer.
Collapse
Affiliation(s)
- Xiang-Feng Guo
- Department of General Surgery, Shanxian Center Hospital, Heze, China
| | - Ji-Peng Liu
- Department of General Surgery, Shanxian Center Hospital, Heze, China
| | - Si-Quan Ma
- Department of General surgery, Heze Second People's Hospital, Heze, China
| | - Peng Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Wen-De Sun
- Department of General Surgery, Shanxian Center Hospital, Heze, China.
| |
Collapse
|
58
|
The BAX/BAK-like protein BOK is a prognostic marker in colorectal cancer. Cell Death Dis 2018; 9:125. [PMID: 29374142 PMCID: PMC5833733 DOI: 10.1038/s41419-017-0140-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
The intrinsic or mitochondrial apoptosis pathway is controlled by the interaction of antiapoptotic and pro-apoptotic members of the BCL-2 protein family. Activation of this death pathway plays a crucial role in cancer progression and chemotherapy responses. The BCL-2-related ovarian killer (BOK) possesses three BCL-2 homology domains and has been proposed to act in a similar pro-apoptotic pathway as the pro-apoptotic proteins BAX and BAK. In this study, we showed that stage II and III colorectal cancer patients possessed decreased levels of BOK protein in their tumours compared to matched normal tissue. BOK protein levels in tumours were also prognostic of clinical outcome but increased BOK protein levels surprisingly associated with earlier disease recurrence and reduced overall survival. We found no significant association of BOK protein tumour levels with ER stress markers GRP78 or GRP94 or with cleaved caspase-3. In contrast, BOK protein levels correlated with Calreticulin. These data indicate BOK as a prognostic marker in colorectal cancer and suggest that different activities of BOK may contribute to cancer progression and prognosis.
Collapse
|
59
|
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018; 25:46-55. [PMID: 29053143 PMCID: PMC5729535 DOI: 10.1038/cdd.2017.179] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis shapes development and differentiation, has a key role in tissue homeostasis, and is deregulated in cancer. In most cases, successful apoptosis is triggered by mitochondrial outer membrane permeabilization (MOMP), which defines the mitochondrial or intrinsic pathway and ultimately leads to caspase activation and protein substrate cleavage. The mitochondrial apoptotic pathway centered on MOMP is controlled by an intricate network of events that determine the balance of the cell fate choice between survival and death. Here we will review how MOMP proceeds and how the main effectors cytochrome c, a heme protein that has a crucial role in respiration, and second mitochondria-derived activator of caspase (SMAC), as well as other intermembrane space proteins, orchestrate caspase activation. Moreover, we discuss recent insights on the interplay of the upstream coordinators and initiators of MOMP, the BCL-2 family. This review highlights how our increasing knowledge on the regulation of critical checkpoints of apoptosis integrates with understanding of cancer development and has begun to translate into therapeutic clinical benefit.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
60
|
BOK promotes chemical-induced hepatocarcinogenesis in mice. Cell Death Differ 2017; 25:708-720. [PMID: 29229991 PMCID: PMC5864194 DOI: 10.1038/s41418-017-0008-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
BCL-2-related ovarian killer (BOK) is a conserved and widely expressed BCL-2 family member with sequence homology to pro-apoptotic BAX and BAK, but with poorly understood pathophysiological function. Since several members of the BCL-2 family are critically involved in the regulation of hepatocellular apoptosis and carcinogenesis we aimed to establish whether loss of BOK affects diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. Short-term exposure to DEN lead to upregulation of BOK mRNA and protein in the liver. Of note, induction of CHOP and the pro-apoptotic BH3-only proteins PUMA and BIM by DEN was strongly reduced in the absence of BOK. Accordingly, Bok-/- mice were significantly protected from DEN-induced acute hepatocellular apoptosis and associated inflammation. As a consequence, Bok-/- animals were partially protected against chemical-induced hepatocarcinogenesis showing fewer and, surprisingly, also smaller tumors than WT controls. Gene expression profiling revealed that downregulation of BOK results in upregulation of genes involved in cell cycle arrest. Bok-/- hepatocellular carcinoma (HCC) displayed higher expression levels of the cyclin kinase inhibitors p19INK4d and p21cip1. Accordingly, hepatocellular carcinoma in Bok-/- animals, BOK-deficient human HCC cell lines, as well as non-transformed cells, showed significantly less proliferation than BOK-proficient controls. We conclude that BOK is induced by DEN, contributes to DEN-induced hepatocellular apoptosis and resulting hepatocarcinogenesis. In line with its previously reported predominant localization at the endoplasmic reticulum, our findings support a role of BOK that links the cell cycle and cell death machineries upstream of mitochondrial damage.
Collapse
|
61
|
Sun D, Chen X, Gu G, Wang J, Zhang J. Potential Roles of Mitochondria-Associated ER Membranes (MAMs) in Traumatic Brain Injury. Cell Mol Neurobiol 2017; 37:1349-1357. [PMID: 28324201 DOI: 10.1007/s10571-017-0484-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria have both been shown to be critical in cellular homeostasis. The functions of the ER and mitochondria are independent but interrelated. These two organelles could form physical interactions, known as MAMs, to regulate physiological functions between ER and mitochondria to maintain Ca2+, lipid, and metabolite exchange. Several proteins are located in MAMs, including RNA-dependent protein kinase (PKR)-like ER kinase, inositol 1,4,5-trisphosphate receptors, phosphofurin acidic cluster sorting protein-2 and sigma-1 receptor to ensure regulation. Recent studies indicated that MAMs participate in inflammation and apoptosis in various conditions. All of these functions are crucial in determining cell fate following traumatic brain injury (TBI). We hypothesized that MAMs may associate with TBI and could contribute to mitochondrial dysfunction, ER stress, autophagy dysregulation, dysregulation of Ca2+ homeostasis, and oxidative stress. In this review, we summarize the latest understanding of MAM formation and their potential regulatory role in TBI pathophysiology.
Collapse
Affiliation(s)
- Dongdong Sun
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, People's Republic of China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, People's Republic of China.
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, People's Republic of China.
- Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, People's Republic of China.
| | - Gang Gu
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, People's Republic of China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, People's Republic of China
| | - Jianhao Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, People's Republic of China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, People's Republic of China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, People's Republic of China.
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, People's Republic of China.
- Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
62
|
Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome 2017; 28:528-541. [PMID: 28905131 DOI: 10.1007/s00335-017-9715-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N'Dama (West Africa-Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N'Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N'Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N'Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.
Collapse
|
63
|
Onyeagucha B, Subbarayalu P, Abdelfattah N, Rajamanickam S, Timilsina S, Guzman R, Zeballos C, Eedunuri V, Bansal S, Mohammad T, Chen Y, Vadlamudi RK, Rao MK. Novel post-transcriptional and post-translational regulation of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 determine the fate of breast cancer cells to survive or die. Oncotarget 2017; 8:85984-85996. [PMID: 29156771 PMCID: PMC5689661 DOI: 10.18632/oncotarget.20841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 02/03/2023] Open
Abstract
Deregulation of apoptosis is central to cancer progression and a major obstacle to effective treatment. The Bcl-2 gene family members play important roles in the regulation of apoptosis and are frequently altered in cancers. One such member is pro-apoptotic protein Bcl-2-related Ovarian Killer (BOK). Despite its critical role in apoptosis, the regulation of BOK expression is poorly understood in cancers. Here, we discovered that miR-296-5p regulates BOK expression by binding to its 3'-UTR in breast cancers. Interestingly, miR-296-5p also regulates the expression of anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1), which is highly expressed in breast cancers. Our results reveal that Mcl-1 and BOK constitute a regulatory feedback loop as ectopic BOK expression induces Mcl-1, whereas silencing of Mcl-1 results in reduced BOK levels in breast cancer cells. In addition, we show that silencing of Mcl-1 but not BOK reduced the long-term growth of breast cancer cells. Silencing of both Mcl-1 and BOK rescued the effect of Mcl-1 silencing on breast cancer cell growth, suggesting that BOK is important for attenuating cell growth in the absence of Mcl-1. Depletion of BOK suppressed caspase-3 activation in the presence of paclitaxel and in turn protected cells from paclitaxel-induced apoptosis. Furthermore, we demonstrate that glycogen synthase kinase (GSK3) α/β interacts with BOK and regulates its level post-translationally in breast cancer cells. Taken together, our results suggest that fine tuning of the levels of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 may decide the fate of cancer cells to either undergo apoptosis or proliferation.
Collapse
Affiliation(s)
- Benjamin Onyeagucha
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Panneerdoss Subbarayalu
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Nourhan Abdelfattah
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Subapriya Rajamanickam
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Santosh Timilsina
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Rosa Guzman
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Carla Zeballos
- 2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Vijay Eedunuri
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Sanjay Bansal
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Tabrez Mohammad
- 2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Yidong Chen
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,3 Department of Epidemiology and Statistics, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Ratna K. Vadlamudi
- 4 Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Manjeet K. Rao
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| |
Collapse
|
64
|
Abstract
Fernández-Marrero and colleagues show in their work that the proapoptotic BCL-2 family member BOK can form large, stable pores in artificial liposomes. This can be enhanced by the proapoptotic protein cBID and is unaffected by the antiapoptotic BCL-XL . Although BOK can bind to isolated mitochondria, it is unable to cause cytochrome c release even with the help of cBID.
Collapse
Affiliation(s)
- Manuel D Haschka
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
65
|
Moravcikova E, Krepela E, Donnenberg VS, Donnenberg AD, Benkova K, Rabachini T, Fernandez-Marrero Y, Bachmann D, Kaufmann T. BOK displays cell death-independent tumor suppressor activity in non-small-cell lung carcinoma. Int J Cancer 2017; 141:2050-2061. [PMID: 28744854 DOI: 10.1002/ijc.30906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
As the genomic region containing the Bcl-2-related ovarian killer (BOK) locus is frequently deleted in certain human cancers, BOK is hypothesized to have a tumor suppressor function. In the present study, we analyzed primary non-small-cell lung carcinoma (NSCLC) tumors and matched lung tissues from 102 surgically treated patients. We show that BOK protein levels are significantly downregulated in NSCLC tumors as compared to lung tissues (p < 0.001). In particular, we found BOK downregulation in NSCLC tumors of grades two (p = 0.004, n = 35) and three (p = 0.031, n = 39) as well as in tumors with metastases to hilar (pN1) (p = 0.047, n = 31) and mediastinal/subcarinal lymph nodes (pN2) (p = 0.021, n = 18) as opposed to grade one tumors (p = 0.688, n = 7) and tumors without lymph node metastases (p = 0.112, n = 51). Importantly, in lymph node-positive patients, BOK expression greater than the median value was associated with longer survival (p = 0.002, Mantel test). Using in vitro approaches, we provide evidence that BOK overexpression is inefficient in inducing apoptosis but that it inhibits TGFβ-induced migration and epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma-derived A549 cells. We have identified epigenetic mechanisms, in particular BOK promoter methylation, as an important means to silence BOK expression in NSCLC cells. Taken together, our data point toward a novel mechanism by which BOK acts as a tumor suppressor in NSCLC by inhibiting EMT. Consequently, the restoration of BOK levels in low-BOK-expressing tumors might favor the overall survival of NSCLC patients.
Collapse
Affiliation(s)
- Erika Moravcikova
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | - Evzen Krepela
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | | | - Kamila Benkova
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| | - Tatiana Rabachini
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Daniel Bachmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
66
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
67
|
G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov Today 2017; 22:1165-1186. [PMID: 28506718 DOI: 10.1016/j.drudis.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/20/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
Recently, therapeutic implications of BCL-2 quadruplex invigorated the field of clinical oncology. This Keynote review discusses how a BCL-2 quadruplex-selective approach circumvents the limitations of existing therapeutics; and which improvisations might ameliorate the recent trends of quadruplex-based treatment.
Collapse
|
68
|
D'Orsi B, Mateyka J, Prehn JHM. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 2017; 109:162-170. [PMID: 28315370 DOI: 10.1016/j.neuint.2017.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Neuronal cell death is often triggered by events that involve intracellular increases in Ca2+. Under resting conditions, the intracellular Ca2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca2+-dependent cell death. Excessive Ca2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca2+-dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia Mateyka
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
69
|
Fernández-Marrero Y, Bleicken S, Das KK, Bachmann D, Kaufmann T, Garcia-Saez AJ. The membrane activity of BOK involves formation of large, stable toroidal pores and is promoted by cBID. FEBS J 2017; 284:711-724. [PMID: 28064468 DOI: 10.1111/febs.14008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
Abstract
The BCL-2 family members are key regulators of the intrinsic apoptotic pathway, which is defined by permeabilization of the mitochondrial outer membrane by members of the BAX-like subfamily. BOK is classified as a BAX-like protein; however, its (patho-)physiological role remains largely unclear. We therefore assessed the membrane permeabilization potential of C-terminally truncated recombinant BOK, BOK∆C . We show that BOK∆C can permeabilize liposomes mimicking the composition of mitochondrial outer membrane, but not of endoplasmic reticulum, forming large and stable pores over time. Importantly, pore formation was enhanced by the presence of cBID and refractory to the addition of antiapoptotic BCL-XL . However, isolated mitochondria from Bax-/- Bak-/- cells were resistant to BOK-induced cytochrome c release, even in the presence of cBID. Taken together, we show that BOK∆C can permeabilize liposomes, and cooperate with cBID, but its role in directly mediating mitochondrial permeabilization is unclear and may underlie a yet to be determined negative regulation.
Collapse
Affiliation(s)
| | | | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | | | | | - Ana J Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
70
|
Liu Q. TMBIM-mediated Ca 2+ homeostasis and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:850-857. [PMID: 28064000 DOI: 10.1016/j.bbamcr.2016.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Ca2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi apparatus maintain high-concentration Ca2+ stores. Under resting conditions, store Ca2+ homeostasis is dynamically regulated to equilibrate between active Ca2+ uptake and passive Ca2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation of the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
71
|
Potter DS, Letai A. To Prime, or Not to Prime: That Is the Question. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:131-140. [PMID: 27811212 DOI: 10.1101/sqb.2016.81.030841] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial priming is regulated by the B-cell lymphoma 2 (BCL-2) family of proteins and determines a cell's "readiness" for apoptosis. A highly primed cell will undergo apoptosis more easily than an unprimed cell in response to apoptotic stimuli via the intrinsic apoptotic pathway. Priming can be measured via BH3 profiling, which uses BH3 peptides derived from the BH3 domain of pro-apoptotic BH3-only BCL-2 family members to provoke a response from viable mitochondria. BH3 profiling can be performed on tumor cells and can identify mechanisms a cell uses to evade apoptosis and anti-apoptotic dependency to the anti-apoptotic BCL-2 family members. Priming correlates with chemosensitivity of patients in multiple cancers. Therapeutics that enhances priming of patient tumor cells ex vivo could be used to aid therapeutic decisions for patients in the future.
Collapse
Affiliation(s)
- Danielle S Potter
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215
| | - Anthony Letai
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
72
|
Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury. J Neurosci 2016; 36:4564-78. [PMID: 27098698 DOI: 10.1523/jneurosci.3780-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found that bok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injury in vitro and seizure-induced neuronal injury in vivo Deletion of bok also increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death in bax-deficient neurons. Single-cell imaging demonstrated that bok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bok deficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death in bok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injury in vitro and in vivo SIGNIFICANCE STATEMENT Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activities in vitro and in vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins.
Collapse
|
73
|
Luna-Vargas MPA, Chipuk JE. Physiological and Pharmacological Control of BAK, BAX, and Beyond. Trends Cell Biol 2016; 26:906-917. [PMID: 27498846 DOI: 10.1016/j.tcb.2016.07.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
Cellular commitment to the mitochondrial pathway of apoptosis is accomplished when proapoptotic B cell chronic lymphocytic leukemia/lymphoma (BCL)-2 proteins compromise mitochondrial integrity through the process of mitochondrial outer membrane permeabilization (MOMP). For nearly three decades, intensive efforts focused on the identification and interactions of two key proapoptotic BCL-2 proteins: BCL-2 antagonist killer (BAK) and BCL-2-associated X (BAX). Indeed, we now have critical insights into which BCL-2 proteins interact with BAK/BAX to either preserve survival or initiate MOMP. In contrast, while mitochondria are targeted by BAK/BAX, a molecular understanding of how these organelles govern BAK/BAX function remains less clear. Here, we integrate recent mechanistic insights of proapoptotic BCL-2 protein function in the context of mitochondrial environment, and discuss current and potential pharmacological opportunities to control MOMP in disease.
Collapse
Affiliation(s)
- Mark P A Luna-Vargas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
74
|
|
75
|
Brem EA, Letai A. BOK: Oddball of the BCL-2 Family. Trends Cell Biol 2016; 26:389-390. [PMID: 27156889 DOI: 10.1016/j.tcb.2016.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022]
Abstract
BOK is a BCL-2 family member whose function has been difficult to elucidate. It has been recently demonstrated that BOK is regulated by the endoplasmic reticulum associated-degradation (ERAD) pathway, can induce mitochondrial outer membrane permeabilization (MOMP), and is not regulated by other members of the BCL-2 family. These findings demonstrate a novel mechanism for regulation of apoptosis, but it remains unclear in which specific contexts this mechanism may be most essential for cell death.
Collapse
Affiliation(s)
- Elizabeth A Brem
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Anthony Letai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA.
| |
Collapse
|
76
|
Cai J, Yu D, Wei S, Tang J, Lu Y, Wu Z, Qin Q, Jian J. Identification of the Bcl-2 family protein gene BOK from orange-spotted grouper (Epinephelus coioides) involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2016; 52:9-15. [PMID: 26994672 DOI: 10.1016/j.fsi.2016.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Apoptosis plays vital roles in many physiological process and immune response. BOK is one of the central regulators in apoptosis. In this study, a new BOK homolog (Ec-BOK) was cloned and characterized from Orange-spotted grouper, Epinephelus coioides. Ec-BOK encoded a 210 amino acid peptides which shared 97% identity to Stegastes partitus BOK protein, contained four BH domains and one transmembrane region. Ec-BOK widely expressed in all analyzed tissues with the higher expressions in kidney and spleen. Its expression level was up-regulated after SGIV infection in vitro. Further analysis revealed that overexpression of Ec-BOK inhibited viral genes transcriptions and virus replication in fish cell. Our findings suggested that Ec-BOK might play a role in the immune response against virus.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China.
| |
Collapse
|
77
|
Einsele-Scholz S, Malmsheimer S, Bertram K, Stehle D, Johänning J, Manz M, Daniel PT, Gillissen BF, Schulze-Osthoff K, Essmann F. Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak. J Cell Sci 2016; 129:2213-23. [PMID: 27076518 DOI: 10.1242/jcs.181727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
The pro-apoptotic multidomain Bcl-2 proteins Bax and Bak (also known as BAK1) are considered the gatekeepers of the intrinsic pathway of apoptosis by triggering the mitochondrial release of cytochrome c The role of the third Bax- and Bak-homologous multidomain protein Bok, however, is still unresolved. As cells doubly deficient for Bax and Bak are largely resistant to various apoptotic stimuli, it has been proposed that Bok is either dispensable for apoptosis or that its role is dependent on Bax and Bak. Here, we demonstrate, in several cell systems, that Bok efficiently induces cytochrome c release and apoptosis even in the complete absence of both Bak and Bax. Moreover, modulation of endogenous Bok levels affects the apoptosis response. By RNA interference and targeted deletion of the Bok gene, we demonstrate that Bok can significantly influence the apoptotic response to chemotherapeutic drugs in ovarian carcinoma cells. Hence, our results not only establish Bok as a Bak- and Bax-independent apoptosis inducer, but also suggest a potential impact of Bok expression in ovarian cancer therapy.
Collapse
Affiliation(s)
- Stephanie Einsele-Scholz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Silke Malmsheimer
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Katrin Bertram
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Daniel Stehle
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Janina Johänning
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Marianne Manz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Peter T Daniel
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin 13125, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Bernhard F Gillissen
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin 13125, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Klaus Schulze-Osthoff
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Frank Essmann
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
78
|
O'Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev 2016; 30:973-88. [PMID: 27056669 PMCID: PMC4840302 DOI: 10.1101/gad.276725.115] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
In this study, O'Neill et al. used genome editing to generate cells deficient for all eight proapoptotic BH3-only proteins (OctaKO) and cells that lack the entire Bcl-2 family (Bcl-2 allKO). Their findings suggest that the outer mitochondrial membrane (OMM), not BH3-only proteins or p53/Rb, is the direct activator of Bax/Bak following BH3-only-mediated neutralization of anti-apoptotic Bcl-2 proteins. The mechanism of Bax/Bak activation remains a central question in mitochondria-dependent apoptotic signaling. While it is established that all proapoptotic Bcl-2 homology 3 (BH3)-only proteins bind and neutralize the anti-apoptotic Bcl-2 family proteins, how this neutralization leads to Bax/Bak activation has been actively debated. Here, genome editing was used to generate cells deficient for all eight proapoptotic BH3-only proteins (OctaKO) and those that lack the entire Bcl-2 family (Bcl-2 allKO). Although the OctaKO cells were resistant to most apoptotic stimuli tested, they underwent Bax/Bak-dependent and p53/Rb-independent apoptosis efficiently when both Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins, were inactivated or eliminated. Strikingly, when expressed in the Bcl-2 allKO cells, both Bax and Bak spontaneously associated with the outer mitochondrial membrane (OMM) through their respective helix 9, and this association triggered their homo-oligomerization/activation. Together, these results strongly suggest that the OMM, not BH3-only proteins or p53/Rb, is the long-sought-after direct activator of Bax/Bak following BH3-only-mediated neutralization of anti-apoptotic Bcl-2 proteins.
Collapse
Affiliation(s)
- Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kai Huang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jingjing Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
79
|
Schulman JJ, Wright FA, Han X, Zluhan EJ, Szczesniak LM, Wojcikiewicz RJH. The Stability and Expression Level of Bok Are Governed by Binding to Inositol 1,4,5-Trisphosphate Receptors. J Biol Chem 2016; 291:11820-8. [PMID: 27053113 DOI: 10.1074/jbc.m115.711242] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/31/2022] Open
Abstract
Bok is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, although the role that Bok plays in this pathway is unclear. We have shown previously in cultured cell lines that Bok interacts strongly with inositol 1,4,5-trisphosphate receptors (IP3Rs), suggesting that it may contribute to the structural integrity or stability of IP3R tetramers. Here we report that Bok is similarly IP3R-assocated in mouse tissues, that essentially all cellular Bok is IP3R bound, that it is the helical nature of the Bok BH4 domain, rather than specific amino acids, that mediates binding to IP3Rs, that Bok is dramatically stabilized by binding to IP3Rs, that unbound Bok is ubiquitinated and degraded by the proteasome, and that binding to IP3Rs limits the pro-apoptotic effect of overexpressed Bok. Agents that stimulate IP3R activity, apoptosis, phosphorylation, and endoplasmic reticulum stress did not trigger the dissociation of mature Bok from IP3Rs or Bok degradation, indicating that the role of proteasome-mediated Bok degradation is to destroy newly synthesized Bok that is not IP3R associated. The existence of this unexpected proteolytic mechanism that is geared toward restricting Bok to that which is bound to IP3Rs, implies that unbound Bok is deleterious to cell viability and helps explain the current uncertainty regarding the cellular role of Bok.
Collapse
Affiliation(s)
- Jacqualyn J Schulman
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Xiaobing Han
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Eric J Zluhan
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Laura M Szczesniak
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | | |
Collapse
|
80
|
Llambi F, Wang YM, Victor B, Yang M, Schneider DM, Gingras S, Parsons MJ, Zheng JH, Brown SA, Pelletier S, Moldoveanu T, Chen T, Green DR. BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell 2016; 165:421-33. [PMID: 26949185 DOI: 10.1016/j.cell.2016.02.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/11/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
The mitochondrial pathway of apoptosis is initiated by mitochondrial outer membrane permeabilization (MOMP). The BCL-2 family effectors BAX and BAK are thought to be absolutely required for this process. Here, we report that BCL-2 ovarian killer (BOK) is a bona fide yet unconventional effector of MOMP that can trigger apoptosis in the absence of both BAX and BAK. However, unlike the canonical effectors, BOK appears to be constitutively active and unresponsive to antagonistic effects of the antiapoptotic BCL-2 proteins. Rather, BOK is controlled at the level of protein stability by components of the endoplasmic reticulum (ER)-associated degradation pathway. BOK is ubiquitylated by the AMFR/gp78 E3 ubiquitin ligase complex and targeted for proteasomal degradation in a VCP/p97-dependent manner, which allows survival of the cell. When proteasome function, VCP, or gp78 activity is compromised, BOK is stabilized to induce MOMP and apoptosis independently of other BCL-2 proteins.
Collapse
Affiliation(s)
- Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bernadette Victor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Desiree M Schneider
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sébastien Gingras
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melissa J Parsons
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Janet H Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stéphane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
81
|
Delbridge ARD, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 2016; 16:99-109. [PMID: 26822577 DOI: 10.1038/nrc.2015.17] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 'hallmarks of cancer' are generally accepted as a set of genetic and epigenetic alterations that a normal cell must accrue to transform into a fully malignant cancer. It follows that therapies designed to counter these alterations might be effective as anti-cancer strategies. Over the past 30 years, research on the BCL-2-regulated apoptotic pathway has led to the development of small-molecule compounds, known as 'BH3-mimetics', that bind to pro-survival BCL-2 proteins to directly activate apoptosis of malignant cells. This Timeline article focuses on the discovery and study of BCL-2, the wider BCL-2 protein family and, specifically, its roles in cancer development and therapy.
Collapse
Affiliation(s)
- Alex R D Delbridge
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Stephanie Grabow
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - David L Vaux
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| |
Collapse
|
82
|
ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1364-78. [PMID: 26772784 DOI: 10.1016/j.bbamcr.2016.01.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Intracellular Ca(2+) signals that arise from the endoplasmic reticulum (ER), the major intracellular Ca(2+)-storage organelle, impact several mitochondrial functions and dictate cell survival and cell death processes. Furthermore, alterations in Ca(2+) signaling in cancer cells promote survival and establish a high tolerance towards cell stress and damage, so that the on-going oncogenic stress does not result in the activation of cell death. Over the last years, the mechanisms underlying these oncogenic alterations in Ca(2+) signaling have started to emerge. An important aspect of this is the identification of several major oncogenes, including Bcl-2, Bcl-XL, Mcl-1, PKB/Akt, and Ras, and tumor suppressors, such as p53, PTEN, PML, BRCA1, and Beclin 1, as direct and critical regulators of Ca(2+)-transport systems located at the ER membranes, including IP3 receptors and SERCA Ca(2+) pumps. In this way, these proteins execute part of their function by controlling the ER-mitochondrial Ca(2+) fluxes, favoring either survival (oncogenes) or cell death (tumor suppressors). Oncogenic mutations, gene deletions or amplifications alter the expression and/or function of these proteins, thereby changing the delicate balance between oncogenes and tumor suppressors, impacting oncogenesis and favoring malignant cell function and behavior. In this review, we provided an integrated overview of the impact of the major oncogenes and tumor suppressors, often altered in cancer cells, on Ca(2+) signaling from the ER Ca(2+) stores. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
83
|
Zhang P, Huang CR, Wang W, Zhang XK, Chen JJ, Wang JJ, Lin C, Jiang JW. Harmine Hydrochloride Triggers G2 Phase Arrest and Apoptosis in MGC-803 Cells and SMMC-7721 Cells by Upregulating p21, Activating Caspase-8/Bid, and Downregulating ERK/Bad Pathway. Phytother Res 2015; 30:31-40. [PMID: 26549417 DOI: 10.1002/ptr.5497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/20/2015] [Accepted: 09/27/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Peng Zhang
- Department of Microbiology and Immunology, Medical College; Jinan University; Guangzhou 510630 China
| | - Chun-rong Huang
- Department of Nephrology; First Affiliated Hospital of Jinan University; Guangzhou 510630 China
| | - Wei Wang
- Department of Laboratory; Foshan Fourth People's Hospital; Foshan 528000 Guangdong Province China
| | - Xia-kai Zhang
- Department of General Surgery; First Affiliated Hospital of Jinan University; Guangzhou 510630 China
- Department of General Surgery; The First People's Hospital of Nanyang City; Nanyang 473000 China
| | - Jia-jin Chen
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| | - Juan-juan Wang
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| | - Chen Lin
- Department of Microbiology and Immunology, Medical College; Jinan University; Guangzhou 510630 China
| | - Jian-wei Jiang
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| |
Collapse
|
84
|
Impact of the combined loss of BOK, BAX and BAK on the hematopoietic system is slightly more severe than compound loss of BAX and BAK. Cell Death Dis 2015; 6:e1938. [PMID: 26492371 PMCID: PMC4632322 DOI: 10.1038/cddis.2015.304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022]
Abstract
It is well established that BAX and BAK play crucial, overlapping roles in the intrinsic pathway of apoptosis. Gene targeted mice lacking both BAX and BAK have previously been generated, but the majority of these animals died perinatally. BOK is a poorly studied relative of BAX and BAK that shares extensive amino acid sequence homology to both proteins, but its function remains largely unclear to date. To determine whether BOK plays an overlapping role with BAX and BAK, we utilized a hematopoietic reconstitution model where lethally irradiated wild type mice were transplanted with Bok−/−Bax−/−Bak−/− triple knockout (TKO) fetal liver cells, and compared alongside mice reconstituted with a Bax−/−Bak−/− double knockout (DKO) hematopoietic compartment. We report here that mice with a TKO and DKO hematopoietic system died at a similar rate and much earlier than control animals, mostly due to severe autoimmune pathology. Both TKO and DKO reconstituted mice also had altered frequencies of various leukocyte subsets in the thymus, bone marrow and spleen, displayed leukocyte infiltrates and autoimmune pathology in multiple tissues, as well as elevated levels of anti-nuclear autoantibodies. Interestingly, the additional deletion of BOK (on top of BAX and BAK loss) led to a further increase in peripheral blood lymphocytes, as well as enhanced lymphoid infiltration in some organs. These findings suggest that BOK may have some functions that are redundant with BAX and BAK in the hematopoietic system.
Collapse
|
85
|
Zhao D, Sun Y, Wei X, Liang H, Zhao L, Dong X, Chen H, Chen W, Yang J, Wang X, Gao F, Yi W. cIAP1 attenuates shear stress-induced hBMSC apoptosis for tissue-engineered blood vessels through the inhibition of the mitochondrial apoptosis pathway. Life Sci 2015; 137:81-8. [DOI: 10.1016/j.lfs.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 01/21/2023]
|
86
|
Chaurasia MK, Palanisamy R, Harikrishnan R, Arasu MV, Al-Dhabi NA, Arockiaraj J. Molecular profiles and pathogen-induced transcriptional responses of prawn B cell lymphoma-2 related ovarian killer protein (BOK). FISH & SHELLFISH IMMUNOLOGY 2015; 45:598-607. [PMID: 25982403 DOI: 10.1016/j.fsi.2015.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, we have reported a molecular characterization of the first B cell lymphoma-2 (BCL-2) related ovarian killer protein (BOK) from freshwater prawn Macrobrachium rosenbergii (Mr). BOK is a novel pro-apoptotic protein of the BCL-2 family that entails in mediating apoptosis to remove cancer cells. A cDNA sequence of MrBOK was identified from the prawn cDNA library and its full length was obtained by internal sequencing. The coding region of MrBOK yields a polypeptide of 291 amino acids. The analysis revealed that MrBOK contains a transmembrane helix at V(261)-L(283) and a putative BCL-2 family domain at V(144)-W(245). MrBOK also possessed four putative BCL-2 homology domains including BH1, BH2, BH3 and weak BH4. The BH3 contains 21 binding sites and among them five residues are highly conserved with the aligned BOK proteins. The homology analysis showed that MrBOK shared maximum similarity with the Caligus rogercresseyi BOK A. The topology of the phylogenetic tree was classified into nine sister groups which includes BOK, BAK, BAX, BAD, BCL-2, BCL-XL, NR13 and MCL members. The BOK protein group further sub-grouped into vertebrate and invertebrate BOK, wherein MrBOK located within insect monophyletic clad of invertebrate BOK. The secondary structural analysis showed that MrBOK contains 11 α-helices (52.2%) which are connected over random coils (47.7%). The 3D structure of MrBOK showed three central helices (α6, α7 and α8) which formed the core of the protein and are flanked on one side by α1, α2 and α3, and on the other side by α4, α5 and α11. MrBOK mRNA is expressed most abundantly (P < 0.05) in ovary compared to other tissues taken for analysis. Hence ovary was selected to study the possible roles of MrBOK mRNA regulation upon bacterial (Aeromonas hydrophila and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodovirus] infection. During bacterial and viral infection, the highest MrBOK mRNA transcription was varied at different time points. In bacterial infected ovary tissue, the highest mRNA expression was at 24 h post-infection, whereas in viral infection, the expression was highest at 48 h post-infection. Thus we can conclude that MrBOK functions as an apoptotic protein in intracellular programmed cell-death pathway to counteract the anti-apoptotic proteins released by bacterial and viral pathogens at the time of infection. This is the first study that emphasizes the importance of BOK during bacterial and viral infection in crustacean.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
87
|
BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci U S A 2015; 112:7201-6. [PMID: 26015568 DOI: 10.1073/pnas.1421063112] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a BCL-2 family protein with high homology to the multidomain proapoptotic proteins BAX and BAK, yet Bok(-/-) and even Bax(-/-)Bok(-/-) and Bak(-/-)Bok(-/-) mice were reported to have no overt phenotype or apoptotic defects in response to a host of classical stress stimuli. These surprising findings were interpreted to reflect functional compensation among the BAX, BAK, and BOK proteins. However, BOK cannot compensate for the severe apoptotic defects of Bax(-/-)Bak(-/-) mice despite its widespread expression. Here, we independently developed Bok(-/-) mice and found that Bok(-/-) cells are selectively defective in their response to endoplasmic reticulum (ER) stress stimuli, consistent with the predominant subcellular localization of BOK at the ER. Whereas Bok(-/-) mouse embryonic fibroblasts exposed to thapsigargin, A23187, brefeldin A, DTT, geldanamycin, or bortezomib manifested reduced activation of the mitochondrial apoptotic pathway, the death response to other stimuli such as etoposide, staurosporine, or UV remained fully intact. Multiple organs in Bok(-/-) mice exhibited resistance to thapsigargin-induced apoptosis in vivo. Although the ER stress agents activated the unfolded protein response, both ATF4 and CHOP activation were diminished in Bok(-/-) cells and mice. Importantly, BAX and BAK were unable to compensate for the defective apoptotic response to ER stress observed in SV40-transformed and primary Bok(-/-) cells, and in vivo. These findings support a selective and distinguishing role for BOK in regulating the apoptotic response to ER stress, revealing--to our knowledge--the first bona fide apoptotic defect linked to Bok deletion.
Collapse
|
88
|
Balogh A, Németh M, Koloszár I, Markó L, Przybyl L, Jinno K, Szigeti C, Heffer M, Gebhardt M, Szeberényi J, Müller DN, Sétáló G, Pap M. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 2015; 19:1080-98. [PMID: 24722832 DOI: 10.1007/s10495-014-0986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.
Collapse
Affiliation(s)
- András Balogh
- Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mehta J, Asthana S, Mandal CC, Saxena S. A molecular analysis provides novel insights into androgen receptor signalling in breast cancer. PLoS One 2015; 10:e0120622. [PMID: 25781993 PMCID: PMC4364071 DOI: 10.1371/journal.pone.0120622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/05/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Androgen Receptor (AR) is an essential transcription factor for the development of secondary sex characteristics, spermatogenesis and carcinogenesis. Recently AR has been implicated in the development and progression of breast and prostate cancers. Although some of the functions of the AR are known but the mechanistic details of these divergent processes are still not clear. Therefore understanding the regulatory mechanisms of the functioning of the AR in ER-/AR+ breast cancer will provide many novel targets for the purpose of therapeutic intervention. METHODS/RESULTS Using bioinformatics tools, we have identified 75 AR targets having prominent roles in cell cycle, apoptosis and metabolism. Herein, we validated 10 genes as AR targets by studying the regulation of these genes in MDA-MB-453 cell line on stimulation by androgens like 5α-dihydrotestosterone (DHT), using RT-qPCR and ChIP assay. It was observed that all the identified genes involved in cell cycle except MAD1L1 were found to be up regulated whereas expression of apoptosis related genes was decreased in response to DHT treatment. We performed an exhaustive, rigid-body docking between individual ARE and DNA binding domain (DBD) of the AR protein and it was found that novel residues K567, K588, K591 and R592 are involved in the process of DNA binding. To verify these specific DNA-protein interactions electrostatic energy term calculations for each residue was determined using the linearized Poisson-Boltzmann equation. Our experimental data showed that treatment of breast cancer cells with DHT promotes cell proliferation and decreases apoptosis. It was observed that bicalutamide treatment was able to reverse the effect of DHT. CONCLUSION Taken together, our results provide new insights into the mechanism by which AR promotes breast cancer progression. Moreover our work proposes to use bicalutamide along with taxanes as novel therapy for the treatment of TNBCs, which are positive for downstream AR signalling.
Collapse
Affiliation(s)
- Jatin Mehta
- National Institute of Pathology, ICMR, Safdarjang Hospital, New Delhi, India
| | - Shailendra Asthana
- National Institute of Pathology, ICMR, Safdarjang Hospital, New Delhi, India
| | | | - Sunita Saxena
- National Institute of Pathology, ICMR, Safdarjang Hospital, New Delhi, India
- * E-mail:
| |
Collapse
|
90
|
Anilkumar U, Prehn JHM. Anti-apoptotic BCL-2 family proteins in acute neural injury. Front Cell Neurosci 2014; 8:281. [PMID: 25324720 PMCID: PMC4179715 DOI: 10.3389/fncel.2014.00281] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/25/2014] [Indexed: 12/17/2022] Open
Abstract
Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
91
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
92
|
Abstract
Pre-eclampsia, a disorder of pregnancy, is characterized by placental hypoxia and cell death. Hypoxia shifts the intricate balance between death-inducing BOK and survival-promoting MCL1 towards BOK, thereby triggering placental cell death. Here, we show that BOK is a direct target of HIF.
Collapse
|
93
|
DeBartolo J, Taipale M, Keating AE. Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. PLoS Comput Biol 2014; 10:e1003693. [PMID: 24967846 PMCID: PMC4072508 DOI: 10.1371/journal.pcbi.1003693] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/13/2014] [Indexed: 01/27/2023] Open
Abstract
Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. Bcl-2 family proteins regulate key cell death vs. survival decisions and are implicated in the development of many cancers. To understand the roles of Bcl-2 family proteins in both normal and diseased cells, it is important to map the interaction network of the family. Low sequence conservation in known Bcl-2 interaction motifs precludes easy identification of possible binding partners, but we developed computational models based on structure and experimental mutation data that show good predictive performance. We used our models to search the human proteome for new Bcl-2 interaction partners. We predicted and experimentally validated more than twice as many tight-binding peptides as were previously known.
Collapse
Affiliation(s)
- Joe DeBartolo
- MIT Department of Biology, Cambridge, Massachusetts, United States of America
| | - Mikko Taipale
- MIT Department of Biology, Cambridge, Massachusetts, United States of America
| | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
94
|
Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chem Phys Lipids 2014; 183:77-90. [PMID: 24892727 DOI: 10.1016/j.chemphyslip.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
Abstract
Bcl-2 family proteins are involved in cell homeostasis, where they regulate cell death. Some of these proteins are pro-apoptotic and others pro-survival. Moreover, many of them share a similar domain composition with several of the so-called BH domains, although some only have a BH3 domain. A C-terminal domain is present in all the multi-BH domain proteins and in some of the BH3-only ones. This C-terminal domain is hydrophobic or amphipathic, for which reason it was thought when they were discovered that they were membrane anchors. Although this is indeed one of their functions, it has since been observed that they may also serve as regulators of the function of some members of this family, such as Bax. They may also serve to recognize the target membrane of some of these proteins, which only after an apoptotic signal, are incorporated into a membrane. It has been shown that peptides that imitate the sequence of C-terminal domains can form pores and may serve as a model to design cytotoxic molecules.
Collapse
|
95
|
Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2164-83. [PMID: 24642269 DOI: 10.1016/j.bbamcr.2014.03.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 01/22/2023]
Abstract
Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hristina Ivanova
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
96
|
Bonnet A, Cabau C, Bouchez O, Sarry J, Marsaud N, Foissac S, Woloszyn F, Mulsant P, Mandon-Pepin B. An overview of gene expression dynamics during early ovarian folliculogenesis: specificity of follicular compartments and bi-directional dialog. BMC Genomics 2013; 14:904. [PMID: 24350644 PMCID: PMC3890531 DOI: 10.1186/1471-2164-14-904] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/10/2013] [Indexed: 12/03/2022] Open
Abstract
Background Successful early folliculogenesis is crucial for female reproductive function. It requires appropriate gene specific expression of the different types of ovarian cells at different developmental stages. To date, most gene expression studies on the ovary were conducted in rodents and did not distinguish the type of cell. In mono-ovulating species, few studies have addressed gene expression profiles and mainly concerned human oocytes. Results We used a laser capture microdissection method combined with RNA-seq technology to explore the transcriptome in oocytes and granulosa cells (GCs) during development of the sheep ovarian follicle. We first documented the expression profile of 15 349 genes, then focused on the 5 129 genes showing differential expression between oocytes and GCs. Enriched functional categories such as oocyte meiotic arrest and GC steroid synthesis reflect two distinct cell fates. We identified the implication of GC signal transduction pathways such as SHH, WNT and RHO GTPase. In addition, signaling pathways (VEGF, NOTCH, IGF1, etc.) and GC transzonal projections suggest the existence of complex cell-cell interactions. Finally, we highlighted several transcription regulators and specifically expressed genes that likely play an important role in early folliculogenesis. Conclusions To our knowledge, this is the first comprehensive exploration of transcriptomes derived from in vivo oocytes and GCs at key stages in early follicular development in sheep. Collectively, our data advance our understanding of early folliculogenesis in mono-ovulating species and will be a valuable resource for unraveling human ovarian dysfunction such as premature ovarian failure (POF).
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR444 Génétique Cellulaire, Auzeville, BP52627, F-31326, Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Cisplatin inhibits hippocampal cell proliferation and alters the expression of apoptotic genes. Neurotox Res 2013; 25:369-80. [PMID: 24277158 DOI: 10.1007/s12640-013-9443-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to antineoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague-Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death. Two days after a 12 mg/kg dose of cisplatin, significant increases were observed in five proapoptotic genes: Bik, Bid, Bok, Trp53p2, and Card6 and a significant decrease in one antiapoptotic gene Bcl2a1. In contrast, Nol3, an antiapoptotic gene, showed a significant increase in expression. The cisplatin-induced increase in Bid mRNA and decrease in Bcl2a1 mRNA were accompanied by a corresponding increase and decrease of their respective proteins in the hippocampus. In contrast, the cisplatin-induced changes in Bcl2a1, Bid, Bik, and Bok gene expression in the inferior colliculus were strikingly different from those in the hippocampus consistent with the greater susceptibility of the hippocampus to cisplatin toxicity. Cisplatin also significantly reduced immunolabeling of the cell proliferation marker Ki67 in the subgranular zone of the hippocampus 2 days post-treatment. These results indicate that cisplatin-induced hippocampal cell death is mediated by increased expression of proapoptotic and decreased antiapoptotic genes and proteins that likely inhibit hippocampal cell proliferation.
Collapse
|
98
|
Kalkat M, Garcia J, Ebrahimi J, Melland-Smith M, Todros T, Post M, Caniggia I. Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy 2013; 9:2140-53. [PMID: 24113155 DOI: 10.4161/auto.26452] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is the catabolic degradation of cellular cytoplasmic constituents via the lysosomal pathway that physiologically elicits a primarily cytoprotective function, but can rapidly be upregulated in response to stressors thereby inducing cell death. We have reported that the balance between the BCL2 family proteins BOK and MCL1 regulates human trophoblast cell fate and its alteration toward cell death typifies preeclampsia. Here we demonstrate that BOK is a potent inducer of autophagy as shown by increased LC3B-II production, autophagosomal formation and lysosomal activation in HEK 293. In contrast, using JEG3 cells we showed that prosurvival MCL1 acts as a repressor of autophagy via an interaction with BECN1, which is abrogated by BOK. We found that MCL1-cleaved products, specifically MCL1c157, trigger autophagy while the splicing variant MCL1S has no effect. Treatment of JEG3 cells with nitric oxide donor SNP resulted in BOK-MCL1 rheostat dysregulation, favoring BOK accumulation, thereby inducing autophagy. Overexpression of MCL1 rescued oxidative stress-induced autophagy. Of clinical relevance, we report aberrant autophagy levels in the preeclamptic placenta due to impaired recruitment of BECN1 to MCL1. Our data provided the first evidence for a key role of the BOK-MCL1 system in regulating autophagy in the human placenta, whereby an adverse environment as seen in preeclampsia tilts the BOK-MCL1 balance toward the build-up of isoforms that triggers placental autophagy.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto, ON CA; Department of Physiology; University of Toronto; Toronto, ON CA
| | | | | | | | | | | | | |
Collapse
|
99
|
Ly LL, Yoshida H, Yamaguchi M. Nuclear transcription factor Y and its roles in cellular processes related to human disease. Am J Cancer Res 2013; 3:339-346. [PMID: 23977444 PMCID: PMC3744014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023] Open
Abstract
Nuclear transcription factor Y (NF-Y) is an example of a transcriptional regulation factor in eukaryotes consisting of three different subunits, NF-YA, NF-YB and NF-YC, which are all necessary for formation of NF-Y complexes and binding to CCAAT boxes in promoters of its target genes. Highly conserved between human and Drosophila, NF-Y regulates transcription of various genes related to the cell cycle and various human diseases. Drosophila models have been widely used as tools for studying genetics and developmental biology and more recently for analyzing the functions of human disease genes, including those responsible for developmental and neurological disorders, cancer, cardiovascular disease and metabolic and storage diseases, as well as genes required for function of the visual, auditory and immune systems. In this review, in vivo findings from Drosophila models relevant to the roles of NF-Y in various human diseases are summarized. Recent studies have demonstrated novel contributions of dNF-Y to apoptosis and apoptosis-induced proliferation, and in photoreceptor cell differentiation during the development of the Drosophila compound eye.
Collapse
Affiliation(s)
- Luong Linh Ly
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | | | |
Collapse
|
100
|
Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJH. The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 2013; 288:25340-25349. [PMID: 23884412 DOI: 10.1074/jbc.m113.496570] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895-1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.
Collapse
Affiliation(s)
- Jacqualyn J Schulman
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Thomas Kaufmann
- University of Bern, Medical Faculty, Institute of Pharmacology, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | - Richard J H Wojcikiewicz
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and.
| |
Collapse
|