51
|
Cheng CHC, di Prisco G, Verde C. The “icefish paradox.” Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? IUBMB Life 2009; 61:184-8. [DOI: 10.1002/iub.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Urschel MR, O'Brien KM. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. J Exp Biol 2008; 211:2638-46. [DOI: 10.1242/jeb.018598] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SUMMARY
We investigated the molecular mechanisms regulating differences in mitochondrial volume density between heart ventricles of Antarctic notothenioids that vary in the expression of hemoglobin (Hb) and myoglobin(Mb). In mammals, peroxisome proliferator-activated receptor γcoactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF-1)stimulate mitochondrial biogenesis and maintain mitochondrial density in muscle tissues. We hypothesized that these factors would also maintain mitochondrial density in the hearts of Antarctic notothenioids. The percent cell volume occupied by mitochondria is significantly lower in hearts of the red-blooded notothenioid Notothenia coriiceps (18.18±0.69%) in comparison with those of the icefish Chaenocephalus aceratus(36.53±2.07%), which lacks both Hb and cardiac Mb. Mitochondrial densities are not different between hearts of N. coriiceps and Chionodraco rastrospinosus, which lacks Hb, but whose heart expresses Mb. Despite differences in mitochondrial volume density between hearts of N. coriiceps and C. aceratus, the levels of transcripts of the genes encoding PGC-1α, NRF-1 and citrate synthase, and the copy number of mitochondrial DNA do not differ. Our results indicate that the high mitochondrial densities in hearts of C. aceratus may result from an increase in organelle size. The surface-to-volume ratio of mitochondria from N. coriiceps is 1.9-fold greater than that of mitochondria from C. aceratus. In addition, the levels of PGC-1α correlate with mitochondrial density in muscle tissues of notothenioids possessing mitochondria of similar size and morphology. Finally, the levels of PGC-1α are 4.6-fold higher in the aerobic pectoral adductor muscle in comparison with the glycolytic skeletal muscle of N. coriiceps. The potential physiological significance of an increase in mitochondrial size in hearts of Antarctic icefishes is discussed.
Collapse
Affiliation(s)
- Matthew R. Urschel
- University of Alaska, Fairbanks, Institute of Arctic Biology, PO Box 757000, Fairbanks, AK 99775, USA
| | - Kristin M. O'Brien
- University of Alaska, Fairbanks, Institute of Arctic Biology, PO Box 757000, Fairbanks, AK 99775, USA
| |
Collapse
|
53
|
Jury DR, Kaveti S, Duan ZH, Willard B, Kinter M, Londraville R. Effects of calorie restriction on the zebrafish liver proteome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:275-82. [PMID: 20494847 DOI: 10.1016/j.cbd.2008.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 01/15/2023]
Abstract
A proteomic approach was taken to study how fish respond to changes in calorie availability, with the longer-term goal of understanding the evolution of lipid metabolism in vertebrates. Zebrafish (Danio rerio) were fed either high (3 rations/day) or low (1 ration/7 days) calorie diets for 5 weeks and liver proteins extracted for proteomic analyses. Proteins were separated on two-dimensional electrophoresis gels and homologous spots compared between treatments to determine which proteins were up-regulated with high-calorie diet. Fifty-five spots were excised from the gel and analyzed via LC-ESI MS/MS, which resulted in the identification of 69 unique proteins (via multiple peptides). Twenty-nine of these proteins were differentially expressed between treatments. Differentially expressed proteins were mapped to Gene Ontology (GO) terms, and these terms compared to the entire zebrafish GO annotation set by Fisher's exact test. The most significant GO terms associated with high-calorie diet are related to a decrease in oxygen-binding activity in the high-calorie treatment. This response is consistent with a well-characterized response in obese humans, indicating there may be a link between lipid storage and hypoxia sensitivity in vertebrates.
Collapse
Affiliation(s)
- David R Jury
- University of Akron, Department of Biology and Integrated Bioscience Program, Akron, Ohio 44325, USA
| | | | | | | | | | | |
Collapse
|
54
|
Pörtner HO, Peck L, Somero G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc Lond B Biol Sci 2008; 362:2233-58. [PMID: 17553776 PMCID: PMC2443174 DOI: 10.1098/rstb.2006.1947] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (Km and k(cat)) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e.g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life-history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.
Collapse
Affiliation(s)
- Hans O Pörtner
- Alfred-Wegener-Institut für Polar- und Meeresforschung, Physiologie mariner Tiere, 27515, Bremerhaven, Germany.
| | | | | |
Collapse
|
55
|
Cheng CHC, Detrich HW. Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 2008; 362:2215-32. [PMID: 17553777 PMCID: PMC2443173 DOI: 10.1098/rstb.2006.1946] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The notothenioid fishes of the Southern Ocean surrounding Antarctica are remarkable examples of organismal adaptation to extreme cold. Their evolution since the mid-Miocene in geographical isolation and a chronically cold marine environment has resulted in extreme stenothermality of the extant species. Given the unique thermal history of the notothenioids, one may ask what traits have been gained, and conversely, what characters have been lost through change in the information content of their genomes. Two dramatic changes that epitomize such evolutionary transformations are the gain of novel antifreeze proteins, which are obligatory for survival in icy seawater, by most notothenioids and the paradoxical loss of respiratory haemoproteins and red blood cells, normally deemed indispensable for vertebrate life, by the species of a highly derived notothenioid family, the icefishes. Here, we review recent advances in our understanding of these traits and their evolution and suggest future avenues of investigation. The formerly coherent paradigm of notothenioid freeze avoidance, developed from three decades of study of antifreeze glycoprotein (AFGP) based cold adaptation, now faces challenges stemming from the recent discovery of antifreeze-deficient, yet freeze-resistant, early notothenioid life stages and from definitive evidence that the liver is not the physiological source of AFGPs in notothenioid blood. The resolution of these intriguing observations is likely to reveal new physiological traits that are unique to the notothenioids. Similarly, the model of AFGP gene evolution from a notothenioid pancreatic trypsinogen-like gene precursor is being expanded and refined based on genome-level analyses of the linked AFGP loci and their ancestral precursors. Finally, the application of comparative genomics to study evolutionary change in the AFGP genotypes of cool-temperate notothenioids from sub-Antarctic habitats, where these genes are not necessary, will contribute to the mechanistic understanding of the dynamics of AFGP gene gain and loss. In humans and most vertebrates, mutations in the alpha- or beta-globin genes or defects in globin chain synthesis are causes of severe genetic disease. Thus, the 16 species of haemoglobinless, erythrocyte-null icefishes are surprising anomalies -- in fact, they could only have evolved and thrived due to relaxed selection pressure for oxygen-binding proteins in the cold, oxygen-rich waters of the Southern Ocean. Fifteen of the sixteen icefish species have lost most of the adult alphabeta-globin locus and retain only a small 3' fragment of the alpha-globin gene. The only exception to this pattern occurs in Neopagetopsis ionah, which possesses a disrupted alphabeta-globin gene complex that probably represents a non-functional intermediate on the evolutionary pathway to near total globin gene extinction. By contrast, six of the icefish species fail to express myoglobin. The absence of myoglobin expression has occurred by several independent mutations and distinct mechanisms. Haemoprotein loss is correlated with dramatic increases in cellular mitochondrial density, heart size, blood volume and capillary bed volume. Evolution of these compensatory traits was probably facilitated by the homeostatic activity of nitric oxide, a key modulator of angiogenesis and mitochondrial biogenesis. These natural knockouts of the red blood cell lineage are an excellent genomic resource for erythroid gene discovery by comparative genomics, as illustrated for the newly described gene, bloodthirsty.
Collapse
Affiliation(s)
- C-H Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
56
|
Dettaï A, di Prisco G, Lecointre G, Parisi E, Verde C. Inferring evolution of fish proteins: the globin case study. Methods Enzymol 2008; 436:539-70. [PMID: 18237653 DOI: 10.1016/s0076-6879(08)36030-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because hemoglobins (Hbs) of all animal species have the same heme group, differences in their properties, including oxygen affinity, electrophoretic mobility, and pH sensitivity, must result from the interaction of the prosthetic group with specific amino acid residues in the primary structure. For this reason, fish globins have been the object of extensive studies in the past few years, not only for their structural characteristics but also because they offer the possibility to investigate the evolutionary history of Hbs in marine and freshwater species living in a large variety of environmental conditions. For such a purpose, phylogenetic analysis of globin sequences can be combined with knowledge of the phylogenetic relationships between species. In addition, Type I functional-divergence analysis is aimed toward predicting the amino acid residues that are more likely responsible for biochemical diversification of different Hb families. These residues, mapped on the three-dimensional Hb structure, can provide insights into functional and structural divergence.
Collapse
Affiliation(s)
- Agnes Dettaï
- UMR, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | |
Collapse
|
57
|
Amelio D, Garofalo F, Pellegrino D, Giordano F, Tota B, Cerra MC. Cardiac expression and distribution of nitric oxide synthases in the ventricle of the cold-adapted Antarctic teleosts, the hemoglobinless Chionodraco hamatus and the red-blooded Trematomus bernacchii. Nitric Oxide 2006; 15:190-8. [PMID: 16442820 DOI: 10.1016/j.niox.2005.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/26/2022]
Abstract
The presence of nitric oxide synthase (NOS) was investigated in the ventricle of two Antarctic teleosts, the hemoglobinless icefish Chionodraco hamatus and its red-blooded counterpart, Trematomus bernacchii. Under unstimulated conditions, in both teleosts, NADPH-diaphorase localised NOS activity in the endocardial-endothelial cells (EEc) and in the myocardiocytes. Application of anti-mammalian endothelial and inducible NOS (eNOS and iNOS, respectively) primary antibodies for immunofluorescence revealed a comparable tissue-specific basal expression of the two isoforms in the two species. eNOS strongly localised at the level of the EEc and, in T. bernacchii, of the vascular endothelium (VE). The enzyme is also localised, albeit to less extent, within the myocardiocytes, and in the epicardium. In contrast, iNOS immunostaining only labels the cytoplasm of the ventricular myocytes. Western blotting analysis identified two peptides with molecular masses of about 135 and 130kDa, similar to those of the mammalian eNOS and iNOS. To verify whether this NOS system is susceptible to septic stimulation, C. hamatus and T. bernacchii were exposed to bacterial lipopolysaccharides (LPS). The treatment did not modify the distribution pattern of the two isoenzymes while it increased the amount of NADPH-diaphorase-dependent reaction product and the expression of both eNOS and iNOS. These results indicate a high phylogenetic conservation of the intracardiac NOS system, emphasizing its importance in the control of the vertebrate heart and its relevance as a general mechanism of defense against pathogens.
Collapse
Affiliation(s)
- Daniela Amelio
- Department of Cellular Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Sidell BD, O'Brien KM. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. ACTA ACUST UNITED AC 2006; 209:1791-802. [PMID: 16651546 DOI: 10.1242/jeb.02091] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Antarctic icefishes (Family Channichthyidae) provide excellent examples of unique traits that can arise in a chronically cold and isolated environment. Their loss of hemoglobin (Hb) expression, and in some cases, loss of myoglobin (Mb) expression, has taught us much about the function of these proteins. Although absences of the proteins are fixed traits in icefishes, the losses do not appear to be of adaptive value. Contrary to some suggestions, loss of Hb has led to higher energetic costs for circulating blood, and losses of Mb have reduced cardiac performance. Moreover, losses of Hb and Mb have resulted in extensive modifications to the cardiovascular system to ensure adequate oxygen delivery to working muscles. Recent studies suggest that losses of Hb and Mb, and their associated nitric oxide (NO)-oxygenase activities, may have accelerated the development and evolution of these cardiovascular modifications. The high levels of NO that should occur in the absence of Hb and Mb have been shown in other animal groups to lead to an increase in tissue vascularization, an increase in the lumenal diameter of blood vessels, and an increase in mitochondrial densities. These characteristics are all hallmark traits of Antarctic icefishes. Homeostatic feedback mechanisms thus may have accelerated evolution of the pronounced cardiovascular traits of Antarctic icefishes.
Collapse
Affiliation(s)
- Bruce D Sidell
- School of Marine Sciences, University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA.
| | | |
Collapse
|
59
|
|
60
|
|
61
|
Buckley BA, Place SP, Hofmann GE. Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. ACTA ACUST UNITED AC 2005; 207:3649-56. [PMID: 15371473 DOI: 10.1242/jeb.01219] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Antarctic fishes, isolated over evolutionary history in the sub-zero waters of the Southern Ocean, are an ideal group for studying the processes of cold adaptation. One species of Antarctic notothenioid fish, Trematomus bernacchii, has lost the ability to induce heat shock proteins (Hsps) in response to exposure to acute thermal stress or to the toxic heavy metal cadmium, an important part of the cellular defense response to such stressors. To elucidate the mechanism responsible for the lack of Hsp induction, we examined several stages of the hsp gene expression pathway, including transcription factor activity, Hsp70 mRNA production and protein synthesis patterns, in hepatocytes from T. bernacchii. Hsp70 mRNA was detected, as was heat shock factor 1 (HSF1) with DNA-binding activity. However, exposure to elevated temperature and to chemical inducers of the heat shock response failed to increase Hsp70 mRNA levels, HSF1 activity or the concentration of any size class of Hsps. These results suggest that Hsps, inducible in nearly every other species, are expressed constitutively in the cold-adapted T. bernacchii.
Collapse
Affiliation(s)
- Bradley A Buckley
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
62
|
Somero GN. Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Front Zool 2005; 2:1. [PMID: 15679952 PMCID: PMC546413 DOI: 10.1186/1742-9994-2-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 01/17/2005] [Indexed: 11/26/2022] Open
Abstract
Temperature-adaptive physiological variation plays important roles in latitudinal biogeographic patterning and in setting vertical distributions along subtidal-to-intertidal gradients in coastal marine ecosystems. Comparisons of congeneric marine invertebrates reveal that the most warm-adapted species may live closer to their thermal tolerance limits and have lower abilities to increase heat tolerance through acclimation than more cold-adapted species. In crabs and snails, heart function may be of critical importance in establishing thermal tolerance limits. Temperature-mediated shifts in gene expression may be critical in thermal acclimation. Transcriptional changes, monitored using cDNA microarrays, have been shown to differ between steady-state thermal acclimation and diurnal temperature cycling in a eurythermal teleost fish (Austrofundulus limnaeus). In stenothermal Antarctic notothenioid fish, losses in capacity for temperature-mediated gene expression, including the absence of a heat-shock response, may reduce the abilities of these species to acclimate to increased temperatures. Differences among species in thermal tolerance limits and in the capacities to adjust these limits may determine how organisms are affected by climate change.
Collapse
Affiliation(s)
- George N Somero
- Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094 USA.
| |
Collapse
|
63
|
|
64
|
Eastman JT, Lannoo MJ. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae). J Morphol 2004; 260:117-40. [PMID: 15052601 DOI: 10.1002/jmor.10221] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Channichthyidae, one of five Antarctic notothenioid families, includes 16 species and 11 genera. Most live at depths of 200-800 m and are a major component of fish biomass in many shelf areas. Channichthyids are unique among adult fishes in possessing pale white blood containing a few vestigal erythrocytes and no hemoglobin. Here we describe the brains of seven species and special sense organs of eight species of channichthyids. We emphasize Chionodraco hamatus and C. myersi, compare these species to other channichthyids, and relate our findings to what is known about brains and sense organs of red-blooded notothenioids living sympatrically on the Antarctic shelf. Brains of channichthyids generally resemble those of their bathydraconid sister group. Among channichthyids the telencephalon is slightly regressed, resulting in a stalked appearance, but the tectum, corpus cerebellum, and mechanoreceptive areas are well developed. Interspecific variation is present but slight. The most interesting features of channichthyid brains are not in the nervous tissue but in support structures: the vasculature and the subependymal expansions show considerable elaboration. Channichthyids have large accessory nasal sacs and olfactory lamellae are more numerous than in other notothenioids. The eyes are relatively large and laterally oriented with similar duplex (cone and rod) retinae in all eight species. Twin cones are the qualitatively dominant photoreceptor in histological sections and, unlike bathydraconids, there are no species with rod-dominated retinae. Eyes possess the most extensive system of hyaloid arteries known in teleosts. Unlike the radial pattern seen in red-blooded notothenioids and most other teleosts, channichthyid hyaloid arteries arise from four or five main branches and form a closely spaced anastomosing series of parallel channels. Cephalic lateral line canals are membranous and some exhibit extensions (canaliculi), but canals are more ossified than those of deeper-living bathydraconids. We conclude that, with respect to the anatomy and histology of the neural structures, the brain and sensory systems show little that is remarkable compared to other fishes, and exhibit little diversification within the family. Thus, the unusual habitat and a potentially deleterious mutation resulting in a hemoglobinless phenotype are reflected primarily in expansion of the vasculature in the brain and eye partially compensating for the absence of respiratory pigments. Neural morphology gives the impression that channichthyids are a homogeneous and little diversified group.
Collapse
Affiliation(s)
- Joseph T Eastman
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701-2979, USA.
| | | |
Collapse
|
65
|
|
66
|
Roesner A, Fuchs C, Hankeln T, Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol Biol Evol 2004; 22:12-20. [PMID: 15356282 DOI: 10.1093/molbev/msh258] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hemoglobin, myoglobin, neuroglobin, and cytoglobin are four types of vertebrate globins with distinct tissue distributions and functions. Here, we report the identification of a fifth and novel globin gene from fish and amphibians, which has apparently been lost in the evolution of higher vertebrates (Amniota). Because its function is presently unknown, we tentatively call it globin X (GbX). Globin X sequences were obtained from three fish species, the zebrafish Danio rerio, the goldfish Carassius auratus, and the pufferfish Tetraodon nigroviridis, and the clawed frog Silurana tropicalis. Globin X sequences are distinct from vertebrate hemoglobins, myoglobins, neuroglobins, and cytoglobins. Globin X displays the highest identity scores with neuroglobin (approximately 26% to 35%), although it is not a neuronal protein, as revealed by RT-PCR experiments on goldfish RNA from various tissues. The distal ligand-binding and the proximal heme-binding histidines (E7 and F8), as well as the conserved phenylalanine CD1 are present in the globin X sequences, but because of extensions at the N-terminal and C-terminal, the globin X proteins are longer than the typical eight alpha-helical globins and comprise about 200 amino acids. In addition to the conserved globin introns at helix positions B12.2 and G7.0, the globin X genes contain two introns in E10.2 and H10.0. The intron in E10.2 is shifted by 1 bp in respect to the vertebrate neuroglobin gene (E11.0), providing possible evidence for an intron sliding event. Phylogenetic analyses confirm an ancient evolutionary relationship of globin X with neuroglobin and suggest the existence of two distinct globin types in the last common ancestor of Protostomia and Deuterostomia.
Collapse
Affiliation(s)
- Anja Roesner
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
67
|
Radding W, Phillips GN. Kinetic proofreading by the cavity system of myoglobin: protection from poisoning. Bioessays 2004; 26:422-33. [PMID: 15057940 DOI: 10.1002/bies.20010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Throughout its matrix of atoms, myoglobin has a network of cavities that are inhabited for short lengths of time by ligands released by photolysis from the myoglobin heme. The purpose or effect of this cavity network is not clear. A recently published kinetic scheme that fits data from many native and mutant myoglobin oxygen photolysis experiments can be modified easily into a kinetic scheme that includes kinetic proofreading. Proofreading would provide protection against contaminants and, specifically, might help protect the cell from carbon monoxide poisoning. Here we present a two-part model: (1) myoglobin represented by a kinetic description, which includes proofreading reactions associated with the cavities, and (2) a reaction-diffusion description of a myocyte model in which the part 1 myoglobin acts as a mobile buffer in simultaneous carbon monoxide and oxygen gradients. The non-equilibrium nature of part 2 should promote the proofreading function of part 1. A simulation using the model demonstrates that the cavity system can in principle proofread, reducing mitochondrial enzyme contamination.
Collapse
Affiliation(s)
- Wilson Radding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
68
|
Place SP, Zippay ML, Hofmann GE. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Regul Integr Comp Physiol 2004; 287:R429-36. [PMID: 15117724 DOI: 10.1152/ajpregu.00223.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous research on the Antarctic notothenioid fish Trematomus bernacchii demonstrated the loss of the heat shock response (HSR), a classical cellular defense mechanism against thermal stress, characterized by the rapid synthesis of heat shock proteins (Hsps). In the current study, we examined potential mechanisms for the apparent loss of the HSR in Antarctic notothenioids and, in addition, compared expression patterns of two genes from the 70-kDa Hsp family (hsc71 and hsp70) in tissues from T. bernacchii to expression patterns in tissues of two closely related temperate notothenioid fishes from New Zealand, Bovichtus variegatus and Notothenia angustata. The results showed that transcript for both the constitutive and inducible genes in the Hsp70 gene family were expressed in detectable levels in all three species. However, only the cold-temperate New Zealand fishes displayed the ability to upregulate the inducible transcript, hsp70. Although hsp70 was present in detectable levels in several tissues of the Antarctic notothen T. bernacchii, in vitro thermal stresses failed to produce a significant increase in mRNA levels. In all species, the expression of the constitutive transcript hsc71 was variable and nonresponsive to temperature increases, even at temperatures as high as 10 degrees C above the ecologically relevant range for the species under study. Field-collected tissues from T. bernacchii (sampled immediately after capture) indicated that hsp70 mRNA was expressed at high levels in field-acclimatized fishes. Thus upregulation of molecular chaperones suggested that low-temperature stress may be significantly denaturing to cellular proteins in Antarctic fish, an observation that was supported by elevated levels of ubiquitin-conjugated protein.
Collapse
Affiliation(s)
- Sean P Place
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
69
|
Morlá M, Agustí AGN, Rahman I, Motterlini R, Saus C, Morales-Nin B, Company JB, Busquets X. Nitric oxide synthase type I (nNOS), vascular endothelial growth factor (VEGF) and myoglobin-like expression in skeletal muscle of Antarctic icefishes (Notothenioidei: Channichthyidae). Polar Biol 2003. [DOI: 10.1007/s00300-003-0504-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
70
|
Ota T, Nguyen TA, Huang E, Detrich HW, Amemiya CT. Positive Darwinian selection operating on the immunoglobulin heavy chain of Antarctic fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 295:45-58. [PMID: 12548542 DOI: 10.1002/jez.b.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cooling of the Southern Ocean to the freezing point of seawater (-1.9 degrees C) over the past 25 million years played a dominant selective role in the evolution of the Antarctic fish fauna. During this period, the perciform suborder Notothenioidei, which is largely endemic to the Antarctic, diversified and developed numerous cold-adapted characters. In this report, we provide compelling evidence that the immunoglobulin heavy chain (IgH) of the notothenioid fishes has undergone adaptive selection. Two and four IgH clones were isolated, respectively, from spleen cDNA libraries prepared from the Antarctic icefish Chaenocephalus aceratus and the yellowbelly rockcod Notothenia coriiceps. The transmembrane region of the membrane form of the rockcod IgM heavy chain was located at the end of the second constant (C(H)) domain, in contrast to other teleost IgMs in which the transmembrane region is located at the end of the third constant domain. Phylogenetic analyses of C(H) regions revealed that rates of nonsynonymous nucleotide substitution were higher than rates of synonymous nucleotide substitution. Many of the nonsynonymous substitutions introduced charge changes, consistent with positive Darwinian selection acting to adapt the structure of the notothenioid immunoglobulins. The rates of nonsynonymous nucleotide substitutions were higher than the rates of synonymous nucleotide substitutions in complementarity determining regions of variable regions, suggesting that diversity at antigen binding sites is enhanced by genomic and/or somatic selection. Results of Southern blot hybridization experiments were consistent with a translocon type of IgH gene organization reminiscent of bony fishes and tetrapods.
Collapse
Affiliation(s)
- Tatsuya Ota
- Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
71
|
Small DJ, Moylan T, Vayda ME, Sidell BD. The myoglobin gene of the Antarctic icefish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription. J Exp Biol 2003; 206:131-9. [PMID: 12456703 DOI: 10.1242/jeb.00067] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six of the 16 known species of Antarctic icefish (family Channichthyidae) have lost the ability to express cardiac myoglobin (Mb) via at least four independent events during radiation of these species. We report here that the lesion in Chaenocephalus aceratus Mb is a duplicated TATAAAA element that blocks transcription. This lesion is distinct from those of other icefish species that do not express cardiac Mb. The C. aceratus Mb gene is nearly identical to that of Chionodraco rastrospinosus, a closely related Mb-expressing icefish species, with one exception. A 15-bp segment is present in C. aceratus but absent from C. rastrospinosus; this insertion is located 648 bp upstream from the reference transcription start site of C. rastrospinosus and includes the sequence TATAAAA, which bound HeLa cell transcription factor IID (TFIID) and icefish nuclear proteins in gel-retardation assays. Reporter constructs containing the 'full-length' C. aceratus Mb promoter were not expressed in transient expression assays in oxidative skeletal muscle of live icefish. By contrast, constructs employing the nearly identical 'full-length' C. rastrospinosus Mb promoter were efficiently expressed in parallel assays in the same tissue. Truncated constructs of C. aceratus Mb that did not contain the 15-bp duplication were expressed at very low levels. These data confirm a third independent mechanism of Mb loss among channichthyid species, indicate that C. aceratus aerobic muscle is capable of expressing functional Mb genes and demonstrate that duplication of the muscle-specific TATAAAA sequence in an inappropriate context can result in loss of a gene's expression, resulting in significant physiological consequences.
Collapse
Affiliation(s)
- Deena J Small
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | | | | | | |
Collapse
|
72
|
Dunlap WC, Fujisawa A, Yamamoto Y, Moylan TJ, Sidell BD. Notothenioid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (alpha-tocomonoenol) functionally associated with cold-water adaptation. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:299-305. [PMID: 12431397 DOI: 10.1016/s1096-4959(02)00150-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vitamin E (VE) content of tissues from the Antarctic notothenioid fish, Chaenocephalus aceratus, Champsocephalus gunnari and Gobionotothen gibberifrons, and extracts of Antarctic krill Euphausia superba and phytoplankton collected from the Antarctic Peninsula was examined. Included in the VE composition was a newly described 'marine-derived' tocopherol (MDT), an unsaturated-isoprenoid derivative of alpha-tocopherol, that is attributed to enhancing antioxidant protection of cellular lipids at low temperature. MDT was found to co-exist with alpha-tocopherol in all Antarctic samples, ranging from 2.8 to 22.3% of the total VE composition. The highest level of VE was found in the liver of G. gibberifrons (VE=416.7 pmol/mg wet tissue) although this tissue had a low MDT composition (7.7%), whereas the greatest MDT composition was measured in the liver of C. gunnari (MDT=22.3%). In notothenioids, the pectoral adductor muscle, which has a high density of mitochondria, contained higher levels of VE than white myotomal muscle, but differences in MDT composition were small. Phytoplankton and krill also contained MDT, which supports the contention that MDT is obtained directly from the primary food chain. Our finding of MDT in Antarctic organisms is consistent with its putatively adaptive function to enhance antioxidant protection in coldwater metabolism.
Collapse
Affiliation(s)
- Walter C Dunlap
- Australian Institute of Marine Science, PMB No 3, Townsville MC, Queensland 4810, Australia.
| | | | | | | | | |
Collapse
|
73
|
Grove TJ, Sidell BD. Myoglobin deficiency in the hearts of phylogenetically diverse temperate-zone fish species. CAN J ZOOL 2002. [DOI: 10.1139/z02-071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies relying upon spectrophotometric methods reported low levels of myoglobin, an intracellular oxygen-binding protein, in oxidative muscles of some sluggish benthic fishes distributed throughout the North Atlantic Ocean. Using immunochemical techniques we show that myoglobin is not expressed in the heart ventricles of Cyclop terus lumpus (Cyclopteridae), Anarhichas lupus (Anarhichadidae), Macrozoarces americanus (Zoarcidae), and Lophius americanus (Lophiidae). Hemitripterus americanus (Hemitripteridae) expresses myoglobin at 2.3 ± 0.2 mg·g wet mass1(mean ± SD). Myoglobin was not detected in oxidative skeletal muscle (pectoral adductor profundus) in either the white-hearted fishes examined or red-hearted H. americanus. Supporting these results, myoglobin messenger RNA was not detected in cardiac muscles of white-hearted fishes by means of either direct Northern blot analysis or by the reverse transcriptase polymerase chain reaction followed by amplification of cDNA product. The partial cDNA sequence of H. americanus myoglobin was determined and shows 86.9% identity with a known teleost myoglobin cDNA from Chionodraco rastrospinosus. The 3' untranslated region of H. americanus is 255 nucleotides longer than the 3' untranslated region of C. rastrospinosus. Comparisons of the deduced amino acid sequence of H. americanus with those of other teleosts show 66.2% sequence identity with Cyprinus carpio, 74.6% with Scomber japonicus, and 80.3% with Thunnus albacares and C. rastrospinosus.
Collapse
|
74
|
O'Brien KM, Xue H, Sidell BD. Quantification of diffusion distance within the spongy myocardium of hearts from antarctic fishes. RESPIRATION PHYSIOLOGY 2000; 122:71-80. [PMID: 10936602 DOI: 10.1016/s0034-5687(00)00139-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We developed a stereological method for quantifying diffusion distance within spongy myocardium. Using this method we compared the hearts of three species of Antarctic fishes that vary in expression of oxygen-binding proteins. We examined hearts from Gobionotothen gibberifrons, a red-blooded species whose ventricle has myoglobin (Mb), and hearts of two species of icefish that lack hemoglobin (Hb) and vary in expression of cardiac Mb; Chionodraco rastrospinosus expresses Mb, Chaenocephalus aceratus does not. Average diffusion distance within ventricular tissue is greater in red-blooded Antarctic teleosts (9.82 + or - 1.37 microm) compared with icefish (C. rastrospinosus, 6.20 microm + or - 0.86; C. aceratus, 6.23 + or - 0.41 microm). Average diffusion distance to a mitochondrion parallels this trend because mitochondria are uniformly distributed within cardiac muscle. Results show that loss of Hb is correlated with increased trabeculation of heart ventricle. Loss of Mb however, is not correlated with an increase in trabeculation of ventricular tissue, despite significant differences in cellular ultrastructure compared with species that express the protein.
Collapse
Affiliation(s)
- K M O'Brien
- Department of Biological Sciences, 5751 Murray Hall, University of Maine, Orono, ME 04469, USA
| | | | | |
Collapse
|
75
|
Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 2000; 203:2331-9. [PMID: 10887071 DOI: 10.1242/jeb.203.15.2331] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat-shock response, the enhanced expression of one or more classes of molecular chaperones termed heat-shock proteins (hsps) in response to stress induced by high temperatures, is commonly viewed as a ‘universal’ characteristic of organisms. We examined the occurrence of the heat-shock response in a highly cold-adapted, stenothermal Antarctic teleost fish, Trematomus bernacchii, to determine whether this response has persisted in a lineage that has encountered very low and stable temperatures for at least the past 14–25 million years. The patterns of protein synthesis observed in in vivo metabolic labelling experiments that involved injection of (35)S-labelled methionine and cysteine into whole fish previously subjected to a heat stress of 10 degrees C yielded no evidence for synthesis of any size class of heat-shock protein. Parallel in vivo labelling experiments with isolated hepatocytes similarly showed significant amounts of protein synthesis, but no indication of enhanced expression of any class of hsp. The heavy metal cadmium, which is known to induce synthesis of hsps, also failed to alter the pattern of proteins synthesized in hepatocytes. Although stress-induced chaperones could not be detected under any of the experimental condition used, solid-phase antibody (western) analysis revealed that a constitutively expressed 70 kDa chaperone was present in this species, as predicted on the basis of requirements for chaperoning during protein synthesis. Amounts of the constitutively expressed 70 kDa chaperone increased in brain, but not in gill, during 22 days of acclimation to 5 degrees C. The apparent absence of a heat-shock response in this highly stenothermal species is interpreted as an indication that a physiological capacity observed in almost all other organisms has been lost as a result of the absence of positive selection during evolution at stable sub-zero temperatures. Whether the loss of the heat-shock response is due to dysfunctional genes for inducible hsps (loss of open reading frames or functional regulatory regions), unstable messenger RNAs, the absence of a functional heat-shock factor or some other lesion remains to be determined.
Collapse
Affiliation(s)
- G E Hofmann
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA.
| | | | | | | | | |
Collapse
|
76
|
Abstract
The radiation of notothenioid fishes provides an excellent system to explore issues of evolution and adaptation. Most studies emphasize adaptation to the extreme Antarctic environment; however, recent work provides cogent examples of disaptation or evolutionary loss of function. The nature and extent of regressive change is revealed by subsequent adaptive recovery. Ancestral notothenioids were benthic but some became secondarily pelagic through the retention of larval characters. Paedomorphosis has produced detrimental changes in lateral-line sensory systems that have been made good by compensatory adaptation. In the icefish family, compensatory adaptation has followed the loss of the oxygen-binding pigments haemoglobin and myoglobin.
Collapse
|
77
|
Abstract
Tissues from bony fish were screened with anti-mouse leptin antibodies to detect the presence of the fat-regulating hormone in fishes. Low molecular-weight (16 kDa) immunoreactive bands were detected in blood, brain, heart and liver of green sunfish (Lepomis cyanellus), bluegill sunfish (Lepomis macrochirus), largemouth bass (Micropterus salmoides), white crappie (Pomonix annularis), channel catfish (Ictalurus punctatus), and rainbow trout (Oncorhynchus mykiss). To further verify that we had identified leptin, the response of fish "leptin" was measured in fed and fasted green sunfish. Fed sunfish had approximately threefold higher concentration of leptin in blood than did fasted sunfish (fed vs. fasted; 0.599 +/- 0.03 microg/microl vs. 0.196 +/- 0.04 microg/microl; P > F = 0.0001), which is consistent with mammalian models of leptin function. Brain leptin concentration is also positively correlated with percent body fat in white crappie and bluegill. Based upon electrophoretic mobility, immunoreactivity, response to fasting, and correlation with adiposity, we believe we have the first evidence for leptin expression in an ectotherm.
Collapse
Affiliation(s)
| | | | - RICHARD L. LONDRAVILLE
- Correspondence to: University of Akron, Dept. of Biology, 180 A.S.E.C., Akron, OH 44325-3908.
| |
Collapse
|
78
|
Moylan TJ, Sidell BD. Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol 2000; 203:1277-86. [PMID: 10729277 DOI: 10.1242/jeb.203.8.1277] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used a combined immunochemical and molecular approach to ascertain the presence and concentrations of both the intracellular oxygen-binding hemoprotein myoglobin (Mb) and its messenger RNA (mRNA) in 13 of 15 known species of Antarctic channichthyid icefishes. Mb protein is present in the hearts of eight species of icefishes: Chionodraco rastrospinosus, Chionodraco hamatus, Chionodraco myersi, Chaenodraco wilsoni, Pseudochaenichthys georgianus, Cryodraco antarcticus, Chionobathyscus dewitti and Neopagetopsis ionah. Five icefish species lack detectable Mb protein: Chaenocephalus aceratus, Pagetopsis macropterus, Pagetopsis maculatus, Champsocephalus gunnari and Dacodraco hunteri. Mb concentrations range from 0.44+/−0.02 to 0.71+/−0.08 mg Mb g(−)(1)wet mass in heart ventricle of species expressing the protein. A Mb-mRNA-specific cDNA probe was used to quantify mRNA in five Mb-expressing icefishes. Mb mRNA was found in low but detectable amounts in Champsocephalus gunnari, one of the species lacking detectable Mb. Mb mRNA concentrations in heart ventricle from Mb-expressing species ranged from 0.78+/−0.02 to 16.22+/−2.17 pg Mb mRNA microg(−)(1)total RNA). Mb protein and Mb mRNA are absent from the oxidative skeletal muscle of all icefishes. Steady-state concentrations of Mb protein do not parallel steady-state concentrations of Mb mRNA within and among icefishes, indicating that the concentration of Mb protein is not determined by the size of its mRNA pool.
Collapse
Affiliation(s)
- T J Moylan
- School of Marine Sciences, University of Maine, Orono, ME 04469-5741, USA.
| | | |
Collapse
|
79
|
Carpenter CM, Hofmann GE. Expression of 70 kDa heat shock proteins in antarctic and New Zealand notothenioid fish. Comp Biochem Physiol A Mol Integr Physiol 2000; 125:229-38. [PMID: 10825695 DOI: 10.1016/s1095-6433(99)00172-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cold and constant water temperature of the Southern Ocean surrounding Antarctica provides a natural laboratory to address questions of temperature adaptation in marine organisms. In this study, endogenous levels and the number of isoforms of the 70 kDa heat shock protein multigene family (hsp70) of Antarctic and cold temperate notothenioid fishes were determined by SDS-polyacrylamide gel electrophoresis and Western blotting. Tissues from three Antarctic Trematomus congeners had significantly lower levels of 70 kDa Hsp isoforms than their temperate confamilial from New Zealand waters. However, these two thermally disparate sets of fish did not differ in number or pattern of 70 kDa Hsp isoforms expressed under normal physiological conditions. Additionally, levels of 70 kDa Hsp isoforms in specimens of one Antarctic species, Trematomus bernacchii, acclimated to 4 degrees C were significantly higher than non-acclimated conspecifics, indicating a direct effect of temperature on Hsp expression in this species. This study shows that constitutive expression of some members of the 70 kDa Hsp multigene family have been maintained, despite the absence of environmental heat stress for at least 2.5 million years.
Collapse
Affiliation(s)
- C M Carpenter
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-1091, USA
| | | |
Collapse
|
80
|
Hourdez S, Lallier FH, Green BN, Toulmond A. Hemoglobins from deep-sea hydrothermal vent scaleworms of the genusBranchipolynoe: A new type of quaternary structure. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990301)34:4<427::aid-prot2>3.0.co;2-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
81
|
Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS. Mice without myoglobin. Nature 1998; 395:905-8. [PMID: 9804424 DOI: 10.1038/27681] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myoglobin, an intracellular haemoprotein expressed in the heart and oxidative skeletal myofibres of vertebrates, binds molecular oxygen and may facilitate oxygen transport from erythrocytes to mitochondria, thereby maintaining cellular respiration during periods of high physiological demand. Here we show, however, that mice without myoglobin, generated by gene-knockout technology, are fertile and exhibit normal exercise capacity and a normal ventilatory response to low oxygen levels (hypoxia). Heart and soleus muscles from these animals are depigmented, but function normally in standard assays of muscle performance in vitro across a range of work conditions and oxygen availability. These data show that myoglobin is not required to meet the metabolic requirements of pregnancy or exercise in a terrestrial mammal, and raise new questions about oxygen transport and metabolic regulation in working muscles.
Collapse
Affiliation(s)
- D J Garry
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Fields PA, Somero GN. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 1998; 95:11476-81. [PMID: 9736762 PMCID: PMC21668 DOI: 10.1073/pnas.95.19.11476] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/1998] [Indexed: 11/18/2022] Open
Abstract
To elucidate mechanisms of enzymatic adaptation to extreme cold, we determined kinetic properties, thermal stabilities, and deduced amino acid sequences of lactate dehydrogenase A4 (A4-LDH) from nine Antarctic (-1.86 to 1 degree C) and three South American (4 to 10 degree C) notothenioid teleosts. Higher Michaelis-Menten constants (Km) and catalytic rate constants (kcat) distinguish orthologs of Antarctic from those of South American species, but no relationship exists between adaptation temperature and the rate at which activity is lost because of heat denaturation. In all species, active site residues are conserved fully, and differences in kcat and Km are caused by substitutions elsewhere in the molecule. Within geographic groups, identical kinetic properties are generated by different substitutions. By combining our data with A4-LDH sequences for other vertebrates and information on roles played by localized conformational changes in setting kcat, we conclude that notothenioid A4-LDHs have adapted to cold temperatures by increases in flexibility in small areas of the molecule that affect the mobility of adjacent active-site structures. Using these findings, we propose a model that explains linked temperature-adaptive variation in Km and kcat. Changes in sequence that increase flexibility of regions of the enzyme involved in catalytic conformational changes may reduce energy (enthalpy) barriers to these rate-governing shifts in conformation and, thereby, increase kcat. However, at a common temperature of measurement, the higher configurational entropy of a cold-adapted enzyme may foster conformations that bind ligands poorly, leading to high Km values relative to warm-adapted orthologs.
Collapse
Affiliation(s)
- P A Fields
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094, USA.
| | | |
Collapse
|
83
|
Moritz KM, Lim GB, Wintour EM. Developmental regulation of erythropoietin and erythropoiesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1829-44. [PMID: 9435635 DOI: 10.1152/ajpregu.1997.273.6.r1829] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that erythropoiesis occurs first in the yolk sac, then in the liver, subsequently moving to the bone marrow and, in rodents, the spleen during development. The origin of the erythropoietic precursors and some factors suggested to be important for the changing location of erythropoiesis are discussed in this review. Until recently, the major site of erythropoietin (Epo) production in the fetus was thought to be the liver, but studies have shown now that the Epo gene is expressed strongly in the fetal kidney, even in the temporary mesonephros. The metanephric Epo mRNA is upregulated by anemia, downregulated by glucocorticoids, and contributes substantially to circulating hormone levels in hemorrhaged ovine fetuses. Other sites of Epo and Epo receptor production, likely to have important actions during development, are the placenta and the brain.
Collapse
Affiliation(s)
- K M Moritz
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|