51
|
Xu C, He XY, Peng Y, Dai BS, Liu BY, Cheng SX. Facile Strategy To Enhance Specificity and Sensitivity of Molecular Beacons by an Aptamer-Functionalized Delivery Vector. Anal Chem 2020; 92:2088-2096. [PMID: 31855408 DOI: 10.1021/acs.analchem.9b04596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To enhance the specificity and sensitivity of molecular beacons (MBs) in detecting mRNA in living tumor cells, we introduced an aptamer (AS1411) to the delivery system of MBs to form an aptamer-decorated nanoprobe (ANP), which was prepared through self-assembly between AS1411-conjugated carboxymethyl chitosan (ACMC) with protamine sulfate (PS)/CaCO3/MB cores. Owing to the specific binding of AS1411 to nucleolin, which is overexpressed in tumor cell membranes and nuclei, an AS1411-decorated MB-delivery system leads to dramatically increased cell uptake of MBs for probing survivin mRNA and thus induces strong intracellular fluorescence emission in targeted tumorous cells and cell nuclei. Furthermore, we demonstrate that ANP can efficiently detect survivin mRNA in mitochondria. In other words, the effective delivery of MBs ensures the precise detection of mRNA distribution in diverse organelles. In addition, we evaluated the efficiency of ANP in probing tumor cells in simulated blood as well as in peripheral blood from a healthy donor and found that the nanoprobe can specifically deliver MBs to tumor cells and identify tumor cells in blood. The targeting delivery system we constructed holds promising applications in precise detection of subcellular distribution of mRNA in living tumor cells as well as in fluorescence-guided cancer detection in liquid biopsy technology. This study provides a facile strategy to effectively improve the specificity and sensitivity of conventional molecular beacons.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Yan Peng
- Department of Pharmacy , The Renmin Hospital of Wuhan University , Wuhan 430060 , P. R. China
| | - Bao-Sheng Dai
- Department of Clinical Laboratory , The Renmin Hospital of Wuhan University , Wuhan 430060 , P. R. China
| | - Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
52
|
Connelly RP, Verduzco C, Farnell S, Yishay T, Gerasimova YV. Toward a Rational Approach to Design Split G-Quadruplex Probes. ACS Chem Biol 2019; 14:2701-2712. [PMID: 31599573 DOI: 10.1021/acschembio.9b00634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hybridization probes have become an indispensable tool for nucleic acid analysis. Systematic efforts in probe optimization resulted in their improved binding affinity, turn-on ratios, and ability to discriminate single nucleotide substitutions (SNSs). The use of split (or multicomponent) probes is a promising strategy to improve probe selectivity and enable an analysis of folded analytes. Here, we developed criteria for the rational design of a split G-quadruplex (G4) peroxidase-like deoxyribozyme (sPDz) probe that provides a visual output signal. The sPDz probe consists of two DNA strands that hybridize to the abutting positions of a DNA/RNA target and form a G4 structure catalyzing, in the presence of a hemin cofactor, H2O2-mediated oxidation of organic compounds into their colored oxidation products. We have demonstrated that probe design becomes complicated in the case of target sequences containing clusters (two or more) of cytosine residues and developed strategies to overcome the challenges to achieving high signal-to-noise and excellent SNS discrimination. Specifically, to improve selectivity, a conformational constraint that stabilizes the probe's dissociated state is beneficial. If the signal intensity is compromised, introduction of flexible non-nucleotide linkers between the G4-forming and target-recognizing elements of the probe helps to decrease the steric hindrance for G4 PDz formation observed as a signal increase. Varying the modes of G4 core splitting is another instrument for the optimal sPDz design. The suggested algorithm was successfully utilized for the design of the sPDz probe interrogating a fragment of the Influenza A virus genome (subtype H1N1), which can be of practical use for flu diagnostics and surveillance.
Collapse
Affiliation(s)
- Ryan P. Connelly
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Charles Verduzco
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Serena Farnell
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Tamar Yishay
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Yulia V. Gerasimova
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
53
|
Detection of Extracellular Vesicle RNA Using Molecular Beacons. iScience 2019; 23:100782. [PMID: 31958756 PMCID: PMC6992906 DOI: 10.1016/j.isci.2019.100782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as intercellular conveyors of biological information and disease biomarkers. Identification and characterization of RNA species in single EVs are currently challenging. Molecular beacons (MBs) represent an attractive means for detecting specific RNA molecules. Coupling the MBs to cell-penetrating peptides (CPPs) provides a fast, effective, and membrane-type agnostic means to deliver MBs across the plasma membrane and into the cytosol. Here, we generated RBCs-derived EVs by complement activation and tested the ability of MBs coupled with CPP to detect miRNAs from RBC-EVs. Our results showed that RBC and RBC-EVs miRNA-451a can be detected using MB-CPP, and the respective fluorescence levels can be measured by nano-flow cytometry. MB-based detection of RNA via nano-flow cytometry creates a powerful new analytical framework in which a simple addition of a reagent allows profiling of specific RNA species present within certain EV subsets.
Collapse
|
54
|
Oladepo SA, Yusuf BO. Detection of Several Homologous MicroRNAs by a Single Smart Probe System Consisting of Linear Nucleic Acid Blockers. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24203691. [PMID: 31615053 PMCID: PMC6832958 DOI: 10.3390/molecules24203691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 11/13/2022]
Abstract
We report a universal smart probe (SP) that is capable of detecting several homologous let-7 microRNAs (miRNAs). While the SP is complementary to let-7a, and therefore, strongly binds to this target, due to sequence homology, the SP also has equal propensity to non-specifically hybridize with let-7b and let-7c, which are homologous to let-7a. The fluorescence signal of the SP was switched off in the absence of any homologous member target, but the signal was switched on when any of the three homologous members was present. With the assistance of nucleic acid blockers (NABs), this SP system can discriminate between homologous miRNAs. We show that the SP can discriminate between let-7a and the other two sequences by using linear NABs (LNABs) to block non-specific interactions between the SP and these sequences. We also found that LNABs used do not cross-react with the let-7a target due to the low LNABs:SP molar ratio of 6:1 used. Overall, this SP represents a universal probe for the recognition of a homologous miRNA family. The assay is sensitive, providing a detection limit of 6 fmol. The approach is simple, fast, usable at room temperature, and represents a general platform for the in vitro detection of homologous microRNAs by a single fluorescent hairpin probe.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
55
|
Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy. Proc Natl Acad Sci U S A 2019; 116:19362-19367. [PMID: 31501320 DOI: 10.1073/pnas.1904770116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating exosomal microRNA (miR) represents a new class of blood-based biomarkers for cancer liquid biopsy. The detection of miR at a very low concentration and with single-base discrimination without the need for sophisticated equipment, large volumes, or elaborate sample processing is a challenge. To address this, we present an approach that is highly specific for a target miR sequence and has the ability to provide "digital" resolution of individual target molecules with high signal-to-noise ratio. Gold nanoparticle tags are prepared with thermodynamically optimized nucleic acid toehold probes that, when binding to a target miR sequence, displace a probe-protecting oligonucleotide and reveal a capture sequence that is used to selectively pull down the target-probe-nanoparticle complex to a photonic crystal (PC) biosensor surface. By matching the surface plasmon-resonant wavelength of the nanoparticle tag to the resonant wavelength of the PC nanostructure, the reflected light intensity from the PC is dramatically and locally quenched by the presence of each individual nanoparticle, enabling a form of biosensor microscopy that we call Photonic Resonator Absorption Microscopy (PRAM). Dynamic PRAM imaging of nanoparticle tag capture enables direct 100-aM limit of detection and single-base mismatch selectivity in a 2-h kinetic discrimination assay. The PRAM assay demonstrates that ultrasensitivity (<1 pM) and high selectivity can be achieved on a direct readout diagnostic.
Collapse
|
56
|
Imaging rRNA Methylation in Bacteria by MR-FISH. Methods Mol Biol 2019. [PMID: 31407280 DOI: 10.1007/978-1-4939-9674-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Methylation of RNA is normally monitored in purified cell lysates using next-generation sequencing, gel electrophoresis, or mass spectrometry as readouts. These bulk methods require the RNA from ~104 to 107 cells to be pooled to generate sufficient material for analysis. Here we describe a method-methylation-sensitive RNA in situ hybridization (MR-FISH)-that assays rRNA methylation in bacteria on a cell-by-cell basis, using methylation-sensitive hybridization probes and fluorescence microscopy. We outline step-by-step protocols for designing probes, in situ hybridization, and analysis of data using freely available code.
Collapse
|
57
|
Hardinge P, Murray JAH. Lack of specificity associated with using molecular beacons in loop mediated amplification assays. BMC Biotechnol 2019; 19:55. [PMID: 31370820 PMCID: PMC6676609 DOI: 10.1186/s12896-019-0549-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background Loop mediated isothermal amplification of nucleic acid templates is a rapid, sensitive and specific method suitable for molecular diagnostics. However the complexity of primer design and the number of primers involved can lead to false positives from non-specific primer interactions. Standard methods of LAMP detection utilise the increasing concentrations of DNA or inorganic pyrophosphate and therefore lack specificity for identifying the desired LAMP amplification. Molecular beacons used in PCR reactions are target specific and may enhance specificity with LAMP. Results We present a potential molecular beacon approach to LAMP detection targeting the single stranded region between loops, and test this for LAMP molecular beacons targeting the 35S promoter and NOS terminator sequences commonly used in GM crops. From these studies we show that molecular beacons used in LAMP, despite providing a change in fluorescent intensity with amplification, appear not to anneal to specific target sequences and therefore target specificity is not a benefit of this method. However, molecular beacons demonstrate a change in fluorescence which is indicative of LAMP amplification products. We identify the LAMP loop structure as likely to be responsible for this change in signal. Conclusions Molecular beacons can be used to detect LAMP amplification but do not provide sequence specificity. The method can be used to determine effectively LAMP amplification from other primer-driven events, but does not discriminate between different LAMP amplicons. It is therefore unsuitable for multiplex LAMP reactions due to non-specific detection of LAMP amplification. Electronic supplementary material The online version of this article (10.1186/s12896-019-0549-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Hardinge
- Cardiff School of Biosciences, Cardiff, Museum Avenue, Cardiff, CF10 3AX, UK.
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
58
|
Abstract
Hybridization probes are RNA or DNA oligonucleotides or their analogs that bind to specific nucleotide sequences in targeted nucleic acids (analytes) via Watson-Crick base pairs to form probe-analyte hybrids. Formation of a stable hybrid would indicate the presence of a DNA or RNA fragment complementary to the known probe sequence. Some of the well-known technologies that rely on nucleic acid hybridization are TaqMan and molecular beacon (MB) probes, fluorescent in situ hybridization (FISH), polymerase chain reaction (PCR), antisense, siRNA, and CRISPR/cas9, among others. Although invaluable tools for DNA and RNA recognition, hybridization probes suffer from several common disadvantages including low selectivity under physiological conditions, low affinity to folded single-stranded RNA and double-stranded DNA, and high cost of dye-labeled and chemically modified probes. Hybridization probes are evolving into multifunctional molecular devices (dubbed here "multicomponent probes", "DNA machines", and "DNA robots") to satisfy complex and often contradictory requirements of modern biomedical applications. In the definition used here, "multicomponent probes" are DNA probes that use more than one oligonucleotide complementary to an analyzed sequence. A "DNA machine" is an association of a discrete number of DNA strands that undergoes structural rearrangements in response to the presence of a specific analyte. Unlike multicomponent probes, DNA machines unify several functional components in a single association even in the absence of a target. DNA robots are DNA machines equipped with computational (analytic) capabilities. This Account is devoted to an overview of the ongoing evolution of hybridization probes to DNA machines and robots. The Account starts with a brief excursion to historically significant and currently used instantaneous probes. The majority of the text is devoted to the design of (i) multicomponent probes and (ii) DNA machines for nucleic acid recognition and analysis. The fundamental advantage of both designs is their ability to simultaneously address multiple problems of RNA/DNA analysis. This is achieved by modular design, in which several specialized functional components are used simultaneously for recognition of RNA or DNA analytes. The Account is concluded with the analysis of perspectives for further evolution of DNA machines into DNA robots.
Collapse
Affiliation(s)
- Dmitry M. Kolpashchikov
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences
255, Orlando, Florida 32816-2366, United States
| |
Collapse
|
59
|
High-fidelity amplified FISH for the detection and allelic discrimination of single mRNA molecules. Proc Natl Acad Sci U S A 2019; 116:13921-13926. [PMID: 31221755 DOI: 10.1073/pnas.1814463116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amplification of signals by the hybridization chain reaction (HCR) is a powerful approach for increasing signal strength in single-molecule fluorescence in situ hybridization, but probes tagged with an HCR initiator sequence are prone to producing false signals. Here we describe a system of interacting hairpin binary probes in which the HCR initiator sequence is conditionally sequestered. The binding of these probes to a perfectly complementary target unmasks the initiator, enabling the generation of an amplified signal. This probe system can distinguish single-nucleotide variations within single mRNA molecules and produces amplified signals in situ for both mutant and wild-type variants, each in a distinguishable color. This technology will augment studies of imbalanced allelic expression and will be useful for the detection of somatic mutations in cancer biopsies. By tiling these probes along the length of an mRNA target, enhanced signals can be obtained, thereby enabling the scanning of tissue sections for gene expression utilizing lower magnification microscopy, overcoming tissue autofluorescence, and allowing the detection of low-abundance biomarkers in flow cytometry.
Collapse
|
60
|
Bartold K, Pietrzyk-Le A, D'Souza F, Kutner W. Oligonucleotide Analogs and Mimics for Sensing Macromolecular Biocompounds. Trends Biotechnol 2019; 37:1051-1062. [PMID: 31109738 DOI: 10.1016/j.tibtech.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/04/2023]
Abstract
Living organisms create life-sustaining macromolecular biocompounds including biopolymers. Artificial polymers can selectively recognize biocompounds and are more resistant to harsh physical, chemical, and physiological conditions than biopolymers are. Due to recognition at a molecular level, molecularly imprinted polymers (MIPs) provide powerful tools to correlate structure with biological functionality and are often used to build next-generation chemosensors. We envision an increasing emergence of nucleic acid analogs (NAAs) or biorelevant monomers built into nature-mimicking polymers. For example, if nucleobases bearing monomers arranged by a complementary template are polymerized to form NAAs, the resulting MIPs will open up novel perspectives for synthesizing NAAs. Despite their usefulness, it is still challenging to use MIPs to devise adaptive biomaterials and to implement them in point-of-care testing.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, 1155, Union, Circle, #305070, TX 76203-5017, USA
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
61
|
Abstract
Advances in nucleic acid sequencing and genotyping technologies have facilitated the discovery of an increasing number of single-nucleotide variations (SNVs) associated with disease onset, progression, and response to therapy. The reliable detection of such disease-specific SNVs can ensure timely and effective therapeutic action, enabling precision medicine. This has driven extensive efforts in recent years to develop novel methods for the fast and cost-effective analysis of targeted SNVs. In this Review, we highlight the most recent and significant advances made toward the development of such methodologies.
Collapse
Affiliation(s)
- Alireza Abi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afsaneh Safavi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
62
|
Control and optical mapping of mechanical transitions in polymer networks and DNA-based soft materials. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
63
|
Marras SAE, Tyagi S, Antson DO, Kramer FR. Color-coded molecular beacons for multiplex PCR screening assays. PLoS One 2019; 14:e0213906. [PMID: 30883590 PMCID: PMC6422326 DOI: 10.1371/journal.pone.0213906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
The number of different fluorescent colors that can be distinguished in a PCR screening assay restricts the number of different targets that can be detected. If only six colors can be distinguished, and the probe for each target is labeled with a unique color, then only six different targets can be identified. Yet, it is often desirable to identify more targets. For instance, the rapid identification of which bacterial species (if any) is present in a patient's normally sterile blood sample, out of a long list of species, would enable appropriate actions to be taken to prevent sepsis. We realized that the number of different targets that can be identified in a screening assay can be increased significantly by utilizing a unique combination of two colors for the identification of each target species. We prepared a demonstration assay in which 15 different molecular beacon probe pairs were present, each pair specific for the same identifying sequence in the 16S ribosomal RNA gene of a different bacterial species, and each pair labeled with a unique combination of two fluorophores out of the six differently colored fluorophores that our PCR instrument could distinguish. In a set of PCR assays, each containing all 30 color-coded molecular beacons, and each containing DNA from a different bacterial species, the only two colors that arose in each real-time assay identified the species-specific target sequence that was present. Due to the intrinsic low background of molecular beacon probes, these reactions were specific and extremely sensitive, and the threshold cycle reflected the abundance of the target sequence present in each sample.
Collapse
Affiliation(s)
- Salvatore A. E. Marras
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Dan-Oscar Antson
- Center for Technology Licensing, Weill Cornell Medical Center, Cornell University, New York, New York, United States of America
| | - Fred Russell Kramer
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
64
|
Oladepo SA, Yusuf BO. Simple protocol for sequence-specific detection of mixed-base nucleic acids using a smart probe with NABs. Anal Biochem 2019; 568:53-56. [PMID: 30610841 DOI: 10.1016/j.ab.2018.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
A fluorescent smart probe (SP) was used to detect a mixed-base ribonucleic acids sequence. While the SP presents excellent sensitivity for the target, it gives subtle discrimination between the perfect target sequence and several mismatch sequences. Its sequence-specificity for the target was greatly enhanced by using nucleic acid blockers (NABs), which are unlabeled, non-fluorescent hairpin oligonucleotides that are perfectly complementary to those mismatch sequences. This approach is simple, feasible at room temperature, requires no amplification enzymes, and it is suitable for applications requiring routine nucleic acids sequence detection and quantification methods such as genetic testing and biomedical diagnostics.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
65
|
Saisuk W, Srisawat C, Yoksan S, Dharakul T. Hybridization Cascade Plus Strand-Displacement Isothermal Amplification of RNA Target with Secondary Structure Motifs and Its Application for Detecting Dengue and Zika Viruses. Anal Chem 2019; 91:3286-3293. [DOI: 10.1021/acs.analchem.8b03736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - S. Yoksan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand, 73170
| | | |
Collapse
|
66
|
Wan Y, Zhu N, Lu Y, Wong PK. DNA Transformer for Visualizing Endogenous RNA Dynamics in Live Cells. Anal Chem 2019; 91:2626-2633. [DOI: 10.1021/acs.analchem.8b02826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ying Wan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yi Lu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
67
|
Chen X, Huang J, Zhang S, Mo F, Su S, Li Y, Fang L, Deng J, Huang H, Luo Z, Zheng J. Electrochemical Biosensor for DNA Methylation Detection through Hybridization Chain-Amplified Reaction Coupled with a Tetrahedral DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3745-3752. [PMID: 30624036 DOI: 10.1021/acsami.8b20144] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA methylation is a key factor in the pathogenesis of gene expression diseases or malignancies. Thus, it has become a significant biomarker for the diagnosis and prognosis of these diseases. In this paper, we designed an ultrasensitive and specific electrochemical biosensor for DNA methylation detection. The platform consisted of stem-loop-tetrahedron composite DNA probes anchoring at a Au nanoparticle-coated gold electrode, a restriction enzyme digestion of HpaII, and signal amplification procedures including electrodeposition of Au nanoparticles, hybridization chain reaction, and horseradish peroxidase enzymatic catalysis. Under optimal conditions, the design showed a broad dynamic range from 1 aM to 1 pM and a detection limit of about 0.93 aM. The approach also showed ideal specificity, repeatability, and stability. The recovery test demonstrated that the design is a promising platform for DNA methylation detection under clinical circumstances and could meet the need for cancer diagnosis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | - Shu Zhang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | | | | | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| | | | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science , Army Medical University , 30 Gaotanyan Street , Shapingba District, Chongqing 400038 , China
| |
Collapse
|
68
|
Abdollah-Nia F, Gelfand MP, Van Orden A. Three-State DNA Hairpin Conformational Dynamics Revealed by Higher-Order Fluorescence Correlation Spectroscopy. J Phys Chem B 2019; 123:1491-1504. [DOI: 10.1021/acs.jpcb.8b10703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Wang B, You Z, Ren D. Target-assisted FRET signal amplification for ultrasensitive detection of microRNA. Analyst 2019; 144:2304-2311. [DOI: 10.1039/c8an02266f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recycling of target miRNA and high quenching efficiency of nanogold greatly improved the sensitivity for miRNA detection.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Precision Measurement Technology and Instruments
- Department of Precision Instrument
- Tsinghua University
- Beijing
- China
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments
- Department of Precision Instrument
- Tsinghua University
- Beijing
- China
| | - Dahai Ren
- State Key Laboratory of Precision Measurement Technology and Instruments
- Department of Precision Instrument
- Tsinghua University
- Beijing
- China
| |
Collapse
|
70
|
Islam MR, Azimi S, Teimoory F, Loppnow G, Serpe MJ. Isolation of RNA from a mixture and its detection by utilizing a microgel-based optical device. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this investigation, we show that RNA can be separated from a solution containing DNA and RNA and the isolated RNA can be detected using poly (N-isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hydrochloride) microgel-based optical devices (etalons). The isolation of RNA was accomplished by using hairpin-functionalized magnetic beads (MMPDNA) and differential melting, based on the fact that the DNA–RNA hybrid duplex is stronger (i.e., high melting temperature) than the DNA–DNA duplex (i.e., low melting temperature). By performing concurrent etalon sensing and fluorescent studies, we found that the MMPDNA combined with differential melting was capable of selectively separating RNA from DNA. This selective separation and simple colorimetric detection of RNA from a mixture will help lead to future RNA-based disease diagnostic devices.
Collapse
Affiliation(s)
- Molla R. Islam
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Shakiba Azimi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Faranak Teimoory
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Glen Loppnow
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael J. Serpe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
71
|
Sun SC, Lee CC, Chuang MC. Polymerase-assisted fluorescence resonance energy transfer (FRET) assay for simultaneous detection of binary viral sequences. Anal Chim Acta 2018; 1030:148-155. [DOI: 10.1016/j.aca.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
|
72
|
Murata Y, Jo JI, Tabata Y. Preparation of cationized gelatin nanospheres incorporating molecular beacon to visualize cell apoptosis. Sci Rep 2018; 8:14839. [PMID: 30287861 PMCID: PMC6172245 DOI: 10.1038/s41598-018-33231-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
The objective of this study is to prepare cationized gelatin nanospheres (cGNS) incorporating a molecular beacon (MB), and visualize cellular apoptosis. Two types of MB to detect the messenger RNA (mRNA) of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (GAP MB), and caspase-3 (casp3 MB) were incorporated in cGNS, respectively. MB incorporated in cGNS showed the DNA sequence specificity in hybridization. The cGNS incorporation enabled MB to enhance the stability against nuclease to a significantly great extent compared with free MB. The cGNS incorporating GAP MB were internalized into the KUM6 of a mouse bone marrow-derived stem cell by an endocytotic pathway. The cGNS were not distributed at the lysosomes. After the incubation with cGNS, the cell apoptosis was induced at different concentrations of camptothecin. No change in the intracellular fluorescence was observed for cGNSGAPMB. On the other hand, for the cGNScasp3MB, the fluorescent intensity significantly enhanced by the apoptosis induction of cells. It is concluded that cGNS incorporating MB is a promising system for the visualization of cellular apoptosis.
Collapse
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
73
|
Wang G, Fu Y, Ren Z, Huang J, Best S, Li X, Han G. Upconversion nanocrystal 'armoured' silica fibres with superior photoluminescence for miRNA detection. Chem Commun (Camb) 2018; 54:6324-6327. [PMID: 29862401 DOI: 10.1039/c8cc03480j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have fabricated a flexible membrane, consisting of SiO2 nanofibres armoured with upconversion nanoparticles, exhibiting intense photoluminescence. These assemblies were subsequently grafted with molecular beacons to produce a biosensor suitable for the detection of specific microRNA and with applications in early cancer detection and point-of-care diagnosis.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
74
|
Zeng P, Hou P, Jing CJ, Huang CZ. Highly sensitive detection of hepatitis C virus DNA by using a one-donor-four-acceptors FRET probe. Talanta 2018; 185:118-122. [DOI: 10.1016/j.talanta.2018.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
|
75
|
Gao Z, Xia H, Zauberman J, Tomaiuolo M, Ping J, Zhang Q, Ducos P, Ye H, Wang S, Yang X, Lubna F, Luo Z, Ren L, Johnson ATC. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors. NANO LETTERS 2018; 18:3509-3515. [PMID: 29768011 PMCID: PMC6002779 DOI: 10.1021/acs.nanolett.8b00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/05/2018] [Indexed: 05/18/2023]
Abstract
All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.
Collapse
Affiliation(s)
- Zhaoli Gao
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Han Xia
- Department of Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Department of Laboratory Medicine, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing 400038 , P. R. China
| | - Jonathan Zauberman
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jinglei Ping
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Qicheng Zhang
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemical and Biomolecular Engineering , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Pedro Ducos
- Departamento de Física , Universidad San Francisco de Quito , Quito 170901 , Ecuador
| | - Huacheng Ye
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Sheng Wang
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Xinping Yang
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Fahmida Lubna
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Li Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
76
|
Zeidman Kalman T, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring Dissociation Kinetics during Electrophoretic Focusing to Enable High-Specificity Nucleic Acid Detection. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tal Zeidman Kalman
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Rebecca Khalandovsky
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Elena Tenenbaum Gonikman
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
77
|
Jumeaux C, Wahlsten O, Block S, Kim E, Chandrawati R, Howes PD, Höök F, Stevens MM. MicroRNA Detection by DNA-Mediated Liposome Fusion. Chembiochem 2018; 19:434-438. [PMID: 29333674 PMCID: PMC5861668 DOI: 10.1002/cbic.201700592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Olov Wahlsten
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Stephan Block
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
- Present address: Department of Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Eunjung Kim
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Rona Chandrawati
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Present address: School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Philip D. Howes
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Fredrik Höök
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
78
|
Zeidman Kalman T, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring Dissociation Kinetics during Electrophoretic Focusing to Enable High-Specificity Nucleic Acid Detection. Angew Chem Int Ed Engl 2018; 57:3343-3348. [DOI: 10.1002/anie.201711673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tal Zeidman Kalman
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Rebecca Khalandovsky
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Elena Tenenbaum Gonikman
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
79
|
Ranasinghe RT, Challand MR, Ganzinger KA, Lewis BW, Softley C, Schmied WH, Horrocks MH, Shivji N, Chin JW, Spencer J, Klenerman D. Detecting RNA base methylations in single cells by in situ hybridization. Nat Commun 2018; 9:655. [PMID: 29440632 PMCID: PMC5811446 DOI: 10.1038/s41467-017-02714-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022] Open
Abstract
Methylated bases in tRNA, rRNA and mRNA control a variety of cellular processes, including protein synthesis, antimicrobial resistance and gene expression. Currently, bulk methods that report the average methylation state of ~104-107 cells are used to detect these modifications, obscuring potentially important biological information. Here, we use in situ hybridization of Molecular Beacons for single-cell detection of three methylations (m62A, m1G and m3U) that destabilize Watson-Crick base pairs. Our method-methylation-sensitive RNA fluorescence in situ hybridization-detects single methylations of rRNA, quantifies antibiotic-resistant bacteria in mixtures of cells and simultaneously detects multiple methylations using multicolor fluorescence imaging.
Collapse
Affiliation(s)
- Rohan T Ranasinghe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Martin R Challand
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| | - Kristina A Ganzinger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Max-Planck-Institut für Biochemie (MPI for Biochemistry), 82152, Martinsried, Germany
| | - Benjamin W Lewis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Charlotte Softley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Wolfgang H Schmied
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Nadia Shivji
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jason W Chin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
80
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
81
|
Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification. Mikrochim Acta 2018; 185:105. [DOI: 10.1007/s00604-017-2632-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 11/26/2022]
|
82
|
Kim SU, Batule BS, Mun H, Byun JY, Shim WB, Kim MG. Colorimetric molecular diagnosis of the HIV gag gene using DNAzyme and a complementary DNA-extended primer. Analyst 2018; 143:695-699. [PMID: 29299545 DOI: 10.1039/c7an01520h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a novel strategy for the colorimetric detection of PCR products by utilizing a target-specific primer modified at the 5'-end with an anti-DNAzyme sequence. A single-stranded DNAzyme sequence folds into a G-quadruplex structure with hemin and shows strong peroxidase activity. When the complementary strand binds to the DNAzyme sequence, it blocks the formation of the G-quadraduplex structure and loses its peroxidase activity. In the presence of the target gene, PCR amplification proceeds, and anti-DNAzyme sequence modified primers present in the reaction mixture form a double strand through primer extension. Therefore, it does not block the DNAzyme sequence. Further, a colorimetric signal is generated by the addition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and H2O2 at the end of the reaction. We have successfully detected a single copy of the HIV type 1 gag gene in buffer and 10 copies in human serum. The strategy developed could be used to detect DNA and RNA in complex biological samples by simple primer designing that includes DNAzyme and a DNA extended primer.
Collapse
Affiliation(s)
- Seong U Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea.
| | - Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Hyoyoung Mun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Ju-Young Byun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, 900 Gajwa-dong Jinju, Gyeongnam 660-701, Republic of Korea
| | - Min-Gon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea. and Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| |
Collapse
|
83
|
Oladepo SA. Design and Characterization of a Singly Labeled Fluorescent Smart Probe for In Vitro Detection of miR-21. APPLIED SPECTROSCOPY 2018; 72:79-88. [PMID: 28946749 DOI: 10.1177/0003702817736527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A sensitive hairpin smart probe (SP) has been developed and tested for its sequence-specificity and sensitivity for detecting microRNAs (miRNAs). The loop sequence of this SP is perfectly complementary to microRNA-21 (miR-21) sequence. This miRNA regulates certain biological processes and has been implicated in certain forms of cancer. The stem of the new SP consists of a fluorophore on one end and multiple guanine bases on the opposing end are used as quenchers. The fluorescence of the SP is significantly quenched by the guanine bases at room temperature and in the absence of the miR-21 target. The presence of miR-21 switches on the fluorescence due to spontaneous hybridization of the SP with this target, which also forces the stem hybrid of the SP apart. This new SP successfully discriminated between the perfect miR-21 target and two closely similar single-base mismatch sequences. When the SP was incubated with the miR-21 at 37 ℃, the hybridization kinetics increased seven times, compared to room temperature hybridization. Overall, this new SP shows good detection sensitivity and gives a limit of detection and limit of quantitation of 14.0 nM and 46.7 nM, respectively. This detection platform represents a simple, fast, mix-and-read homogeneous assay for sequence-specific detection of miR-21, and it can be adapted for other related diagnostic applications.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- 108765 Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| |
Collapse
|
84
|
Simultaneous detections of genetic fragment and single nucleotide mutation with a three-tiered output for tuberculosis diagnosis. Anal Chim Acta 2017; 1007:1-9. [PMID: 29405982 DOI: 10.1016/j.aca.2017.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB) remains one of the major infectious diseases worldwide. The pathogenic bacterium, Mycobacterium tuberculosis (M.tb), continuously evolves strains carrying drug-resistance genes, thus posing a growing challenge to TB prevention and treatment. We report a diagnostic system that uses a molecular beacon probe and an assistant strand as the core to simultaneously interact with an M.tb-specific fragment (in IS6110) and a single nucleotide substitution (SNS)-encoded segment (in rpoB) associated with drug resistance. A single fluorescent output in three-tiered levels was produced for combinatorial interpretations based on formation of a four-way DNA junction (4WJ). The SNS caused the 4WJ to partially dissociate, thus resulting in medium-level fluorescence. By contrast, high- and low-level fluorescence, represented the complete complementary complex and absence of either targeted fragments, respectively. Manipulating the length of the analyte-binding arm realized the medium output. The thermodynamics and kinetics of 4WJ construction were investigated to maximize the tiered-output performance. Biocatalytic amplification driven by the Klenow Fragment and Nt.AlwI was incorporated into the method to enhance the signal 64-fold and ensure long-term stability of the three-tiered output. The detection accuracy of the sensing system was verified using unpurified amplicons with templates of extracted DNA and boiled bacterial solutions. The tiered-output mechanism was usable at bacterial loads ranging from 4 × 100 to 4 × 103 CFU per reaction. The interference caused by nontuberculous mycobacteria was minimal. The results demonstrated the integrity of the sensing method as an alternative strategy for rapid screening of M.tb and detecting rifampin-resistance.
Collapse
|
85
|
Li J, Liu Y, Zhu X, Chang G, He H, Zhang X, Wang S. A Novel Electrochemical Biosensor Based on a Double-Signal Technique for d(CAG) n Trinucleotide Repeats. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44231-44240. [PMID: 29155546 DOI: 10.1021/acsami.7b15014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrochemical sensors now play an important role in analysis and detection of nucleic acids. In this work, we present a novel double-signal technique for electrochemically measuring the sequence and length of the d(CAG)n repeat. The double-signal technique used an electrochemical molecular beacon (a hairpin DNA labeled with ferrocene), which was directly modified on the surface of a gold electrode, while a reporter probe (a DNA sequence labeled with horseradish peroxidase) was hybridized to the target DNA. First a simple single-signal sensor was characterized in which d(CAG)n repeats were detected using a short reporter DNA strand labeled with horseradish peroxidase. To obtain a reliable signal that was dependent on repeat number, a double-signal biosensor was created in which the single strand capture DNA in single-signal sensor was replaced by an electrochemical molecular beacon labeled with ferrocene. When the hairpin DNA hybridized to the target-reporter DNA complex, it opened, resulting in a decreased ferrocene current. Both electrochemical biosensors exhibited high selectivity and sensitivity with low detection limits of 0.21 and 0.15 pM, respectively, for the detection of d(CAG)n repeats. The double-signal sensor was more accurate for the determination of repeat length, which was measured from the ratio of signals for HRP and ferrocene (H/F). A linear relationship was found between H/F and the number of repeats (n), H/F = 0.1398n + 9.89788, with a correlation coefficient of 0.974. Only 10 nM of target DNA was required for measurements based on the value of H/F in the double-signal technique. These results indicated that this new double-signal electrochemical sensor provided a reliable method for the analysis of CAG trinucleotide repeats.
Collapse
Affiliation(s)
| | | | | | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University , Youyi Road 368, Wuchang, Wuhan, Hubei 430062, China
| | | | | | | |
Collapse
|
86
|
Sensitive and specific detection of microRNAs based on two-stage amplification reaction using molecular beacons as turn-on probes. Talanta 2017; 179:685-692. [PMID: 29310294 DOI: 10.1016/j.talanta.2017.11.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
In this study, a rapid, sensitive, and specific assay for detecting miRNAs was developed based on a two-stage amplification reaction (TSAR) using molecular beacons (MBs) as turn-on probes. In the TSAR, different miRNAs can be converted to the same reporter oligonucleotides (Y), which can hybridize with the same MB. Therefore, in combination with specific templates, this method can be applied to multiplex miRNA detection by simply using the same MB. The loop region of the MB was screened by computer simulation methods. In particular, to improve the specificity of the MB in real sample analysis, the maximum similarity of the MB loop region to the human genome and human transcriptome is less than 70%. Two MBs were designed in this study. MB I, with nine flanking base pairs in its stem region, was used for real-time monitoring of the production of Y during the TSAR. MB II, with five flanking base pairs in its stem region, was used to detect the production of Y at the end of the TSAR. This assay exhibited high sensitivity with a limit of detection of 2.0 × 10-16M and 6.7 × 10-16M using MB I and MB II as turn-on probes, respectively. In addition, this assay can clearly discriminate single base differences in miRNA sequences, and the TSAR can be completed under isothermal conditions. Accordingly, the isothermal reaction conditions and simple fluorescence measurement can greatly contribute to the development of a fast point-of-care detection system.
Collapse
|
87
|
Elson EL. Introduction to fluorescence correlation Spectroscopy-Brief and simple. Methods 2017; 140-141:3-9. [PMID: 29155128 DOI: 10.1016/j.ymeth.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
88
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017; 56:15210-15233. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich "toolbox" of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal-organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alessandro Cecconello
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrea Idili
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
89
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701868] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | | | - Andrea Idili
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Francesco Ricci
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Itamar Willner
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
90
|
He G, Li J, Qi C, Guo X. Single Nucleotide Polymorphism Genotyping in Single-Molecule Electronic Circuits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700158. [PMID: 29201610 PMCID: PMC5700462 DOI: 10.1002/advs.201700158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Indexed: 05/08/2023]
Abstract
Establishing low-cost, high-throughput, simple, and accurate single nucleotide polymorphism (SNP) genotyping techniques is beneficial for understanding the intrinsic relationship between individual genetic variations and their biological functions on a genomic scale. Here, a straightforward and reliable single-molecule approach is demonstrated for precise SNP authentication by directly measuring the fluctuations in electrical signals in an electronic circuit, which is fabricated from a high-gain field-effect silicon nanowire decorated with a single hairpin DNA, in the presence of different target DNAs. By simply comparing the proportion difference of a probe-target duplex structure throughout the process, this study implements allele-specific and accurate SNP detection. These results are supported by the statistical analyses of different dynamic parameters such as the mean lifetime and the unwinding probability of the duplex conformation. In comparison with conventional polymerase chain reaction and optical methods, this convenient and label-free method is complementary to existing optical methods and also shows several advantages, such as simple operation and no requirement for fluorescent labeling, thus promising a futuristic route toward the next-generation genotyping technique.
Collapse
Affiliation(s)
- Gen He
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Chuanmin Qi
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
91
|
Tsai TT, Huang CY, Chen CA, Shen SW, Wang MC, Cheng CM, Chen CF. Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device. ACS Sens 2017; 2:1345-1354. [PMID: 28901134 DOI: 10.1021/acssensors.7b00450] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have developed a colorimetric sensing strategy employing gold nanoparticles and a paper-based analytical platform for the diagnosis of tuberculosis (TB). By utilizing the surface plasmon resonance effect, we were able to monitor changes in the color of a gold nanoparticle colloid based on the effects of single-stranded DNA probe molecules hybridizing with targeted double-stranded TB DNA. The hybridization event changes the surface charge density of the nanoparticles, causing them to aggregate to various degrees, which modifies the color of the solution in a manner that can be readily measured to determine the concentration of the targeted DNA analyte. In order to adapt this TB diagnosis method to resource-limited settings, we extended this label-free oligonucleotide and unmodified gold nanoparticle solution-based technique to a paper-based system that can be measured using a smartphone to obtain rapid parallel colorimetric results with low reagent consumption and without the need for sophisticated analytical equipment. In this study, we investigated various assay conditions, including the denaturing temperature and time, different oligonucleotide probe sequences, as well as the ratio of single stranded probe and double stranded target DNA. After optimizing these variables, we were able to achieve a detection limit of 1.95 × 10-2 ng/mL for TB DNA. Furthermore, multiple tests could be performed simultaneously with a 60 min turnaround time.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Department
of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Yu Huang
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chung-An Chen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Wei Shen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Chia Wang
- Department
of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chao-Min Cheng
- Institute
of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chien-Fu Chen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
92
|
Ge L, Sun X, Hong Q, Li F. Ratiometric NanoCluster Beacon: A Label-Free and Sensitive Fluorescent DNA Detection Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13102-13110. [PMID: 28367619 DOI: 10.1021/acsami.7b03198] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although researches until now have emphasized the influence of an oligonucleotide sequence on the fluorescence of oligonucleotide-stabilized silver nanoclusters (AgNCs), this influence has been explored as a novel ratiometric fluorescent signal transduction in this work. This study builds on our original discovery of a template-transformation phenomenon, which demonstrated that the connection of a special DNA fragment (5'-CACCGCTTT-3') with a green-emitting AgNC nucleation sequence (GNuS, 5'-TGCCTTTTGGGGACGGATA-3') creates a red-emitting AgNC nucleation sequence (RNuS, 5'-CACCGCTTTTGCCTTTTGGGGACGGATA-3'). Attempts to expand this idea and construct elegant ratiometric NanoCluster Beacons (NCBs) for DNA sequence detection are not straightforward, and, thus, we carried out a series of investigations with the goal of understanding the mechanism of this template-transformation phenomenon. Experimental results showed that the six-nucleotide fragment (5'-CACCGC-3') at the 5'-end of RNuS acts as a template convertor and takes full responsibility for the template transformation from GNuS to RNuS. Moreover, we found that the appropriate proximity of the convertor to GNuS also plays a significant role in the template transformation. We then show that the insights gained here for the template-transformation mechanism allow us to construct ratiometric NCBs by simply appending the convertor and the GNuS onto a rationally designed stem-loop probe. This new type of NCB emits intense red fluorescence without the addition of a target DNA and emerges as a new, bright green emission only when hybridized to its target DNA. By measuring the distinct variation in the fluorescence intensity ratios of green and red emission, this ratiometric NCB was demonstrated to sensitively detect Hepatitis-A virus gene sequences, a proof-of-concept target in this work, with good selectivity.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Ximei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Qing Hong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| |
Collapse
|
93
|
Tang P, Zheng J, Tang J, Ma D, Xu W, Li J, Cao Z, Yang R. Programmable DNA triple-helix molecular switch in biosensing applications: from in homogenous solutions to in living cells. Chem Commun (Camb) 2017; 53:2507-2510. [PMID: 28184393 DOI: 10.1039/c6cc09496a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrated a new gold nanoparticles (AuNPs)-integrated programmable triple-helix molecular switch (THMS) to realize the biosensing of multiple targets from in homogenous solution to in living cells. The results demonstrated that this proposed programmable THMS could be successfully used for imaging multiple messenger RNA (mRNA) in living cells and it significantly extends the scope of the THMS sensing platform.
Collapse
Affiliation(s)
- Pinting Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jianru Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Dandan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Weijian Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. and Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| |
Collapse
|
94
|
Zhang L, Bluhm AM, Chen KJ, Larkey NE, Burrows SM. Performance of nano-assembly logic gates with a DNA multi-hairpin motif. NANOSCALE 2017; 9:1709-1720. [PMID: 28090611 DOI: 10.1039/c6nr07814a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA nano-assemblies have far-reaching implications for molecular computers. Boolean logic gates made from DNA respond to specific combinations of chemical or molecular inputs. In complex samples an assortment of other chemicals and molecules may interfere with the gate's recognition and response mechanisms. For logic gates to accept an increasing number of inputs, while maintaining selectivity, their design must only respond when specific input combinations are available simultaneously. Here we present proof-of-principle for a fluorescent-based nano-assembly logic gate for three inputs. Central to the gate's design is a multi-hairpin motif that distinguishes it from other works in this area. The multi-hairpin motif facilitates a larger and increasing number of inputs and a place to generate FRET-based signal enhancement. We will show the nano-assembly logic gate worked in aqueous buffer and in crude MCF-7 cell lysate. We will demonstrate the gate's selectivity against off-analyte cocktails. Finally, multi-hairpin motifs with different chemical and physical properties were evaluated to test their logic capabilities. Future work will demonstrate the gate's ability to visually identify specific combinations of oligonucleotides called small non-coding RNAs (ncRNAs) in cells. This nano-assembly logic gate for small ncRNA has far reaching cellular computation and single-cell analysis applicability. The gate can be used for basic cellular analysis, computing and observing the unique molecular expression patterns in tumor microenvironments, and advancing the field of therapeutics.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Annie M Bluhm
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Kuan-Jen Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Nicholas E Larkey
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Sean M Burrows
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
95
|
Liu W, Huang S, Liu N, Dong D, Yang Z, Tang Y, Ma W, He X, Ao D, Xu Y, Zou D, Huang L. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay. Sci Rep 2017; 7:40125. [PMID: 28059137 PMCID: PMC5216335 DOI: 10.1038/srep40125] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
This study established a constant-temperature fluorescence quantitative detection method, combining loop-mediated isothermal amplification (LAMP) with molecular beacons. The advantages of LAMP are its convenience and efficiency, as it does not require a thermocycler and results are easily visualized by the naked eye. However, a major disadvantage of current LAMP techniques is the use of indirect evaluation methods (e.g., electrophoresis, SYBR Green I dye, precipitation, hydroxynaphthol blue dye, the turbidimetric method, calcein/Mn2+ dye, and the composite probe method), which cannot distinguish between the desired products and products of nonspecific amplification, thereby leading to false positives. Use of molecular beacons avoids this problem because molecular beacons produce fluorescence signals only when binding to target DNA, thus acting as a direct indicator of amplification products. Our analyses determined the optimal conditions for molecular beacons as an evaluation tool in LAMP: beacon length of 25-45 bp, beacon concentration of 0.6-1 pmol/μL, and reaction temperature of 60-65 °C. In conclusion, we validated a novel molecular beacon loop-mediated isothermal amplification method (MB-LAMP), realizing the direct detection of LAMP product.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ningwei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yue Tang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wen Ma
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming He
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Da Ao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yaqing Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Dayang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
96
|
Zhou W, Dong S. A new AgNC fluorescence regulation mechanism caused by coiled DNA and its applications in constructing molecular beacons with low background and large signal enhancement. Chem Commun (Camb) 2017; 53:12290-12293. [DOI: 10.1039/c7cc06872g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A AgNC fluorescence interference strategy caused by a coiled DNA sequence (A) and its applications in target DNA detection (B).
Collapse
Affiliation(s)
- Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
97
|
Adegoke O, Park EY. The use of nanocrystal quantum dot as fluorophore reporters in molecular beacon-based assays. NANO CONVERGENCE 2016; 3:32. [PMID: 28191442 PMCID: PMC5271166 DOI: 10.1186/s40580-016-0094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 05/24/2023]
Abstract
The utilization of molecular beacon (MB) biosensor probes to detect nucleic acid targets has received enormous interest within the scientific community. This interest has been stimulated by the operational qualities of MB-based probes with respect to their unique sensitivity and specificity. The design of MB biosensors entails not only optimizing the sequence of the loop to hybridize with the nucleic acid target or optimization of the length of the stem to tune the sensitivity but also the selection of the appropriate fluorophore reporter to generate the signal transduction read-out upon hybridization of the probe with the target sequence. Traditional organic fluorescent dyes are mostly used for signal reporting in MB assays but their optical properties in comparison to semiconductor fluorescent quantum dot (Qdot) nanocrystals are at a disadvantage. This review highlights the progress made in exploiting Qdot as fluorophore reporters in MB-based assays with the aim of instigating further development in the field of Qdot-MB technology. The development reported to date indicates that unparalleled fluorescence signal reporting in MB-based assays can be achieved using well-constructed Qdot fluorophores.
Collapse
Affiliation(s)
- Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Enoch Y. Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| |
Collapse
|
98
|
Pyrrolidinyl peptide nucleic acid terminally labeled with fluorophore and end-stacking quencher as a probe for highly specific DNA sequence discrimination. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
99
|
Liu Y, Zhao L, Zhang J, Zhang J, Zhao W, Mao C. NaEuF4/Au@Ag2S nanoparticles-based fluorescence resonant transfer DNA sensor for ultrasensitive detection of DNA energy. Talanta 2016; 161:87-93. [DOI: 10.1016/j.talanta.2016.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022]
|
100
|
Tang Y, Wang T, Chen M, He X, Qu X, Feng X. Tension promoted circular probe for highly selective microRNA detection and imaging. Biosens Bioelectron 2016; 85:151-156. [DOI: 10.1016/j.bios.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|