51
|
Yu X, Cui X, Wu C, Shi S, Yan S. Salicylic acid inhibits gibberellin signaling through receptor interactions. MOLECULAR PLANT 2022; 15:1759-1771. [PMID: 36199245 DOI: 10.1016/j.molp.2022.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
It is well known that plants activate defense responses at the cost of growth. However, the underlying molecular mechanisms are not well understood. The phytohormones salicylic acid (SA) and gibberellin (GA) promote defense response and growth, respectively. Here we show that SA inhibits GA signaling to repress plant growth. We found that the SA receptor NPR1 interacts with the GA receptor GID1. Further biochemical studies revealed that NPR1 functions as an adaptor of ubiquitin E3 ligase to promote the polyubiquitination and degradation of GID1, which enhances the stability of DELLA proteins, the negative regulators of GA signaling. Genetic analysis suggested that NPR1, GID1, and DELLA proteins are all required for the SA-mediated growth inhibition. Collectively, our study not only uncovers a novel regulatory mechanism of growth-defense trade-off but also reveals the interaction of hormone receptors as a new mode of hormonal crosstalk.
Collapse
Affiliation(s)
- Xiaodong Yu
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xiaoyu Cui
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Chong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shixi Shi
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
52
|
Zhang J, Wang X, Han L, Zhang J, Xie Y, Li J, Wang ZY, Wen J, Mysore KS, Zhou C. The formation of stipule requires the coordinated actions of the legume orthologs of Arabidopsis BLADE-ON-PETIOLE and LEAFY. THE NEW PHYTOLOGIST 2022; 236:1512-1528. [PMID: 36031740 DOI: 10.1111/nph.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Stipule morphology is a classical botanical key character used in plant identification. Stipules are considerably diverse in size, function and architecture, such as leaf-like stipules, spines or tendrils. However, the molecular mechanism that regulates stipule identity remains largely unknown. We isolated mutants with abnormal stipules. The mutated gene encodes the NODULE ROOT1 (MtNOOT1), which is the ortholog of BLADE-ON-PETIOLE (BOP) in Medicago truncatula. We also obtained mutants of MtNOOT2, the homolog of MtNOOT1, but they do not show obvious defects in stipules. The mtnoot1 mtnoot2 double mutant shows a higher proportion of transformation from stipules to leaflet-like stipules than the single mutants, suggesting that they redundantly determine stipule identity. Further investigations show that MtNOOTs control stipule initiation together with SINGLE LEAFLET1 (SGL1), which functions in development of lateral leaflets. Increasing SGL1 activity in mtnoot1 mtnoot2 is sufficient for the transformation of stipules to leaves. Moreover, MtNOOTs inhibit SGL1 expression during stipule development, which is probably conserved in legume species. Our study proposes a genetic regulatory model for stipule development, specifically with regard to the MtNOOTs-SGL1 module, which functions in two phases of stipule development, first in the control of stipule initiation and second in stipule patterning.
Collapse
Affiliation(s)
- Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yangyang Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
53
|
Rahman FU, Khan IA, Aslam A, Liu R, Sun L, Wu Y, Aslam MM, Khan AU, Li P, Jiang J, Fan X, Liu C, Zhang Y. Transcriptome analysis reveals pathogenesis-related gene 1 pathway against salicylic acid treatment in grapevine ( Vitis vinifera L). Front Genet 2022; 13:1033288. [PMID: 36338979 PMCID: PMC9631220 DOI: 10.3389/fgene.2022.1033288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 08/27/2023] Open
Abstract
Salicylic acid (SA) is a well-studied phenolic plant hormone that plays an important role in plant defense against the hemi-biothrophic and biothrophic pathogens and depends on the living cells of host for the successful infection. In this study, a pathogenesis test was performed between Vitis davidii and V. vinifera cultivars against grape white rot disease (Coniella diplodiella). V. davidii was found to be resistant against this disease. SA contents were found to be higher in the resistant grape cultivar after different time points. RNA-seq analysis was conducted on susceptible grapevine cultivars after 12, 24, and 48 h of SA application with the hypothesis that SA may induce defense genes in susceptible cultivars. A total of 511 differentially expressed genes (DEGs) were identified from the RNA-seq data, including some important genes, VvWRKY1/2, VvNPR1, VvTGA2, and VvPR1, for the SA defense pathway. DEGs related to phytohormone signal transduction and flavonoid biosynthetic pathways were also upregulated. The quantitative real-time PCR (qRT-PCR) results of the significantly expressed transcripts were found to be consistent with the transcriptome data, with a high correlation between the two analyses. The pathogenesis-related gene 1 (VvPR1), which is an important marker gene for plant defense, was selected for further promoter analysis. The promoter sequence showed that it contains some important cis-elements (W-box, LS7, as-1, and TCA-element) to recruit the transcription factors VvWRKY, VvNPR1, and VvTGA2 to express the VvPR1 gene in response to SA treatment. Furthermore, the VvPR1 promoter was serially deleted into different fragments (-1,837, -1,443, -1,119, -864, -558, -436, and -192 ) bp and constructed vectors with the GUS reporter gene. Deletion analysis revealed that the VvPR1 promoter between -1837 bp to -558 bp induced significant GUS expression with respect to the control. On the basis of these results, the -558 bp region was assumed to be an important part of the VvPR1 promoter, and this region contained the important cis-elements related to SA, such as TCA-element (-1,472 bp), LS7 (-1,428 bp), and as-1 (-520 bp), that recruit the TFs and induce the expression of the VvPR1 gene. This study expanded the available information regarding SA-induced defense in susceptible grapes and recognized the molecular mechanisms through which this defense might be mediated.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ali Aslam
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yandi Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Muhammad Muzammal Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Asad Ullah Khan
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Hangzhou, China
| | - Peng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
54
|
Han Q, Tan W, Zhao Y, Yang F, Yao X, Lin H, Zhang D. Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance. EMBO J 2022; 41:e110682. [PMID: 35950443 PMCID: PMC9531300 DOI: 10.15252/embj.2022110682] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The plant defense hormone, salicylic acid (SA), plays essential roles in immunity and systemic acquired resistance. Salicylic acid induced by the pathogen is perceived by the receptor nonexpressor of pathogenesis-related genes 1 (NPR1), which is recruited by TGA transcription factors to induce the expression of pathogenesis-related (PR) genes. However, the mechanism by which post-translational modifications affect TGA's transcriptional activity by salicylic acid signaling/pathogen infection is not well-established. Here, we report that the loss-of-function mutant of brassinosteroid insensitive2 (BIN2) and its homologs, bin2-3 bil1 bil2, causes impaired pathogen resistance and insensitivity to SA-induced PR gene expression, whereas the gain-of-function mutant, bin2-1, exhibited enhanced SA signaling and immunity against the pathogen. Our results demonstrate that salicylic acid activates BIN2 kinase, which in turn phosphorylates TGA3 at Ser33 to enhance TGA3 DNA binding ability and NPR1-TGA3 complex formation, leading to the activation of PR gene expression. These findings implicate BIN2 as a new component of salicylic acid signaling, functioning as a key node in balancing brassinosteroid-mediated plant growth and SA-induced immunity.
Collapse
Affiliation(s)
- Qing Han
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Wenrong Tan
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| |
Collapse
|
55
|
Liu W, Zhao C, Liu L, Huang D, Ma C, Li R, Huang L. Genome-wide identification of the TGA gene family in kiwifruit (Actinidia chinensis spp.) and revealing its roles in response to Pseudomonas syringae pv. actinidiae (Psa) infection. Int J Biol Macromol 2022; 222:101-113. [PMID: 36150565 DOI: 10.1016/j.ijbiomac.2022.09.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease of kiwifruit worldwide. Functional genes in response to Psa infection are needed, as they could be utilized to control disease. TGACG-binding transcription factor (TGA), as an essential regulator, involved in the process of plant against pathogens. However, the function of TGA regulators has not been reported in kiwifruit. It is unclear that whether TGA genes play a role in response to Psa infection. Here, we performed genome-wide screening and identified 13 TGA genes in kiwifruit. Phylogenetic analysis showed that 13 members of the AcTGA gene family could be divided into five groups. AcTGA proteins were mainly located in the nucleus, and significant differences were identified in their 3D structures. Segmental duplications promoted the expansion of the AcTGA family. Additionally, RNA-Seq and qRT-PCR revealed that four genes (AcTGA01/06/07/09) were tissue-specific and responsive to hormones at different levels. Subcellular localization showed that four proteins located in the nucleus, and among them, three (AcTGA01/06/07) had transcriptional activation activity. Lastly, transient overexpression proved that these three genes (AcTGA01/06/07) potentially played a role in the resistance to kiwifruit canker. These results provided a theoretical basis for revealing TGA involved in kiwifruit regulation against Psa.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Chao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| |
Collapse
|
56
|
Zhao J, Sun Y, Li X, Li Y. CYSTEINE-RICH RECEPTOR-LIKE KINASE5 (CRK5) and CRK22 regulate the response to Verticillium dahliae toxins. PLANT PHYSIOLOGY 2022; 190:714-731. [PMID: 35674361 PMCID: PMC9434262 DOI: 10.1093/plphys/kiac277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 05/13/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) play critical roles in responses to biotic and abiotic stresses. However, the molecular mechanisms of CRKs in plant defense responses remain unknown. Here, we demonstrated that two CRKs, CRK5 and CRK22, are involved in regulating defense responses to Verticillium dahliae toxins (Vd-toxins) in Arabidopsis (Arabidopsis thaliana). Biochemical and genetic analyses showed that CRK5 and CRK22 may act upstream of MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 to regulate the salicylic acid (SA)-signaling pathway in response to Vd-toxins. In addition, MPK3 and MPK6 interact with the transcription factor WRKY70 to modulate defense responses to Vd-toxins. WRKY70 directly binds the promoter domains of the SA-signaling-related transcription factor genes TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA2) and TGA6 to regulate their expression in response to Vd-toxins. Thus, our study reveals a mechanism by which CRK5 and CRK22 regulate SA signaling through the MPK3/6-WRKY70-TGA2/6 pathway in response to Vd-toxins.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyue Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
57
|
Tomaž Š, Gruden K, Coll A. TGA transcription factors-Structural characteristics as basis for functional variability. FRONTIERS IN PLANT SCIENCE 2022; 13:935819. [PMID: 35958211 PMCID: PMC9360754 DOI: 10.3389/fpls.2022.935819] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
TGA transcription factors are essential regulators of various cellular processes, their activity connected to different hormonal pathways, interacting proteins and regulatory elements. Belonging to the basic region leucine zipper (bZIP) family, TGAs operate by binding to their target DNA sequence as dimers through a conserved bZIP domain. Despite sharing the core DNA-binding sequence, the TGA paralogues exert somewhat different DNA-binding preferences. Sequence variability of their N- and C-terminal protein parts indicates their importance in defining TGA functional specificity through interactions with diverse proteins, affecting their DNA-binding properties. In this review, we provide a short and concise summary on plant TGA transcription factors from a structural point of view, including the relation of their structural characteristics to their functional roles in transcription regulation.
Collapse
Affiliation(s)
- Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
58
|
Transcriptional Analysis on Resistant and Susceptible Kiwifruit Genotypes Activating Different Plant-Immunity Processes against Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2022; 23:ijms23147643. [PMID: 35886990 PMCID: PMC9322148 DOI: 10.3390/ijms23147643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant–pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding.
Collapse
|
59
|
Zhao L, Su P, Hou B, Wu H, Fan Y, Li W, Zhao J, Ge W, Xu S, Wu S, Ma X, Li A, Bai G, Wang H, Kong L. The Black Necrotic Lesion Enhanced Fusarium graminearum Resistance in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:926621. [PMID: 35845685 PMCID: PMC9280303 DOI: 10.3389/fpls.2022.926621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Fusarium head blight, mainly incited by Fusarium graminearum, is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites. To determine the relationship between BNL and FHB resistance, leaf tissue of a resistant wheat cultivar Sumai 3 was inoculated with four different F. graminearum isolates. Integrated metabolomic and transcriptomic analyses of the inoculated samples suggested that the phytohormone signaling, phenolamine, and flavonoid metabolic pathways played important roles in BNL formation that restricted F. graminearum extension. Exogenous application of flavonoid metabolites on wheat detached leaves revealed the possible contribution of flavonoids to BNL formation. Exogenous treatment of either salicylic acid (SA) or methyl jasmonate (MeJA) on wheat spikes significantly reduced the FHB severity. However, exogenous MeJA treatment prevented the BNL formation on the detached leaves of FHB-resistant wheat Sumai 3. SA signaling pathway influenced reactive oxygen species (ROS) burst to enhance BNL formation to reduce FHB severity. Three key genes in SA biosynthesis and signal transduction pathway, TaICS1, TaNPR1, and TaNPR3, positively regulated FHB resistance in wheat. A complex temporal interaction that contributed to wheat FHB resistance was detected between the SA and JA signaling pathways. Knowledge of BNLs extends our understanding of the molecular mechanisms of FHB resistance in wheat and will benefit the genetic improvement of wheat FHB resistance.
Collapse
Affiliation(s)
- Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Bingqian Hou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hongyan Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yanhui Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shoushen Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shiwen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- Hard Winter Wheat Genetics Research Unit, USDA, Manhattan, KS, United States
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
60
|
Zhang C, Wang X, Li H, Wang J, Zeng Q, Huang W, Huang H, Xie Y, Yu S, Kan Q, Wang Q, Cheng Y. GLRaV-2 protein p24 suppresses host defenses by interaction with a RAV transcription factor from grapevine. PLANT PHYSIOLOGY 2022; 189:1848-1865. [PMID: 35485966 PMCID: PMC9237672 DOI: 10.1093/plphys/kiac181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Grapevine leafroll-associated virus 2 (GLRaV-2) is a prevalent virus associated with grapevine leafroll disease, but the molecular mechanism underlying GLRaV-2 infection is largely unclear. Here, we report that 24-kDa protein (p24), an RNA-silencing suppressor (RSS) encoded by GLRaV-2, promotes GLRaV-2 accumulation via interaction with the B3 DNA-binding domain of grapevine (Vitis vinifera) RELATED TO ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 (VvRAV1), a transcription factor belonging to the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) superfamily. Salicylic acid-inducible VvRAV1 positively regulates the grapevine pathogenesis-related protein 1 (VvPR1) gene by directly binding its promoter, indicating that VvRAV1 may function in the regulation of host basal defense responses. p24 hijacks VvRAV1 to the cytoplasm and employs the protein to sequester 21-nt double-stranded siRNA together, thereby enhancing its own RSS activity. Moreover, p24 enters the nucleus via interaction with VvRAV1 and weakens the latter's binding affinity to the VvPR1 promoter, leading to decreased expression of VvPR1. Our results provide a mechanism by which a viral RSS interferes with both the antiviral RNA silencing and the AP2/ERF-mediated defense responses via the targeting of one specific host factor.
Collapse
Affiliation(s)
| | - Xianyou Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Hanwei Li
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Jinying Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Zeng
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Haoqiang Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Yinshuai Xie
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Shangzhen Yu
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qing Kan
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
61
|
Transcriptional regulation of plant innate immunity. Essays Biochem 2022; 66:607-620. [PMID: 35726519 PMCID: PMC9528082 DOI: 10.1042/ebc20210100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022]
Abstract
Transcriptional reprogramming is an integral part of plant immunity. Tight regulation of the immune transcriptome is essential for a proper response of plants to different types of pathogens. Consequently, transcriptional regulators are proven targets of pathogens to enhance their virulence. The plant immune transcriptome is regulated by many different, interconnected mechanisms that can determine the rate at which genes are transcribed. These include intracellular calcium signaling, modulation of the redox state, post-translational modifications of transcriptional regulators, histone modifications, DNA methylation, modulation of RNA polymerases, alternative transcription inititation, the Mediator complex and regulation by non-coding RNAs. In addition, on their journey from transcription to translation, mRNAs are further modulated through mechanisms such as nuclear RNA retention, storage of mRNA in stress granules and P-bodies, and post-transcriptional gene silencing. In this review, we highlight the latest insights into these mechanisms. Furthermore, we discuss some emerging technologies that promise to greatly enhance our understanding of the regulation of the plant immune transcriptome in the future.
Collapse
|
62
|
Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem 2022; 66:647-656. [PMID: 35698792 DOI: 10.1042/ebc20210090] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022]
Abstract
The phytohormones salicylic acid (SA) and jasmonic acid (JA) are major players in plant immunity. Numerous studies have provided evidence that SA- and JA-mediated signaling interact with each other (SA-JA crosstalk) to orchestrate plant immune responses against pathogens. At the same time, SA-JA crosstalk is often exploited by pathogens to promote their virulence. In this review, we summarize our current knowledge of molecular mechanisms for and modulations of SA-JA crosstalk during pathogen infection.
Collapse
|
63
|
Qi P, Huang M, Hu X, Zhang Y, Wang Y, Li P, Chen S, Zhang D, Cao S, Zhu W, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. THE PLANT CELL 2022; 34:1666-1683. [PMID: 35043960 PMCID: PMC9048914 DOI: 10.1093/plcell/koac015] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/13/2022] [Indexed: 05/25/2023]
Abstract
The bacterial pathogen Ralstonia solanacearum causes wilt disease on Arabidopsis thaliana and tomato (Solanum lycopersicum). This pathogen uses type III effectors to inhibit the plant immune system; however, how individual effectors interfere with plant immune responses, including transcriptional reprograming, remain elusive. Here, we show that the type III effector RipAB targets Arabidopsis TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors, the central regulators of plant immune gene regulation, via physical interaction in the nucleus to dampen immune responses. RipAB was required for R. solanacearum virulence on wild-type tomato and Arabidopsis but not Arabidopsis tga1 tga4 and tga2 tga5 tga6 mutants. Stable expression of RipAB in Arabidopsis suppressed the pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) burst and immune gene induction as well as salicylic acid (SA) regulons including RBOHD and RBOHF, responsible for ROS production, all of which were phenocopied by the tga1 tga4 and tga2 tga5 tga6 mutants. We found that TGAs directly activate RBOHD and RBOHF expression and that RipAB inhibits this through interfering with the recruitment of RNA polymerase II. These results suggest that TGAs are the bona fide and major virulence targets of RipAB, which disrupts SA signaling by inhibiting TGA activity to achieve successful infection.
Collapse
Affiliation(s)
| | | | | | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyun Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sen Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- Author for correspondence:
| |
Collapse
|
64
|
Deng Y, Liu R, Zheng M, Cai C, Diao J, Zhou Z. Hexaconazole Application Saves the Loss of Grey Mold Disease but Hinders Tomato Fruit Ripening in Healthy Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3948-3957. [PMID: 35324179 DOI: 10.1021/acs.jafc.2c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hexaconazole (HEZ) is a triazole fungicide registered to prevent and control grey mold disease on tomatoes. Many triazole fungicides exhibit plant regulator functions. Therefore, it is necessary to understand the effects of HEZ fungicides on the growth and development of tomatoes. In the present study, the effect of HEZ on healthy and Botrytis cinerea (B. cinerea)-infected tomato plants was investigated. We found that HEZ delayed fruit ripening when applied to healthy tomato plants and further changed the taste and flavor of these fruit. HEZ increased the size and prevented the rotting of the tomato fruit, thus saving grey mold infection-related losses. Moreover, compared with applying HEZ on healthy plants, the application of HEZ on B. cinerea-infected plants increased the metabolism of sugars, acids, and aromatic compounds in these fruit. Therefore, HEZ can effectively control fungal pathogens but reduce the quality of tomato fruit.
Collapse
Affiliation(s)
- Yue Deng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Rui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Meiling Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Chengfeng Cai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
65
|
Shimizu K, Suzuki H, Uemura T, Nozawa A, Desaki Y, Hoshino R, Yoshida A, Abe H, Nishiyama M, Nishiyama C, Sawasaki T, Arimura GI. Immune gene activation by NPR and TGA transcriptional regulators in the model monocot Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:470-481. [PMID: 35061931 DOI: 10.1111/tpj.15681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.
Collapse
Affiliation(s)
- Kohei Shimizu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hitomi Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryosuke Hoshino
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ayako Yoshida
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Center, Tsukuba, Japan
| | - Makoto Nishiyama
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
66
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
67
|
Gulabani H, Goswami K, Walia Y, Roy A, Noor JJ, Ingole KD, Kasera M, Laha D, Giehl RFH, Schaaf G, Bhattacharjee S. Arabidopsis inositol polyphosphate kinases IPK1 and ITPK1 modulate crosstalk between SA-dependent immunity and phosphate-starvation responses. PLANT CELL REPORTS 2022; 41:347-363. [PMID: 34797387 DOI: 10.1007/s00299-021-02812-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.
Collapse
Affiliation(s)
- Hitika Gulabani
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Manipal Academy of Higher Education (MAHE), Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnendu Goswami
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Yashika Walia
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Abhisha Roy
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560 012, India
| | - Ricardo F H Giehl
- Department of Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
68
|
Ishihama N, Choi SW, Noutoshi Y, Saska I, Asai S, Takizawa K, He SY, Osada H, Shirasu K. Oxicam-type non-steroidal anti-inflammatory drugs inhibit NPR1-mediated salicylic acid pathway. Nat Commun 2021; 12:7303. [PMID: 34911942 PMCID: PMC8674334 DOI: 10.1038/s41467-021-27489-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.
Collapse
Affiliation(s)
- Nobuaki Ishihama
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Seung-Won Choi
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ivana Saska
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Shuta Asai
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kaori Takizawa
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Japan.
| |
Collapse
|
69
|
Nair A, Goyal I, Voß E, Mrozek P, Prajapati S, Thurow C, Tietze L, Tittmann K, Gatz C. N-hydroxypipecolic acid-induced transcription requires the salicylic acid signaling pathway at basal SA levels. PLANT PHYSIOLOGY 2021; 187:2803-2819. [PMID: 34890459 PMCID: PMC8644824 DOI: 10.1093/plphys/kiab433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/31/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a plant immune response established in uninfected leaves after colonization of local leaves with biotrophic or hemibiotrophic pathogens. The amino acid-derived metabolite N-hydroxypipecolic acid (NHP) travels from infected to systemic leaves, where it activates salicylic acid (SA) biosynthesis through the isochorismate pathway. The resulting increased SA levels are essential for induction of a large set of SAR marker genes and full SAR establishment. In this study, we show that pharmacological treatment of Arabidopsis thaliana with NHP induces a subset of SAR-related genes even in the SA induction-deficient2 (sid2/isochorismate synthase1) mutant, which is devoid of NHP-induced SA. NHP-mediated induction is abolished in sid2-1 NahG plants, in which basal SA levels are degraded. The SA receptor NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) and its interacting TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors are required for the NHP-mediated induction of SAR genes at resting SA levels. Isothermal titration analysis determined a KD of 7.9 ± 0.5 µM for the SA/NPR1 complex, suggesting that basal levels of SA would not bind to NPR1 unless yet unknown potentially NHP-induced processes increase the affinity. Moreover, the nucleocytoplasmic protein PHYTOALEXIN DEFICIENT4 is required for a slight NHP-mediated increase in NPR1 protein levels and NHP-induced expression of SAR-related genes. Our experiments have unraveled that NHP requires basal SA and components of the SA signaling pathway to induce SAR genes. Still, the mechanism of NHP perception remains enigmatic.
Collapse
Affiliation(s)
- Aswin Nair
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Isha Goyal
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Edgar Voß
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Pascal Mrozek
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Sabin Prajapati
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller Institute, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Lutz Tietze
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller Institute, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Author for communication:
| |
Collapse
|
70
|
Wu Z, He L, Jin Y, Chen J, Shi H, Wang Y, Yang W. HISTONE DEACETYLASE 6 suppresses salicylic acid biosynthesis to repress autoimmunity. PLANT PHYSIOLOGY 2021; 187:2592-2607. [PMID: 34618093 PMCID: PMC8644357 DOI: 10.1093/plphys/kiab408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Salicylic acid (SA) plays an important role for plant immunity, especially resistance against biotrophic pathogens. SA quickly accumulates after pathogen attack to activate downstream immunity events and is normally associated with a tradeoff in plant growth. Therefore, the SA level in plants has to be strictly controlled when pathogens are absent, but how this occurs is not well understood. Previously we found that in Arabidopsis (Arabidopsis thaliana), HISTONE DEACETYLASE 6 (HDA6), a negative regulator of gene expression, plays an essential role in plant immunity since its mutation allele shining 5 (shi5) exhibits autoimmune phenotypes. Here we report that this role is mainly through suppression of SA biosynthesis: first, the autoimmune phenotypes and higher resistance to Pst DC3000 of shi5 mutants depended on SA; second, SA significantly accumulated in shi5 mutants; third, HDA6 repressed SA biosynthesis by directly controlling the expression of CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). HDA6 bound to the chromatin of CBP60g and SARD1 promoter regions, and histone H3 acetylation was highly enriched within these regions. Furthermore, the transcriptome of shi5 mutants mimicked that of plants treated with exogenous SA or attacked by pathogens. All these data suggest that HDA6 is vital for plants in finely controlling the SA level to regulate plant immunity.
Collapse
Affiliation(s)
- Zhenjiang Wu
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Lei He
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Jing Chen
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, 43009 Hubei, PR China
| |
Collapse
|
71
|
Li C, Wang K, Huang Y, Lei C, Cao S, Qiu L, Xu F, Jiang Y, Zou Y, Zheng Y. Activation of the BABA-induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit. MOLECULAR PLANT PATHOLOGY 2021; 22:1624-1640. [PMID: 34498365 PMCID: PMC8578844 DOI: 10.1111/mpp.13134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/09/2023]
Abstract
The priming of defence responses in pathogen-challenged model plants undergoes a preparation phase and an expression phase for defence function. However, the priming response in postharvest fruits has not been elucidated. Here, we found that 50 mM β-aminobutyric acid (BABA) treatment could induce two distinct pathways linked with TGA1-related systemic acquired resistance (SAR), resulting in the alleviation of Rhizopus rot in postharvest peach fruit. The first priming phase was elicited by BABA alone, leading to the enhanced transcription of redox-regulated genes and posttranslational modification of PpTGA1. The second phase was activated by an H2 O2 burst via up-regulation of PpRBOH genes and stimulation of the MAPK cascade on pathogen invasion, resulting in a robust defence. In the MAPK cascade, PpMAPKK5 was identified as a shortcut interacting protein of PpTGA1 and increased the DNA binding activity of PpTGA1 for the activation of salicylic acid (SA)-responsive PR genes. The overexpression of PpMAPKK5 in Arabidopsis caused the constitutive transcription of SA-dependent PR genes and as a result conferred resistance against the fungus Rhizopus stolonifer. Hence, we suggest that the BABA-induced priming defence in peaches is activated by redox homeostasis with an elicitor-induced reductive signalling and a pathogen-stimulated H2 O2 burst, which is accompanied by the possible phosphorylation of PpTGA1 by PpMAPKK5 for signal amplification.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kaituo Wang
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yixiao Huang
- College of Art and ScienceUniversity of MiamiCoral GablesFloridaUSA
| | - Changyi Lei
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Shifeng Cao
- College of Biological and Environmental SciencesZhejiang Wanli UniversityNingboChina
| | - Linglan Qiu
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Feng Xu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
- College of Food and Pharmaceutical SciencesNingbo UniversityNingboChina
| | - Yongbo Jiang
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Yanyu Zou
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Yonghua Zheng
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
72
|
Lally RD, Donaleshen K, Chirwa U, Eastridge K, Saintilnord W, Dickinson E, Murphy R, Borst S, Horgan K, Dawson K. Transcriptomic Response of Huanglongbing-Infected Citrus sinensis Following Field Application of a Microbial Fermentation Product. FRONTIERS IN PLANT SCIENCE 2021; 12:754391. [PMID: 34917102 PMCID: PMC8669595 DOI: 10.3389/fpls.2021.754391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Huanglongbing (HLB) is considered the most destructive disease in Citrus production and threatens the future of the industry. Microbial-derived defense elicitors have gained recognition for their role in plant defense priming. This work assessed a 5% (V/V) microbial fermentation application (MFA) and its role in the elicitation of defense responses in HLB-infected Citrus sinensis trees following a foliar application with a pump sprayer. Using a PCR detection method, HLB infection levels were monitored in healthy and infected trees for 20months. Nutrient analysis assessed N, P, K, Ca, Mg, Mn, Zn, Fe, B, and Cu concentrations in the trees. MFA significantly increased Cu concentrations in treated trees and resulted in the stabilization of disease index (DI) in infected trees. Initial real-time qPCR analysis of defense-associated genes showed a significant increase in pathogenesis-related protein 2 (PR2) and phenylalanine ammonia lyase (PAL) gene expression in healthy and HLB-infected trees in response to MFA. Gene expression of PR2 and PAL peaked 6h post-microbial fermentation application during an 8-h sampling period. A transcriptomic assessment using GeneChip microarray of the hour 6 samples revealed differential expression of 565 genes when MFA was applied to healthy trees and 909 genes when applied infected citrus trees when compared to their respective controls. There were 403 uniquely differentially expressed genes in response to MFA following an intersectional analysis of both healthy and infected citrus trees. The transcriptomic analysis revealed that several genes associated with plant development, growth, and defense were upregulated in response to MFA, including multiple PR genes, lignin formation genes, ROS-related genes, hormone synthases, and hormone regulators. This study provides further evidence that MFA may play an important role as a plant elicitor in an integrated pest management strategy in citrus and other agronomically important crops.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | | | | | | | | | |
Collapse
|
73
|
Research Progress of ATGs Involved in Plant Immunity and NPR1 Metabolism. Int J Mol Sci 2021; 22:ijms222212093. [PMID: 34829975 PMCID: PMC8623690 DOI: 10.3390/ijms222212093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important pathway of degrading excess and abnormal proteins and organelles through their engulfment into autophagosomes that subsequently fuse with the vacuole. Autophagy-related genes (ATGs) are essential for the formation of autophagosomes. To date, about 35 ATGs have been identified in Arabidopsis, which are involved in the occurrence and regulation of autophagy. Among these, 17 proteins are related to resistance against plant pathogens. The transcription coactivator non-expressor of pathogenesis-related genes 1 (NPR1) is involved in innate immunity and acquired resistance in plants, which regulates most salicylic acid (SA)-responsive genes. This paper mainly summarizes the role of ATGs and NPR1 in plant immunity and the advancement of research on ATGs in NPR1 metabolism, providing a new idea for exploring the relationship between ATGs and NPR1.
Collapse
|
74
|
Jiang H, Gu S, Li K, Gai J. Two TGA Transcription Factor Members from Hyper-Susceptible Soybean Exhibiting Significant Basal Resistance to Soybean mosaic virus. Int J Mol Sci 2021; 22:11329. [PMID: 34768757 PMCID: PMC8583413 DOI: 10.3390/ijms222111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyu Gu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
75
|
Xu B, Gong X, Chen S, Hu M, Zhang J, Peng Q. Transcriptome Analysis Reveals the Complex Molecular Mechanisms of Brassica napus- Sclerotinia sclerotiorum Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:716935. [PMID: 34691098 PMCID: PMC8531588 DOI: 10.3389/fpls.2021.716935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease for many important crops worldwide, including Brassica napus. Although numerous studies have been performed on the gene expression changes in B. napus and S. sclerotiorum, knowledge regarding the molecular mechanisms of B. napus-S. sclerotiorum interactions is limited. Here, we revealed the changes in the gene expression and related pathways in both B. napus and S. sclerotiorum during the sclerotinia stem rot (SSR) infection process using transcriptome analyses. In total, 1,986, 2,217, and 16,079 differentially expressed genes (DEGs) were identified in B. napus at 6, 24, and 48 h post-inoculation, respectively, whereas 1,511, 1,208, and 2,051 DEGs, respectively, were identified in S. sclerotiorum. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that most of the hormone-signaling pathways in B. napus were enriched, and thus, the hormone contents at four stages were measured. The DEGs and hormone contents revealed that salicylic acid was activated, while the jasmonic acid pathway was repressed at 24 h post-inoculation. Additionally, the expressional patterns of the cell wall-degrading enzyme-encoding genes in S. sclerotiorum and the hydrolytic enzymes in B. napus were consistent with the SSR infection process. The results contribute to a better understanding of the interactions between B. napus and S. sclerotiorum and the development of future preventive measures against SSR.
Collapse
Affiliation(s)
- Binjie Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Jiangsu, China
| |
Collapse
|
76
|
Expression Analysis of MaTGA8 Transcription Factor in Banana and Its Defence Functional Analysis by Overexpression in Arabidopsis. Int J Mol Sci 2021; 22:ijms22179344. [PMID: 34502265 PMCID: PMC8430518 DOI: 10.3390/ijms22179344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
TGA transcription factor is a member of the D subfamily of the basic region-leucine zippers (bZIP) family. It is a type of transcription factor that was first identified in plants and is the main regulator in plant development and physiological processes, including morphogenesis and seed formation in response to abiotic and biotic stress and maintaining plant growth. The present study examined the sequence of the MaTGA8 transcription factor, the sequence of which belonged to subfamily D of the bZIP and had multiple cis-acting elements such as the G-box, TCA-element, TGACG-element, and P-box. Quantitative real time polymerase chain reaction (qRT-PCR) analyses showed that MaTGA8 was significantly down-regulated by the soil-borne fungus Fusarium oxysporum f. sp. cubense race 4 (Foc TR4). Under the induction of salicylic acid (SA), MaTGA8 was down-regulated, while different members of the MaNPR1 family responded significantly differently. Among them, MaNPR11 and MaNPR3 showed an overall upward trend, and the expression level of MaNPR4, MaNPR8, and MaNPR13 was higher than other members. MaTGA8 is a nuclear-localized transcription factor through strong interaction with MaNPR11 or weaker interaction with MaNPR4, and it is implied that the MaPR gene can be activated. In addition, the MaTGA8 transgenic Arabidopsis has obvious disease resistance and higher chlorophyll content than the wild-type Arabidopsis with the infection of Foc TR4. These results indicate that MaTGA8 may enhance the resistance of bananas to Foc TR4 by interacting with MaNPR11 or MaNPR4. This study provides a basis for further research on the application of banana TGA transcription factors in Foc TR4 stress and disease resistance and molecular breeding programs.
Collapse
|
77
|
Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics 2021; 113:3565-3581. [PMID: 34455034 DOI: 10.1016/j.ygeno.2021.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Deep-seeding is an important way to improve maize drought resistance, mesocotyl elongation can significantly enhance its seedling germination. To improve our understanding of transcription-mediated maize mesocotyl elongation under deep-seeding stress. RNA-sequencing was used to identify differentially expressed genes (DEGs) in both deep-seeding tolerant W64A and intolerant K12 mesocotyls following culture for 10 days after 2.0 mg·L-1 24-epibrassinolide (EBR) induced stress at the depths of 3 and 20 cm. Phenotypically, the mesocotyl length of both maize significantly increased under 20 cm stress and in the presence of EBR. Microstructure observations revealed that the mesocotyls underwent programmed cell death under deep-seeding stress, which was alleviated by EBR. This was found to be regulated by multiple DEGs encoding cysteine protease/senescence-specific cysteine protease, aspartic protease family protein, phospholipase D, etc. and transcription factors (TFs; MYB, NAC). Additionally, some DEGs associated with cell wall components, i.e., cellulose synthase/cellulose synthase like protein (CESA/CSL), fasciclin-like arabinogalactan (APG), leucine-rich repeat protein (LRR) and lignin biosynthesis enzymes including phenylalanine ammonia-lyase, S-adenosyl-L-methionine-dependent methyltransferases, 4-coumarate-CoA ligase, cinnamoyl CoA reductase, cinnamyl alcohol dehydrogenase, catalase, peroxiredoxin/peroxidase were found to control cell wall sclerosis. Moreover, in auxin, ethylene, brassinosteriod, cytokinin, zeatin, abscisic acid, gibberellin, jasmonic acid, and salicylic acid signaling transduction pathways, the corresponding DEGs were activated/inhibited by TFs (ARF, BZR1/2, B-ARR, A-ARR, MYC2, ABF, TGA) and synthesis of phytohormones-related metabolites. These findings provide information on the molecular mechanisms controlling maize deep-seeding tolerance and will aid in the breeding of deep-seeding maize varieties.
Collapse
|
78
|
Xu X, Xu J, Yuan C, Hu Y, Liu Q, Chen Q, Zhang P, Shi N, Qin C. Characterization of genes associated with TGA7 during the floral transition. BMC PLANT BIOLOGY 2021; 21:367. [PMID: 34380420 PMCID: PMC8359562 DOI: 10.1186/s12870-021-03144-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 07/14/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND The TGACG-binding (TGA) family has 10 members that play vital roles in Arabidopsis thaliana defense responses and development. However, their involvement in controlling flowering time remains largely unknown and requires further investigation. RESULTS To study the role of TGA7 during floral transition, we first investigated the tga7 mutant, which displayed a delayed-flowering phenotype under both long-day and short-day conditions. We then performed a flowering genetic pathway analysis and found that both autonomous and thermosensory pathways may affect TGA7 expression. Furthermore, to reveal the differential gene expression profiles between wild-type (WT) and tga7, cDNA libraries were generated for WT and tga7 mutant seedlings at 9 days after germination. For each library, deep-sequencing produced approximately 6.67 Gb of high-quality sequences, with the majority (84.55 %) of mRNAs being between 500 and 3,000 nt. In total, 325 differentially expressed genes were identified between WT and tga7 mutant seedlings. Among them, four genes were associated with flowering time control. The differential expression of these four flowering-related genes was further validated by qRT-PCR. CONCLUSIONS Among these four differentially expressed genes associated with flowering time control, FLC and MAF5 may be mainly responsible for the delayed-flowering phenotype in tga7, as TGA7 expression was regulated by autonomous pathway genes. These results provide a framework for further studying the role of TGA7 in promoting flowering.
Collapse
Affiliation(s)
- Xiaorui Xu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Jingya Xu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chen Yuan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Yikai Hu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qinggang Liu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qianqian Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
| | - Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
| |
Collapse
|
79
|
Lu M, Zhou J, Liu Y, Yang J, Tan X. CoNPR1 and CoNPR3.1 are involved in SA- and MeSA- mediated growth of the pollen tube in Camellia oleifera. PHYSIOLOGIA PLANTARUM 2021; 172:2181-2190. [PMID: 33786839 DOI: 10.1111/ppl.13410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is a plant hormone involved in a series of growth, development, and stress responses in plants. Nonexpressor of pathogenesis-related genes 1 (NPR1) is the core regulatory gene in the process of SA-mediated systemic acquired resistance (SAR). Whether NPR1 is involved in pollen tube growth mediated by SA and its derivative MeSA (methyl salicylate) remains to be explored. Here, we found that the contents of endogenous SA and MeSA in self- or cross-pollinated pistils changed significantly, and exogenous SA and MeSA significantly promoted pollen germination and pollen tube elongation of Camellia oleifera at lower concentrations. CoNPR1, CoNPR3.1, CoNPR3.2, and CoNPR5 were identified, and they were all located in the nucleus. A high level of consistency was observed across the phylogenetic relationships, gene structures, and functional domains, indicating a clear division of function, as observed in other species. The expression levels of CoNPR1, CoNPR3.1, CoNPR3.2, and CoNPR5 in self- and cross-pollinated pistils had certain regularity. Furthermore, they exhibited tissue-specific expression pattern. CoNPR1 and CoNPR3.1 were expressed in pollen tubes, whose expression was regulated by SA or MeSA, and their expression patterns were basically consistent with the trend of pollen germination. These results indicate that SA and MeSA are involved in the pollen tube growth of C. oleifera, and CoNPRs may play an important role therein.
Collapse
Affiliation(s)
- Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410001, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410001, China
| | - Yiyao Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410001, China
| | - Jin Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410001, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410001, China
| |
Collapse
|
80
|
Abstract
Salicylic acid (SA) is an essential plant defense hormone that promotes immunity against biotrophic and semibiotrophic pathogens. It plays crucial roles in basal defense and the amplification of local immune responses, as well as the establishment of systemic acquired resistance. During the past three decades, immense progress has been made in understanding the biosynthesis, homeostasis, perception, and functions of SA. This review summarizes the current knowledge regarding SA in plant immunity and other biological processes. We highlight recent breakthroughs that substantially advanced our understanding of how SA is biosynthesized from isochorismate, how it is perceived, and how SA receptors regulate different aspects of plant immunity. Some key questions in SA biosynthesis and signaling, such as how SA is produced via another intermediate, benzoic acid, and how SA affects the activities of its receptors in the transcriptional regulation of defense genes, remain to be addressed.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| | - Jianfei Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| |
Collapse
|
81
|
An J, Kim SH, Bahk S, Vuong UT, Nguyen NT, Do HL, Kim SH, Chung WS. Naringenin Induces Pathogen Resistance Against Pseudomonas syringae Through the Activation of NPR1 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:672552. [PMID: 34093630 PMCID: PMC8173199 DOI: 10.3389/fpls.2021.672552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Flavonoids are well known for the coloration of plant organs to protect UV and ROS and to attract pollinators as well. Flavonoids also play roles in many aspects of physiological processes including pathogen resistance. However, the molecular mechanism to explain how flavonoids play roles in pathogen resistance was not extensively studied. In this study, we investigated how naringenin, the first intermediate molecule of the flavonoid biosynthesis, functions as an activator of pathogen resistances. The transcript levels of two pathogenesis-related (PR) genes were increased by the treatment with naringenin in Arabidopsis. Interestingly, we found that naringenin triggers the monomerization and nuclear translocation of non-expressor of pathogenesis-related genes 1 (NPR1) that is a transcriptional coactivator of PR gene expression. Naringenin can induce the accumulation of salicylic acid (SA) that is required for the monomerization of NPR1. Furthermore, naringenin activates MPK6 and MPK3 in ROS-dependent, but SA-independent manners. By using a MEK inhibitor, we showed that the activation of a MAPK cascade by naringenin is also required for the monomerization of NPR1. These results suggest that the pathogen resistance by naringenin is mediated by the MAPK- and SA-dependent activation of NPR1 in Arabidopsis.
Collapse
|
82
|
Zhang D, Zhu Z, Gao J, Zhou X, Zhu S, Wang X, Wang X, Ren G, Kuai B. The NPR1-WRKY46-WRKY6 signaling cascade mediates probenazole/salicylic acid-elicited leaf senescence in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:924-936. [PMID: 33270345 DOI: 10.1111/jipb.13044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Endogenous salicylic acid (SA) regulates leaf senescence, but the underlying mechanism remains largely unexplored. The exogenous application of SA to living plants is not efficient for inducing leaf senescence. By taking advantage of probenazole (PBZ)-induced biosynthesis of endogenous SA, we previously established a chemical inducible leaf senescence system that depends on SA biosynthesis and its core signaling receptor NPR1 in Arabidopsis thaliana. Here, using this system, we identified WRKY46 and WRKY6 as key components of the transcriptional machinery downstream of NPR1 signaling. Upon PBZ treatment, the wrky46 mutant exhibited significantly delayed leaf senescence. We demonstrate that NPR1 is essential for PBZ/SA-induced WRKY46 activation, whereas WRKY46 in turn enhances NPR1 expression. WRKY46 interacts with NPR1 in the nucleus, binding to the W-box of the WRKY6 promoter to induce its expression in response to SA signaling. Dysfunction of WRKY6 abolished PBZ-induced leaf senescence, while overexpression of WRKY6 was sufficient to accelerate leaf senescence even under normal growth conditions, suggesting that WRKY6 may serve as an integration node of multiple leaf senescence signaling pathways. Taken together, these findings reveal that the NPR1-WRKY46-WRKY6 signaling cascade plays a critical role in PBZ/SA-mediated leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Dingyu Zhang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zheng Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuai Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoyan Wang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaolei Wang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
83
|
Cui B, Xu S, Li Y, Umbreen S, Frederickson D, Yuan B, Jiang J, Liu F, Pan Q, Loake GJ. The Arabidopsis zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide. THE NEW PHYTOLOGIST 2021; 230:259-274. [PMID: 33037639 DOI: 10.1111/nph.16993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) regulates the deployment of a phalanx of immune responses, chief among which is the activation of a constellation of defence-related genes. However, the underlying molecular mechanisms remain largely unknown. The Arabidopsis thaliana zinc finger transcription factor (ZF-TF), S-nitrosothiol (SNO) Regulated 1 (SRG1), is a central target of NO bioactivity during plant immunity. Here we characterize the remaining members of the SRG gene family. Both SRG2 and, especially, SRG3 were positive regulators of salicylic acid-dependent plant immunity. Analysis of SRG single, double and triple mutants implied that SRG family members have additive functions in plant immunity and, surprisingly, are under reciprocal regulation. SRG2 and SRG3 localized to the nucleus and functioned as ethylene-responsive element binding factor-associated amphiphilic repression (EAR) domain-dependent transcriptional repressors: NO abolished this activity for SRG3 but not for SRG2. Consistently, loss of GSNOR function, resulting in increased (S)NO concentrations, fully suppressed the disease resistance phenotype established from SRG3 but not SRG2 overexpression. Remarkably, SRG3 but not SRG2 was S-nitrosylated in vitro and in vivo. Our findings suggest that the SRG family has separable functions in plant immunity, and, surprisingly, these ZF-TFs exhibit reciprocal regulation. It is remarkable that, through neofunctionalization, the SRG family has evolved to become differentially regulated by the key immune-related redox cue, NO.
Collapse
Affiliation(s)
- Beimi Cui
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Transformational Centre for Biotechnology of Medicinal and Food Plants, Jiangsu Normal University - Edinburgh University, Xuzhou, 221116, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shiwen Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuan Li
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Debra Frederickson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
- Transformational Centre for Biotechnology of Medicinal and Food Plants, Jiangsu Normal University - Edinburgh University, Xuzhou, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
- Transformational Centre for Biotechnology of Medicinal and Food Plants, Jiangsu Normal University - Edinburgh University, Xuzhou, 221116, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qiaona Pan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Transformational Centre for Biotechnology of Medicinal and Food Plants, Jiangsu Normal University - Edinburgh University, Xuzhou, 221116, China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Transformational Centre for Biotechnology of Medicinal and Food Plants, Jiangsu Normal University - Edinburgh University, Xuzhou, 221116, China
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
84
|
The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family. Commun Biol 2021; 4:376. [PMID: 33742128 PMCID: PMC7979774 DOI: 10.1038/s42003-021-01904-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
Collapse
|
85
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
86
|
Herrera-Vásquez A, Fonseca A, Ugalde JM, Lamig L, Seguel A, Moyano TC, Gutiérrez RA, Salinas P, Vidal EA, Holuigue L. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1891-1905. [PMID: 33188435 PMCID: PMC7921300 DOI: 10.1093/jxb/eraa534] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/10/2020] [Indexed: 05/08/2023]
Abstract
Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.
Collapse
Affiliation(s)
- Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alejandro Fonseca
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Manuel Ugalde
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Lamig
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aldo Seguel
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Paula Salinas
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Elena A Vidal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
87
|
Pant S, Huang Y. Elevated production of reactive oxygen species is related to host plant resistance to sugarcane aphid in sorghum. PLANT SIGNALING & BEHAVIOR 2021; 16:1849523. [PMID: 33270502 PMCID: PMC7849690 DOI: 10.1080/15592324.2020.1849523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 05/29/2023]
Abstract
Sugarcane aphid (Melanaphis sacchari) is a phloem-feeding insect that severely affects the growth and productivity of sorghum and other related crops. While a growing body of knowledge is accumulating regarding plant, and insect interactions, the role of reactive oxygen species (ROS) against aphid infestation in sorghum has not been established yet. Here, the involvement of H2O2 and ROS detoxification enzymes in host plant resistance to sugarcane aphid in sorghum was demonstrated. The H2O2 accumulation and expression patterns of selected ROS scavenging enzymes including ascorbate peroxidase (APX), glutathione S transferase (GST), superoxide dismutase (SOD), and catalase (CAT) in response to sugarcane aphid infestation at 3, 6, 9, and 12 days post infestation (dpi) in resistant (Tx2783) and susceptible (Tx7000) sorghum genotypes were assessed, respectively. A significant increase in H2O2 accumulation was observed in resistant genotypes at all time points studied as compared to susceptible plants. Furthermore, gene expression analysis revealed that in responding to attack by sugarcane aphid, antioxidant genes were induced in both genotypes, but much stronger in the resistant line. Furthermore, aphid survival and fecundity were significantly inhibited in resistant plants compared to susceptible plants. Taken together, our results suggest that the elevated accumulation of H2O2 and the strong upregulation of the antioxidant genes in sorghum may have contributed to host plant resistance in Tx2783 against sugarcane aphid but the weak expression of those antioxidant genes in Tx7000 resulted in the failure of attempting defense against sugarcane aphid. This report also provides the experimental evidence for the role of ROS involvement in the early defensive response to an attack by sugarcane aphid in sorghum.
Collapse
Affiliation(s)
- Shankar Pant
- Plant Science Research Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stillwater, OK, USA
| | - Yinghua Huang
- Plant Science Research Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stillwater, OK, USA
| |
Collapse
|
88
|
Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, D’Agostino N, Rao R. Zucchini Plants Alter Gene Expression and Emission of ( E)-β-Caryophyllene Following Aphis gossypii Infestation. FRONTIERS IN PLANT SCIENCE 2021; 11:592603. [PMID: 33488643 PMCID: PMC7820395 DOI: 10.3389/fpls.2020.592603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
Zucchini (Cucurbita pepo L.) is widely cultivated in temperate regions. One of the major production challenges is the damage caused by Aphis gossypii (Homoptera: Aphididae), a polyphagous aphid, which can negatively affect its host plant, both directly by feeding and indirectly by vectoring viruses. To gain insights into the transcriptome events that occur during the zucchini-aphid interaction and to understand the early-to-late defense response through gene expression profiles, we performed RNA-sequencing (RNA-Seq) on zucchini leaves challenged by A. gossypii (24, 48, and 96 h post-infestation; hpi). Data analysis indicated a complex and dynamic pattern of gene expression and a transient transcriptional reconfiguration that involved more than 700 differentially expressed genes (DEGs), including a large number of defense-related genes. The down-regulation of key genes of plant immunity, such as leucine-rich repeat (LRR) protein kinases, transcription factors, and genes associated with direct (i.e., protease inhibitors, cysteine peptidases, etc.) and indirect (i.e., terpene synthase) defense responses, suggests the aphid ability to manipulate plant immune responses. We also investigated the emission of volatile organic compounds (VOCs) from infested plants and observed a reduced emission of (E)-β-caryophyllene at 48 hpi, likely the result of aphid effectors, which reflects the down-regulation of two genes involved in the biosynthesis of terpenoids. We showed that (E)-β-caryophyllene emission was modified by the duration of plant infestation and by aphid density and that this molecule highly attracts Aphidius colemani, a parasitic wasp of A. gossypii. With our results we contributed to the identification of genes involved in cucurbit plant interactions with phloem feeders. Our findings may also help pave the way toward developing tolerant zucchini varieties and to identify molecules for sustainable management of harmful insect populations.
Collapse
Affiliation(s)
- Alessia Vitiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Laboratory of Entomology, Wageningen University, Wageningen, Netherlands
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Massimo Giorgini
- Sede Secondaria di Portici, Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Toby J. A. Bruce
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
89
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
90
|
Liu Y, Sun T, Sun Y, Zhang Y, Radojičić A, Ding Y, Tian H, Huang X, Lan J, Chen S, Orduna AR, Zhang K, Jetter R, Li X, Zhang Y. Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. THE PLANT CELL 2020; 32:4002-4016. [PMID: 33037144 PMCID: PMC7721329 DOI: 10.1105/tpc.20.00499] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 05/10/2023]
Abstract
The plant defense hormone salicylic acid (SA) is perceived by two classes of receptors, NPR1 and NPR3/NPR4. They function in two parallel pathways to regulate SA-induced defense gene expression. To better understand the roles of the SA receptors in plant defense, we systematically analyzed their contributions to different aspects of Arabidopsis (Arabidopsis thaliana) plant immunity using the SA-insensitive npr1-1 npr4-4D double mutant. We found that perception of SA by NPR1 and NPR4 is required for activation of N-hydroxypipecolic acid biosynthesis, which is essential for inducing systemic acquired resistance. In addition, both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are severely compromised in the npr1-1 npr4-4D double mutant. Interestingly, the PTI and ETI attenuation in npr1-1 npr4-4D is more dramatic compared with the SA-induction deficient2-1 (sid2-1) mutant, suggesting that the perception of residual levels of SA in sid2-1 also contributes to immunity. Furthermore, NPR1 and NPR4 are involved in positive feedback amplification of SA biosynthesis and regulation of SA homeostasis through modifications including 5-hydroxylation and glycosylation. Thus, the SA receptors NPR1 and NPR4 play broad roles in plant immunity.
Collapse
Affiliation(s)
- Yanan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ana Radojičić
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jiameng Lan
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130000, China
| | - Alberto Ruiz Orduna
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
91
|
HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proc Natl Acad Sci U S A 2020; 117:30805-30815. [PMID: 33199617 PMCID: PMC7720166 DOI: 10.1073/pnas.2016049117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immune responses protect organisms against biotic challenges but can also produce deleterious effects, such as inflammation and necrosis. This growth-defense trade-off necessitates fine control of immune responses, including the activation of defense gene expression. The transcriptional coactivator NPR1 is a key regulatory hub of immune activation in plant cells. Surprisingly, full activation of NPR1-activated defense genes requires proteasome-mediated degradation of NPR1 induced by a CUL3-based E3 ubiquitin ligase complex. Our work demonstrates that HOS15 is the specificity determinant of a CUL1-based E3 ubiquitin ligase complex that limits defense gene expression by targeting NPR1 for proteasome-mediated degradation. Thus, distinct ubiquitin-based degradation pathways coordinately modulate the timing and amplitude of transcriptional outputs during plant defense. Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.
Collapse
|
92
|
Wang K, Li C, Lei C, Jiang Y, Qiu L, Zou X, Zheng Y. β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:552-565. [PMID: 33059266 DOI: 10.1016/j.plaphy.2020.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/19/2020] [Indexed: 05/18/2023]
Abstract
Either NPR1 or TGA1 serve as master redox-sensitive transcriptional regulators for the transcription of PR genes in plants. The redox modification of the two co-activators involved in BABA-induced priming resistance against Botrytis cinerea in grapes was examined in this study. The results showed that 10 mmol L-1 BABA could effectively trigger a priming defense in grapes as manifested by augmented expression levels of PR genes upon inoculation with B. cinerea. Moreover, transcriptome profiling analysis revealed that all of the sets of key genes in the enzymatic ROS scavenging system, the PPP and AsA-GSH cycle were in harmony and were transcriptionally induced in BABA-primed grapes with pathogenic infection; in addition, this enhanced expression caused the accelerated accumulation of reductive substances, namely, AsA, GSH and NADPH, resulting in reduced intercellular conditions. Under reduced conditions, the interaction of VvTGA1 and VvNPR1 in the Y2H assay implied that VvTGA1 can provide the DNA binding capacity required by VvNPR1 for activation of VvPR genes. Consequently, the transactivation of VvNPR1 by the promoters of VvPR1, VvPR2 and VvPR5 was determined via a DLR assay, and it induced the transcription of the VvPR genes. In parallel, the redox-modified reducing condition achieved with an abundant supply of reductive substances was closely associated with the translocation of NPR1 for interaction with TGA in the nucleus. Thus, the posttranslational modification and subsequent interaction of the two redox-sensitive co-activators of VvNPR1 and VvTGA1 under reduced conditions may be responsible for BABA-induced priming for effective disease resistance in grapes.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China; College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Changyi Lei
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yongbo Jiang
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Linglan Qiu
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Xinyi Zou
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
93
|
Liu C, Atanasov KE, Arafaty N, Murillo E, Tiburcio AF, Zeier J, Alcázar R. Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:2755-2768. [PMID: 32839979 DOI: 10.1111/pce.13874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 05/20/2023]
Abstract
Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.
Collapse
Affiliation(s)
- Changxin Liu
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nazanin Arafaty
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio F Tiburcio
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
94
|
Chai LX, Dong K, Liu SY, Zhang Z, Zhang XP, Tong X, Zhu FF, Zou JZ, Wang XB. A putative nuclear copper chaperone promotes plant immunity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6684-6696. [PMID: 32865553 PMCID: PMC7586746 DOI: 10.1093/jxb/eraa401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/26/2020] [Indexed: 05/08/2023]
Abstract
Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.
Collapse
Affiliation(s)
- Long-Xiang Chai
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Song-Yu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei-Fan Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Ze Zou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
95
|
Wang P, Zhao Z, Zhang Z, Cai Z, Liao J, Tan Q, Xiang M, Chang L, Xu D, Tian Q, Wang D. Genome-wide identification and analysis of NPR family genes in Brassica juncea var. tumida. Gene 2020; 769:145210. [PMID: 33069807 DOI: 10.1016/j.gene.2020.145210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023]
Abstract
Nonexpressor of pathogenesis-related (NPR) genes are bona fide transcription cofactors in the signal transduction pathway of salicylic acid (SA) and play critical regulatory roles in plant immunity. However, the NPR family genes in Brassica juncea var. tumida have not yet been comprehensively identified and analyzed as of yet. In the present study, NPR genes in B. juncea var. tumida seedlings were identified, and the tissue-specific expression patterns of NPR genes in the seedling were analyzed under salt stress (200 mM) treatment and infection by Plasmodiophora brassicae. A total of 19 NPR family genes clustering into six separate groups were identified in the genome of B. juncea var. tumida. These BjuNPR family genes were located in 11 of 18 chromosomes of B. juncea var. tumida and each possessed 1-5 exons. The BjuNPR family members had similar protein structures and conserved motifs. The BjuNPR genes exhibited tissue-specific expression patterns in the root, stem, leaf, flower and pod. Some BjuNPR genes were sensitive to salt stress and showed up-regulated or down-regulated expression patterns and most BjuNPR genes were up-regulated upon infection by P. brassicae. This study provides a foundation for further research into BjuNPR genes regulation in plant growth, development, and abiotic stress tolerance.
Collapse
Affiliation(s)
- Pan Wang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Zhixiang Zhao
- Hainan Key Laboratory for Control Plant Diseases and Insect Pests, Institute of Plant Protection of Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Zhuo Zhang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China; Key Laboratory of Pest Management of Horticultural Crops of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Zhaoming Cai
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Jingjing Liao
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Qin Tan
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Meiqin Xiang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Lijie Chang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Dan Xu
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Qin Tian
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China
| | - Diandong Wang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
96
|
Meng F, Yang C, Cao J, Chen H, Pang J, Zhao Q, Wang Z, Qing Fu Z, Liu J. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1552-1573. [PMID: 32129570 DOI: 10.1111/jipb.12922] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Crosstalk between plant hormone signaling pathways is vital for controlling the immune response during pathogen invasion. Salicylic acid (SA) and jasmonic acid (JA) often play important but antagonistic roles in the immune responses of higher plants. Here, we identify a basic helix-loop-helix transcription activator, OsbHLH6, which confers disease resistance in rice by regulating SA and JA signaling via nucleo-cytosolic trafficking in rice (Oryza sativa). OsbHLH6 expression was upregulated during Magnaporthe oryzae infection. Transgenic rice plants overexpressing OsbHLH6 display increased JA responsive gene expression and enhanced disease susceptibility to the pathogen. Nucleus-localized OsbHLH6 activates JA signaling and suppresses SA signaling; however, the SA regulator OsNPR1 (Nonexpressor of PR genes 1) sequesters OsbHLH6 in the cytosol to alleviate its effect. Our data suggest that OsbHLH6 controls disease resistance by dynamically regulating SA and JA signaling.
Collapse
Affiliation(s)
- Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jidong Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Chen
- Department of Biological Science, University of South Carolina, Columbia, SC, 29028, USA
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiqi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Inner Mongolia, Hohhot, 010021, China
| | - Zongyi Wang
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, 102206, China
| | - Zheng Qing Fu
- Department of Biological Science, University of South Carolina, Columbia, SC, 29028, USA
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
97
|
Sun LM, Fang JB, Zhang M, Qi XJ, Lin MM, Chen JY. Molecular Cloning and Functional Analysis of the NPR1 Homolog in Kiwifruit ( Actinidia eriantha). FRONTIERS IN PLANT SCIENCE 2020; 11:551201. [PMID: 33042179 PMCID: PMC7524898 DOI: 10.3389/fpls.2020.551201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
Kiwifruit bacterial canker, caused by the bacterial pathogen Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease in the kiwifruit industry globally. Consequently, understanding the mechanism of defense against pathogens in kiwifruit could facilitate the development of effective novel protection strategies. The Non-expressor of Pathogenesis-Related genes 1 (NPR1) is a critical component of the salicylic acid (SA)-dependent signaling pathway. Here, a novel kiwifruit NPR1-like gene, designated AeNPR1a, was isolated by using PCR and rapid amplification of cDNA ends techniques. The full-length cDNA consisted of 1952 base pairs with a 1,746-bp open-reading frame encoding a 582 amino acid protein. Homology analysis showed that the AeNPR1a protein is significantly similar to the VvNPR1 of grape. A 2.0 Kb 5'-flanking region of AeNPR1a was isolated, and sequence identification revealed the presence of several putative cis-regulatory elements, including basic elements, defense and stress response elements, and binding sites for WRKY transcription factors. Real-time quantitative PCR results demonstrated that AeNPR1a had different expression patterns in various tissues, and its transcription could be induced by phytohormone treatment and Psa inoculation. The yeast two-hybrid assay revealed that AeNPR1a interacts with AeTGA2. Constitutive expression of AeNPR1a induced the expression of pathogenesis-related gene in transgenic tobacco plants and enhanced tolerance to bacterial pathogens. In addition, AeNPR1a expression could restore basal resistance to Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis npr1-1 mutant. Our data suggest that AeNPR1a gene is likely to play a pivotal role in defense responses in kiwifruit.
Collapse
|
98
|
Li Y, Loake GJ. The immune-related, TGA1 redox-switch: to be or not to be? THE NEW PHYTOLOGIST 2020. [PMID: 32726463 DOI: 10.1111/nph.16785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Yuan Li
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3BF, UK
| |
Collapse
|
99
|
Zhang Y, Gao W, Li H, Wang Y, Li D, Xue C, Liu Z, Liu M, Zhao J. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 2020; 21:483. [PMID: 32664853 PMCID: PMC7362662 DOI: 10.1186/s12864-020-06890-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Among several TF families unique to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important. Chinese jujube (Ziziphus jujuba Mill.) is a popular fruit tree species in Asia, and its fruits are rich in sugar, vitamin C and so on. Analysis of the bZIP gene family of jujube has not yet been reported. In this study, ZjbZIPs were identified firstly, their expression patterns were further studied in different tissues and in response to various abiotic and phytoplasma stresses, and their protein-protein interactions were also analyzed. RESULTS At the whole genome level, 45 ZjbZIPs were identified and classified into 14 classes. The members of each class of bZIP subfamily contain a specific conserved domain in addition to the core bZIP conserved domain, which may be related to its biological function. Relative Synonymous Codon Usage (RSCU) analysis displayed low values of NTA and NCG codons in ZjbZIPs, which would be beneficial to increase the protein production and also indicated that ZjbZIPs were at a relative high methylation level. The paralogous and orthologous events occurred during the evolutionary process of ZjbZIPs. Thirty-four ZjbZIPs were mapped to but not evenly distributed among 10 pseudo- chromosomes. 30 of ZjbZIP genes showed diverse tissue-specific expression in jujube and wild jujube trees, indicating that these genes may have multiple functions. Some ZjbZIP genes were specifically analyzed and found to play important roles in the early stage of fruit development. Moreover, some ZjbZIPs that respond to phytoplasma invasion and abiotic stress environmental conditions, such as salt and low temperature, were found. Based on homology comparisons, prediction analysis and yeast two-hybrid, a protein interaction network including 42 ZjbZIPs was constructed. CONCLUSIONS The bioinformatics analyses of 45 ZjbZIPs were implemented systematically, and their expression profiles in jujube and wild jujube showed that many genes might play crucial roles during fruit ripening and in the response to phytoplasma and abiotic stresses. The protein interaction networks among ZjbZIPs could provide useful information for further functional studies.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yongkang Wang
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, China
| | - Dengke Li
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
100
|
Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, Duan J, Li M, Dogra V, Li Y, Lv R, Li Z, Lozano-Duran R, Kim C. PLANT NATRIURETIC PEPTIDE A and Its Putative Receptor PNP-R2 Antagonize Salicylic Acid-Mediated Signaling and Cell Death. THE PLANT CELL 2020; 32:2237-2250. [PMID: 32409317 PMCID: PMC7346577 DOI: 10.1105/tpc.20.00018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaiwei Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haihong Dong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingrui Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiqing Lv
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|