51
|
Turtle anoxia tolerance: Biochemistry and gene regulation. Biochim Biophys Acta Gen Subj 2015; 1850:1188-96. [DOI: 10.1016/j.bbagen.2015.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
|
52
|
Dong T, Li C, Wang X, Dian L, Zhang X, Li L, Chen S, Cao R, Li L, Huang N, He S, Lei X. Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine. Nat Commun 2015; 6:6522. [PMID: 25813672 PMCID: PMC4389228 DOI: 10.1038/ncomms7522] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of NF-κB is associated with the development of cancer and autoimmune and inflammatory diseases. IKKs are well recognized as key regulators in the NF-κB pathway and therefore represent attractive targets for intervention with small molecule inhibitors. Herein, we report that a complex natural product ainsliadimer A is a potent inhibitor of the NF-κB pathway. Ainsliadimer A selectively binds to the conserved cysteine 46 residue of IKKα/β and suppresses their activities through an allosteric effect, leading to the inhibition of both canonical and non-canonical NF-κB pathways. Remarkably, ainsliadimer A induces cell death of various cancer cells and represses in vivo tumour growth and endotoxin-mediated inflammatory responses. Ainsliadimer A is thus a natural product targeting the cysteine 46 of IKKα/β to block NF-κB signalling. Therefore, it has great potential for use in the development of anticancer and anti-inflammatory therapies. IKK is a key inducer of NF-κB, and has been targeted by several small molecule drugs. Here the authors show that a natural product from a Chinese medical herb inhibits NF-κB via covalent binding to a unique conserved region of IKK, and efficiently inhibits tumour growth and sepsis in mice.
Collapse
Affiliation(s)
- Ting Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Chao Li
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Longyang Dian
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiuguo Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Ran Cao
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Li Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Niu Huang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Sudan He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xiaoguang Lei
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China.,Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
53
|
CD40 expression and its prognostic significance in human gastric carcinoma. Med Oncol 2015; 32:63. [PMID: 25665853 DOI: 10.1007/s12032-014-0463-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022]
Abstract
This study aimed to detect the relationship between CD40 (protein and mRNA) expression and human gastric cancer and to determine the prognostic significance of CD40 in gastric cancer patients. We collected 128 cases of gastric cancer specimens, and the expression of CD40 (protein and mRNA) was measured by immunohistochemistry and in situ hybridization. Our study indicated that CD40 is constitutively expressed in human gastric carcinoma tissues. Positive expression of CD40 (protein and mRNA) in gastric cancer tissues was closely related to the tumor TNM stage and the presence of distant metastasis, with CD40 mRNA also being correlated with the presence of lymphatic metastasis. Furthermore, the expression of CD40 (protein and mRNA) is closely related to the prognosis of gastric cancer patients. The expression of CD40 protein and mRNA is positively correlated with the presence of distant (for both protein and mRNA) and lymphatic (for mRNA only) metastasis, and an increased tumor TNM stage in gastric carcinoma. Patients who express low levels of CD40 may have a better prognosis than those who have higher levels of CD40.
Collapse
|
54
|
Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity 2014; 41:947-59. [PMID: 25500368 DOI: 10.1016/j.immuni.2014.10.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022]
Abstract
Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells.
Collapse
|
55
|
Urbanik T, Koehler BC, Wolpert L, Elßner C, Scherr AL, Longerich T, Kautz N, Welte S, Hövelmeyer N, Jäger D, Waisman A, Schulze-Bergkamen H. CYLD deletion triggers nuclear factor-κB-signaling and increases cell death resistance in murine hepatocytes. World J Gastroenterol 2014; 20:17049-17064. [PMID: 25493017 PMCID: PMC4258573 DOI: 10.3748/wjg.v20.i45.17049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the role of CYLD for receptor-mediated cell death of murine hepatocytes in acute liver injury models.
METHODS: Hepatocyte cell death in CYLD knockout mice (CYLD-/-) was analyzed by application of liver injury models for CD95- (Jo2) and tumor necrosis factor (TNF)-α- [D-GalN/lipopolysaccharide (LPS)] induced apoptosis. Liver injury was assessed by measurement of serum transaminases and histological analysis. Apoptosis induction was quantified by cleaved PARP staining and Western blotting of activated caspases. Nuclear factor (NF)-κB, ERK, Akt and jun amino-terminal kinases signaling were assessed. Primary Hepatocytes were isolated by two step-collagenase perfusion and treated with recombinant TNF-α and with the CD95-ligand Jo2. Cell viability was analyzed by MTT-assay.
RESULTS: Livers of CYLD-/- mice showed increased anti-apoptotic NF-κB signaling. In both applied liver injury models CYLD-/- mice showed a significantly reduced apoptosis sensitivity. After D-GalN/LPS treatment CYLD-/- mice exhibited significantly lower levels of alanine aminotransferase (ALT) (295 U/L vs 859 U/L, P < 0.05) and aspartate aminotransferase (AST) (560 U/L vs 1025 U/L, P < 0.01). After Jo injection CYLD-/- mice showed 2-fold lower ALT (50 U/L vs 110 U/L, P < 0.01) and lower AST (250 U/L vs 435 U/L, P < 0.01) serum-levels compared to WT mice. In addition, isolated CYLD-/- primary murine hepatocytes (PMH) were less sensitive towards death receptor-mediated apoptosis and showed increased levels of Bcl-2, XIAP, cIAP1/2, survivin and c-FLIP expression upon TNF- and CD95-receptor triggering, respectively. Inhibition of NF-κB activation by the inhibitor of NF-κB phosphorylation inhibitor BAY 11-7085 inhibited the expression of anti-apoptotic proteins and re-sensitized CYLD-/- PMH towards TNF- and CD95-receptor mediated cell death.
CONCLUSION: CYLD is a central regulator of apoptotic cell death in murine hepatocytes by controlling NF-κB dependent anti-apoptotic signaling.
Collapse
|
56
|
Hind CK, Carter MJ, Harris CL, Chan HTC, James S, Cragg MS. Role of the pro-survival molecule Bfl-1 in melanoma. Int J Biochem Cell Biol 2014; 59:94-102. [PMID: 25486183 DOI: 10.1016/j.biocel.2014.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
Bfl-1 is a pro-survival Bcl-2 family member overexpressed in a subset of chemoresistant tumours, including melanoma. Here, we characterised the expression and regulation of Bfl-1 in normal and malignant melanocytes and determined its role in protecting these cells from chemotherapy-induced apoptosis. Bfl-1 was mitochondrially resident in both resting and apoptotic cells and experienced regulation by the proteasome and NFκB pathways. siRNA-mediated knockdown enhanced sensitivity towards various relevant drug treatments, with forced overexpression of Bfl-1 protective. These findings identify Bfl-1 as a contributor towards therapeutic resistance in melanoma cells and support the use of NFκB inhibitors alongside current treatment strategies.
Collapse
Affiliation(s)
- C K Hind
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - M J Carter
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - C L Harris
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - H T C Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - S James
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - M S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
57
|
Huelsemann MF, Patz M, Beckmann L, Brinkmann K, Otto T, Fandrey J, Becker HJ, Theurich S, von Bergwelt-Baildon M, Pallasch CP, Zahedi RP, Kashkar H, Reinhardt HC, Hallek M, Wendtner CM, Frenzel LP. Hypoxia-induced p38 MAPK activation reduces Mcl-1 expression and facilitates sensitivity towards BH3 mimetics in chronic lymphocytic leukemia. Leukemia 2014; 29:981-4. [PMID: 25376373 DOI: 10.1038/leu.2014.320] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M F Huelsemann
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| | - M Patz
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| | - L Beckmann
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| | - K Brinkmann
- 1] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany [2] Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - T Otto
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - J Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - H J Becker
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | - S Theurich
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | - M von Bergwelt-Baildon
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | - C P Pallasch
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| | - R P Zahedi
- Leibniz-Institute for Analytical Sciences-ISAS-e.V., Dortmund, Germany
| | - H Kashkar
- 1] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany [2] Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - H C Reinhardt
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| | - M Hallek
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| | - C M Wendtner
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany [4] Department I of Internal Medicine, Klinikum Schwabing, Munich, Germany
| | - L P Frenzel
- 1] Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany [2] Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
58
|
Muhammad K, Alrefai H, Marienfeld R, Pham DAT, Murti K, Patra AK, Avots A, Bukur V, Sahin U, Kondo E, Klein-Hessling S, Serfling E. NF-κB factors control the induction of NFATc1 in B lymphocytes. Eur J Immunol 2014; 44:3392-402. [PMID: 25179582 DOI: 10.1002/eji.201444756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
In peripheral lymphocytes, the transcription factors (TFs) NF-κB, NFAT, and AP-1 are the prime targets of signals that emerge from immune receptors. Upon activation, these TFs induce gene networks that orchestrate the growth, expansion, and effector function of peripheral lymphocytes. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA-binding domain, and there is a subgroup of κB-like DNA promoter motifs that are bound by both types of TFs. However, unlike NFAT and AP-1 factors that interact and collaborate in binding to DNA, NFAT, and NF-κB seem neither to interact nor to collaborate. We show here that NF-κB1/p50 and c-Rel, the most prominent NF-κB proteins in BCR-induced splenic B cells, control the induction of NFATc1/αA, a prominent short NFATc1 isoform. In part, this is mediated through two composite κB/NFAT-binding sites in the inducible Nfatc1 P1 promoter that directs the induction of NFATc1/αA by BCR signals. In concert with coreceptor signals that induce NF-κB factors, BCR signaling induces a persistent generation of NFATc1/αA. These data suggest a tight connection between NFATc1 and NF-κB induction in B lymphocytes contributing to the effector function of peripheral B cells.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Busca A, Saxena M, Iqbal S, Angel J, Kumar A. PI3K/Akt regulates survival during differentiation of human macrophages by maintaining NF-κB-dependent expression of antiapoptotic Bcl-xL. J Leukoc Biol 2014; 96:1011-22. [DOI: 10.1189/jlb.1a0414-212r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
60
|
Chao TH, Chang MY, Su SJ, Su SH. Inducible nitric oxide synthase mediates MG132 lethality in leukemic cells through mitochondrial depolarization. Free Radic Biol Med 2014; 74:175-87. [PMID: 24909615 DOI: 10.1016/j.freeradbiomed.2014.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/28/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022]
Abstract
Proteasomes are highly expressed in rapidly growing neoplastic cells and essential for controlling the cell cycle process and mitochondrial homeostasis. Pharmacological inhibition of the proteasome shows a significant anticancer effect on hematopoietic malignancies that is usually associated with the generation of reactive oxygen species. In this study, we comprehensively investigated the role of endogenous oxidants in various cellular events of K562 leukemic cells in response to treatment with MG132, a proteasome inhibitor. MG132 at 1.4 µM potently triggered G2/M arrest, mitochondrial depolarization, and apoptosis. By such treatment, the protein level of inducible nitric oxide synthase (iNOS) was doubled and cellular oxidants, including nitric oxide, superoxide, and their derivatives, were increasingly produced. In MG132-treated cells, the increase in iNOS-derived oxidants was responsible for mitochondrial depolarization and caspase-dependent apoptosis, but was insignificant in G2/M arrest. The amount of iNOS was negatively correlated with that of manganese superoxide dismutase (MnSOD). Whereas iNOS activity was inhibited by aminoguanidine, cellular MnSOD levels as well as mitochondrial membrane potentials were upregulated, and consequentially G2/M arrest and apoptosis were thoroughly reversed. It is suggested that cells rich in functional mitochondria possess improved proteasome activity, which antagonizes the cytotoxic and cytostatic effects of MG132. In contrast to iNOS, endothelial NOS-driven cGMP-dependent signaling promoted mitochondrial function and survival of MG132-stressed cells. In conclusion, the functional interplay of proteasomes and mitochondria is crucial for leukemic cell growth, wherein iNOS plays a key role.
Collapse
Affiliation(s)
- Tung Hui Chao
- Institute of Medical Sciences, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan
| | - Meng-Ya Chang
- Institute of Medical Sciences, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan; Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Shu-Jem Su
- Department of Medical Laboratory Science and Biotechnology, School of Medicine and Health Sciences, FooYin University, Kaohsiung, Taiwan
| | - Shu-Hui Su
- Institute of Medical Sciences, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan; Department of Molecular Biology and Human Genetics, College of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
61
|
Lee SY, Choi HC, Choe YJ, Shin SJ, Lee SH, Kim HS. Nutlin-3 induces BCL2A1 expression by activating ELK1 through the mitochondrial p53-ROS-ERK1/2 pathway. Int J Oncol 2014; 45:675-82. [PMID: 24867259 DOI: 10.3892/ijo.2014.2463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/07/2014] [Indexed: 11/06/2022] Open
Abstract
Nutlin-3 which occupies the p53 binding pocket in HDM2, has been reported to activate apoptosis through both the transcriptional activity-dependent and -independent programs of p53. Transcription-independent apoptosis by nutlin-3 is triggered by p53 which is translocated to mitochondria. However, we previously demonstrated that the nutlin-3-induced mitochondrial translocation of p53 stimulates ERK1/2 activation, an anti-apoptosis signal, via mitochondrial ROS generation. We report on how nutlin-3-stimulated ERK1/2 activity inhibits p53-induced apoptosis. Among the anti-apoptotic BCL2 family proteins, BCL2A1 expression was increased by nutlin-3 at both the mRNA and protein levels, and this increase was prevented by the inhibition of ERK1/2. TEMPO, a ROS scavenger, and PFT-μ , a blocker of the mitochondrial translocation of p53, also inhibited BCL2A1 expression as well as ERK1/2 phosphorylation. In addition, nutlin-3 stimulated phosphorylation of ELK1, which was prevented by all compounds that inhibited nutlin-3-induced ERK1/2 such as U0126, PFT-μ and TEMPO. Moreover, an increase in BCL2A1 expression was weakened by the knockdown of ELK1. Finally, nutlin-3-induced apoptosis was found to be potentiated by the knockdown of BCL2A1, as demonstrated by an increase of in hypo-diploidic cells and Annexin V-positive cells. Parallel to the increase in apoptotic cells, the knockdown of BCL2A1 augmented the cleavage of poly(ADP-ribose) polymerase-1. It is noteworthy that the augmented levels of apoptosis induced by the knockdown of BCL2A1 were comparable to those of apoptosis induced by U0126. Collectively, these results suggest that nutlin-3-activated ERK1/2 may stimulate the transcription of BCL2A1 via the activation of ELK1, and BCL2A1 expression may contribute to the inhibitory effect of ERK1/2 on nutlin-3-induced apoptosis, thereby constituting a negative feedback loop of p53-induced apoptosis.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Hyun Chul Choi
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Yun-Jeong Choe
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Sug Hyung Lee
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
62
|
Sonoda JI, Ikeda R, Baba Y, Narumi K, Kawachi A, Tomishige E, Nishihara K, Takeda Y, Yamada K, Sato K, Motoya T. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression. Exp Ther Med 2014; 8:59-63. [PMID: 24944597 PMCID: PMC4061191 DOI: 10.3892/etm.2014.1719] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/29/2014] [Indexed: 11/24/2022] Open
Abstract
Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3–100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL.
Collapse
Affiliation(s)
- Jun-Ichiro Sonoda
- First Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Ryuji Ikeda
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yasutaka Baba
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Keiko Narumi
- First Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Akio Kawachi
- First Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Erisa Tomishige
- First Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Kazuya Nishihara
- First Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Yasuo Takeda
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Katsushi Yamada
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Keizo Sato
- Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Toshiro Motoya
- First Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health & Welfare, Nobeoka, Miyazaki 882-8508, Japan
| |
Collapse
|
63
|
Kajihara R, Sakamoto H, Tanabe K, Takemoto K, Tasaki M, Ando Y, Inui S. Protein phosphatase 6 controls BCR-induced apoptosis of WEHI-231 cells by regulating ubiquitination of Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2014; 192:5720-9. [PMID: 24808369 DOI: 10.4049/jimmunol.1302643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crosslinking BCR in the immature B cell line WEHI-231 causes apoptosis. We found that Bcl-xL was degraded by polyubiquitination upon BCR crosslinking and in this study explored the mechanism that controls the degradation of Bcl-xL. Ser(62) of Bcl-xL was phosphorylated by JNK to trigger polyubiquitination, and this was opposed by serine/threonine protein phosphatase 6 (PP6) that physically associated with Bcl-xL. We show BCR crosslinking decreased PP6 activity to allow Ser(62) phosphorylation of Bcl-xL. CD40 crosslinking rescues BCR-induced apoptosis, and we found PP6 associated with CD40 and PP6 activation in response to CD40. Our data suggest that PP6 activity is regulated to control apoptosis by modulating Ser(62) phosphorylation of Bcl-xL, which results in its polyubiquitination and degradation.
Collapse
Affiliation(s)
- Ryutaro Kajihara
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Hitomi Sakamoto
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Kano Tanabe
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Kazuki Takemoto
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Seiji Inui
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| |
Collapse
|
64
|
Thompson MR, Xu D, Williams BR. Activating Transcription Factor 3 Contributes to Toll-Like Receptor-Mediated Macrophage Survival via Repression ofBaxandBak. J Interferon Cytokine Res 2013; 33:682-93. [DOI: 10.1089/jir.2013.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Matthew R. Thompson
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Dakang Xu
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Bryan R.G. Williams
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
65
|
|
66
|
Wang XL, Wang K, Zhao S, Wu Y, Gao H, Zeng SM. Oocyte-secreted growth differentiation factor 9 inhibits BCL-2-interacting mediator of cell death-extra long expression in porcine cumulus cell. Biol Reprod 2013; 89:56. [PMID: 23843241 DOI: 10.1095/biolreprod.113.108365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte-secreted factors (OSFs) maintain the low incidence of cumulus cell apoptosis. In this report, we described that the presence of oocytes suppressed the expression of proapoptotic protein BCL-2-interacting mediator of cell death-extra long (BIMEL) in porcine cumulus cells. Atretic (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive) cumulus cells strongly expressed BIMEL protein. The healthy cumulus- oocyte complex exhibited a low BIMEL expression in cumulus cell while the removal of oocyte led to an about 2.5-fold (P < 0.5) increased expression in oocytectomized complex (OOX). Coculturing OOXs with denuded oocytes decreased BIMEL expression to the normal level. The similar expression pattern could also be achieved in OOXs treated with exogenous recombinant mouse growth differentiation factor 9 (GDF9), a well-characterized OSF. This inhibitory action of GDF9 was prevented by the addition of a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Luciferase assay further demonstrated that BIM gene expression was forkhead box O3a (FOXO3a)-dependent because mutation of FOXO3a-binding site on the BIM promoter inhibited luciferase activities. Moreover, the activity of BIM promoter encompassing the FOXO3a-binding site could be regulated by GDF9. Additionally, we found that GDF9 elevated the levels of phosphorylated AKT and FOXO3a, and this process was independent of the SMAD signal pathway. Taken together, we concluded that OSFs, particularly GDF9, maintained the low level of BIMEL expression in cumulus cell through activation of the PI3K/FOXO3a pathway.
Collapse
Affiliation(s)
- Xian-Long Wang
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
67
|
Braun F, de Carné Trécesson S, Bertin-Ciftci J, Juin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle 2013; 12:2937-47. [PMID: 23974114 PMCID: PMC3875667 DOI: 10.4161/cc.25972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is widely accepted that anti-apoptotic Bcl-2 family members promote cancer cell survival by binding to their pro-apoptotic counterparts, thereby preventing mitochondrial outer membrane permeabilization (MOMP) and cytotoxic caspase activation. Yet, these proteins do not only function as guardians of mitochondrial permeability, preserving it, and maintaining cell survival in the face of acute or chronic stress, they also regulate non-apoptotic functions of caspases and biological processes beyond MOMP from diverse subcellular localizations and in complex with numerous binding partners outside of the Bcl-2 family. In particular, some of the non-canonical effects and functions of Bcl-2 homologs lead to an interplay with E2F-1, NFκB, and Myc transcriptional pathways, which themselves influence cancer cell growth and survival. We thus propose that, by feedback loops that we currently have only hints of, Bcl-2 proteins may act as rulers of survival signaling, predetermining the apoptotic threshold that they also directly scaffold. This underscores the robustness of the control exerted by Bcl-2 homologs over cancer cell survival, and implies that small molecules compounds currently used in the clinic to inhibit their mitochondrial activity may be not always be fully efficient to override this control.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes; Team 8 "Cell survival and tumor escape in breast cancer"; Institut de Recherche en Santé de l'Université de Nantes; Nantes, France
| | | | | | | |
Collapse
|
68
|
da Silva LF, Jones C. Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associated transcript (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon promoter activity and promote cell survival. Virus Res 2013; 175:101-9. [PMID: 23648811 PMCID: PMC4074922 DOI: 10.1016/j.virusres.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected trigeminal ganglionic sensory neurons. Expression of the first 1.5 kb of LAT coding sequences restores wild type reactivation to a LAT null HSV-1 mutant. The anti-apoptosis functions of the first 1.5 kb of LAT coding sequences are important for wild type levels of reactivation from latency. Two small non-coding RNAs (sncRNAs) contained within the first 1.5 kb of LAT coding sequences are expressed in trigeminal ganglia of latently infected mice, they cooperate to inhibit apoptosis, and reduce the efficiency of productive infection. In this study, we demonstrated that LAT sncRNA1 cooperates with the RNA sensor, retinoic acid inducible gene I (RIG-I), to stimulate IFN-β promoter activity and NF-κB dependent transcription in human or mouse cells. LAT sncRNA2 stimulated RIG-I induction of NF-κB dependent transcription in mouse neuroblastoma cells (Neuro-2A) but not human 293 cells. Since it is well established that NF-κB interferes with apoptosis, we tested whether the sncRNAs cooperated with RIG-I to inhibit apoptosis. In Neuro-2A cells, both sncRNAs cooperated with RIG-I to inhibit cold-shock induced apoptosis. Double stranded RNA (PolyI:C) stimulates RIG-I dependent signaling; but enhanced cold-shock induced apoptosis. PolyI:C, but not LAT sncRNAs, interfered with protein synthesis when cotransfected with RIG-I, which correlated with increased levels of cold-shock induced apoptosis. LAT sncRNA1 appeared to interact with RIG-I in transiently transfected cells suggesting this interaction stimulates RIG-I.
Collapse
Affiliation(s)
- Leticia Frizzo da Silva
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Morisson Life Science Center, RM234 Lincoln, NE 68583-0900, United States
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Morisson Life Science Center, RM234 Lincoln, NE 68583-0900, United States
| |
Collapse
|
69
|
Cao JP, Niu HY, Wang HJ, Huang XG, Gao DS. NF-κB p65/p52 plays a role in GDNF up-regulating Bcl-2 and Bcl-w expression in 6-OHDA-induced apoptosis of MN9D cell. Int J Neurosci 2013; 123:705-10. [PMID: 23590664 DOI: 10.3109/00207454.2013.795149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) has been shown to protect dopaminergic (DA) neurons against 6-hydroxydopamine (6-OHDA) toxicity. The mechanism underlying the antiapoptosis role of GDNF still needs further studies. We previously observed that nuclear factor-kappaB (NF-κB) signaling pathway, i.e. p65/p52, mediated the antiapoptosis role of GDNF in MN9D cells. Here, the DA cell line MN9D was used to explore the mechanisms underlying NF-κB p65/p52-mediated protection role of GDNF in DA neurons. The results showed that GDNF pretreatment blocked the apoptotic effects induced by 6-OHDA, with the upregulation of the antiapoptotic protein, Bcl-2 and Bcl-w, as well as the downregulation of the proapoptotic proteins, Bax and Bad. Furthermore, when sip100 plasmids were transfected into MN9D cells to inhibit the expression of p100, which was the precursor of p52, the effects of GDNF on upregulating Bcl-2 and Bcl-w were attenuated. These results indicated that GDNF could protect MN9D cells from apoptosis induced by 6-OHDA via upregulating Bcl-2 and Bcl-w expressions and downregulating Bax and Bad expressions. Moreover, NF-κB p65/p52 signaling mediated the effects of GDNF on Bcl-2 and Bcl-w expressions.
Collapse
|
70
|
Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D, Doench JG, Bogusz AM, Habermann TM, Dogan A, Witzig TE, Kutok JL, Rodig SJ, Golub T, Shipp MA. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 2013; 23:826-38. [PMID: 23764004 PMCID: PMC3700321 DOI: 10.1016/j.ccr.2013.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/23/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022]
Abstract
B cell receptor (BCR) signaling pathway components represent promising treatment targets in diffuse large B cell lymphoma (DLBCL) and additional B cell tumors. BCR signaling activates spleen tyrosine kinase (SYK) and downstream pathways including PI3K/AKT and NF-κB. In previous studies, chemical SYK blockade selectively decreased BCR signaling and induced apoptosis of BCR-dependent DLBCLs. Herein, we characterize distinct SYK/PI3K-dependent survival pathways in DLBCLs with high or low baseline NF-κB activity including selective repression of the pro-apoptotic HRK protein in NF-κB-low tumors. We also define SYK/PI3K-dependent cholesterol biosynthesis as a feed-forward mechanism of maintaining the integrity of BCRs in lipid rafts in DLBCLs with low or high NF-κB. In addition, SYK amplification and PTEN deletion are identified as selective genetic alterations in primary "BCR"-type DLBCLs.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Stefano Monti
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | | | - Jing Ouyang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics, Dana Farber Cancer Institute, Boston, MA
| | - John G. Doench
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Agata M. Bogusz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Ahmet Dogan
- Department of Pathology, Mayo Clinic, Rochester, MN
| | | | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Todd Golub
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Margaret A. Shipp
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
- Corresponding author: Margaret A. Shipp, MD, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; phone: 617-632-3874; fax: 617-632-4734;
| |
Collapse
|
71
|
Anticancer activity of esculetin via-modulation of Bcl-2 and NF-κB expression in benzo[a]pyrene induced lung carcinogenesis in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2012.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
72
|
Wensveen FM, van Gisbergen KPJM, Eldering E. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes. Immunol Rev 2013; 249:84-103. [PMID: 22889217 DOI: 10.1111/j.1600-065x.2012.01156.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
73
|
Mathema VB, Manzoor Z, Koo JE, Koh YS. Inhibition of cell death of bone marrow-derived macrophages infected with Ehrlichia muris. Ticks Tick Borne Dis 2013; 4:185-90. [PMID: 23352172 DOI: 10.1016/j.ttbdis.2012.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 11/14/2012] [Accepted: 11/14/2012] [Indexed: 01/12/2023]
Abstract
Ehrlichia muris is a Gram-negative obligate intracellular bacterium belonging to the family Anaplasmataceae. It preferentially replicates inside macrophages by utilizing nutrients and processes of the host cell. In the present article, we studied the effects of E. muris infection on cell death of bone marrow-derived macrophages (BMDMs). Primary BMDMs were used for accessing E. muris-induced cell death, pro-inflammatory cytokine production and Western blot analysis. Human embryonic kidney cell line 293T (HEK293T) was used to access nuclear factor-kappaB (NF-κB) activity. BMDMs infected with E. muris showed significant inhibition of cell death when compared to uninfected cells. E. muris infection resulted in IκBα degradation, thus activation of NF-κB. In NF-κB reporter gene assay, the HEK293T cells infected with E. muris exhibited robust NF-κB-dependent luciferase activity in a bacterial dose-dependent manner. Furthermore, E. muris-induced inhibition of BMDMs cell death was abolished in the presence of MG132, a proteasome inhibitor that blocks NF-κB activation. Taken together, the results suggest that E. muris infection of BMDMs may have an inhibitory effect on cell death via a mechanism dependent on NF-κB activation.
Collapse
|
74
|
Bonavida B, Jazirehi A, Vega MI, Huerta-Yepez S, Baritaki S. Roles Each of Snail, Yin Yang 1 and RKIP in the Regulation of Tumor Cells Chemo-immuno-resistance to Apoptosis. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2013; 4:10.1615/ForumImmunDisTher.2013008299. [PMID: 24187651 PMCID: PMC3811117 DOI: 10.1615/forumimmundisther.2013008299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current anti-cancer therapeutic armamentarium consists of surgery, chemotherapy, radiation, hormonal therapy, immunotherapy, and combinations thereof. Initial treatments usually result in objective clinical responses with prolongation of overall survival (OS) and progression-free survival (PFS) in a large subset of the treated patients. However, at the onset, there is a subset of patients who does not respond and another subset that initially responded but experiences relapses and recurrences. These latter subsets of patients develop a state of cross-resistance to a variety of unrelated therapies. Therefore, there is an urgent need to first unravel the underlying mechanisms of resistance and associated gene products that regulate the cross-resistance. Such gene products are potential therapeutic targets as well as potential prognostic/diagnostic biomarkers. In this context, we have identified three interrelated gene products involved in resistance, namely, Snail, YY1, and RKIP that are components of the dysregulated NF-κB/Snail/YY1/RKIP loop in many cancers. In this review, we will discuss the roles each of Snail, YY1 and RKIP in the regulation of tumor cell resistance to chemo and immunotherapies. Since these same gene products have also been shown to be involved in the regulation of the EMT phenotype and metastasis, we suggest that targeting any of these three gene products can simultaneously inhibit tumor cell resistance and metastasis.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Ali Jazirehi
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Mario I. Vega
- Oncology Research Unit, Oncology Hospital Siglo XXI National Medical Center, IMSS
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, SSA, México City, Mexico
| | - Stavroula Baritaki
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
75
|
YOON HYUNJAE, CHO YOUNGRAK, JOO JIHYE, SEO DONGWAN. Knockdown of integrin α3β1 expression induces proliferation and migration of non-small cell lung cancer cells. Oncol Rep 2012; 29:662-8. [DOI: 10.3892/or.2012.2169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 11/06/2022] Open
|
76
|
Delbridge ARD, Valente LJ, Strasser A. The role of the apoptotic machinery in tumor suppression. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008789. [PMID: 23125015 DOI: 10.1101/cshperspect.a008789] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multicellular organisms have evolved processes to prevent abnormal proliferation or inappropriate tissue infiltration of cells, and these tumor suppressive mechanisms serve to prevent tissue hyperplasia, tumor development, and metastatic spread of tumors. These include potentially reversible processes such as cell cycle arrest and cellular senescence, as well as apoptotic cell death, which in contrast eliminates dangerous cells that may initiate tumor development. Tumor suppressive processes are organized as complex, extensive signaling networks, controlled by central "nodes." These "nodes" are prominent tumor suppressors, such as P53 or PTEN, whose loss is responsible for the development of the majority of human cancers. In this review we discuss the processes by which some of these prominent tumor suppressors trigger apoptotic cell death and how this process protects us from cancer development.
Collapse
|
77
|
Wang W, Guo M, Hu L, Cai J, Zeng Y, Luo J, Shu Z, Li W, Huang Z. The zinc finger protein ZNF268 is overexpressed in human cervical cancer and contributes to tumorigenesis via enhancing NF-κB signaling. J Biol Chem 2012; 287:42856-66. [PMID: 23091055 DOI: 10.1074/jbc.m112.399923] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cervical cancer is one of the most common tumors affecting women's health worldwide. Although human papillomavirus can be detected in nearly all cases, the mechanism of cervical carcinogenesis remains to be further addressed. Here, we demonstrated that ZNF268, a Krüppel-associated box-containing zinc finger protein, might contribute to the development of cervical cancer. We found that ZNF268b2, an isoform of ZNF268, was overexpressed in human squamous cervical cancer specimens. Knockdown of ZNF268 in cervical cancer cells caused cell cycle arrest at the G(0)/G(1) phase, reduced colony formation, and increased sensitivity to TNFα-induced apoptosis. In addition, HeLa cell growth in xenograft nude mice was suppressed by ZNF268 knockdown, with increased apoptosis. Furthermore, ZNF268b2 was shown to increase NF-κB signaling in vitro and in vivo. Reconstitution of NF-κB activity restored proliferation in ZNF268 knockdown HeLa cells. Of note, we observed a high frequency of NF-κB activation in ZNF268-overexpressing cervical cancer tissues, suggesting a pathological coincidence of ZNF268b2 overexpression and NF-κB activation. Taken together, our results reveal a novel role of ZNF268b2 that contributes to cervical carcinogenesis in part through enhancing NF-κB signaling.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
de la Cruz-Merino L, Lejeune M, Nogales Fernández E, Henao Carrasco F, Grueso López A, Illescas Vacas A, Pulla MP, Callau C, Álvaro T. Role of immune escape mechanisms in Hodgkin's lymphoma development and progression: a whole new world with therapeutic implications. Clin Dev Immunol 2012; 2012:756353. [PMID: 22927872 PMCID: PMC3426211 DOI: 10.1155/2012/756353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
Abstract
Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.
Collapse
Affiliation(s)
- Luis de la Cruz-Merino
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Cho WR, Yoon H. Apple extracts attenuate tumor necrosis factor-α-induced nuclear factor-κB activation by inhibiting IκB kinase and proteasome in A549 human non-small lung carcinoma cells. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
80
|
Jiang SY, Zou YY, Wang JT. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury. Mol Vis 2012; 18:2096-106. [PMID: 22876136 PMCID: PMC3413424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 07/21/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. METHODS Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. RESULTS The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. CONCLUSIONS These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and demonstrate a possible neuroprotective role for the p38 MAPK-NF-κB pathway through Bcl-2 and Bcl-XL in retinal I/R injury in rats.
Collapse
Affiliation(s)
- Shao-Yun Jiang
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Yuan-Yuan Zou
- Eye Center, Tianjin Medical University, Tianjin, China
| | - Jian-Tao Wang
- Eye Center, Tianjin Medical University, Tianjin, China,Dohney Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
81
|
Koncz G, Hueber AO. The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells. Front Immunol 2012; 3:207. [PMID: 22848207 PMCID: PMC3404404 DOI: 10.3389/fimmu.2012.00207] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/30/2012] [Indexed: 12/13/2022] Open
Abstract
Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6) on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and autoreactive B cells in germinal center, while during the selection of antigen-specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen-specific survival such as BCR or MHCII signal or coreceptors (CD19) cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL-4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins.
Collapse
Affiliation(s)
- Gabor Koncz
- Immunology Research Group of the Hungarian Academy of Sciences, University Eötvös Lorand Budapest, Hungary
| | | |
Collapse
|
82
|
Yajima I, Uemura N, Nizam S, Khalequzzaman M, Thang ND, Kumasaka MY, Akhand AA, Shekhar HU, Nakajima T, Kato M. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells. Arch Toxicol 2012; 86:961-973. [PMID: 22526373 DOI: 10.1007/s00204-012-0848-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/28/2012] [Indexed: 01/09/2023]
Abstract
Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.
Collapse
Affiliation(s)
- Ichiro Yajima
- Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences (Building No. 50, 11F), Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Macaire H, Riquet A, Moncollin V, Biémont-Trescol MC, Duc Dodon M, Hermine O, Debaud AL, Mahieux R, Mesnard JM, Pierre M, Gazzolo L, Bonnefoy N, Valentin H. Tax protein-induced expression of antiapoptotic Bfl-1 protein contributes to survival of human T-cell leukemia virus type 1 (HTLV-1)-infected T-cells. J Biol Chem 2012; 287:21357-70. [PMID: 22553204 DOI: 10.1074/jbc.m112.340992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4(+) T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-x(L), and Bcl-2. Indeed, both Bfl-1 and Bcl-x(L) knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-x(L) in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-x(L) represent potential therapeutic targets for ATLL treatment.
Collapse
|
84
|
Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 2012; 45:731-42. [PMID: 22342343 DOI: 10.1016/j.molcel.2012.01.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/02/2011] [Accepted: 01/06/2012] [Indexed: 01/06/2023]
Abstract
Recent findings indicate that prevalent human carcinomas overexpress the mitochondrial ATPase Inhibitory Factor 1 (IF1). Overexpression of IF1 inhibits the synthase activity of the mitochondrial H(+)-ATP synthase and plays a crucial role in metabolic adaptation of cancer cells to enhanced aerobic glycolysis. Herein, we demonstrate that IF1 overexpression in colon cancer cells triggers mitochondrial hyperpolarization and the subsequent production of superoxide radical, a reactive oxygen species (ROS). ROS are required to promote the transcriptional activation of the NFκB pathway via phosphorylation-dependent IκBα degradation. Activation of NFκB results in a cellular adaptive response that includes proliferation and Bcl-xL mediated resistance to drug-induced cell death. Quenching the mitochondrial production of ROS prevents the activation of NFκB and abolishes the IF1-mediated cellular adaptive response. Overall, our findings provide evidence linking the activity of a mitochondrial protein with retrograde signaling to the nucleus to promote cellular proliferation and survival.
Collapse
Affiliation(s)
- Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
85
|
Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2012; 332:237-48. [PMID: 22261329 DOI: 10.1016/j.canlet.2012.01.007] [Citation(s) in RCA: 680] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
DNA damaging agents are potent inducers of cell death triggered by apoptosis. Since these agents induce a plethora of different DNA lesions, it is firstly important to identify the specific lesions responsible for initiating apoptosis before the apoptotic executing pathways can be elucidated. Here, we describe specific DNA lesions that have been identified as apoptosis triggers, their repair and the signaling provoked by them. We discuss methylating agents such as temozolomide, ionizing radiation and cisplatin, all of them are important in cancer therapy. We show that the potentially lethal events for the cell are O(6)-methylguanine adducts that are converted by mismatch repair into DNA double-strand breaks (DSBs), non-repaired N-methylpurines and abasic sites as well as bulky adducts that block DNA replication leading to DSBs that are also directly induced following ionizing radiation. Transcriptional inhibition may also contribute to apoptosis. Cells are equipped with sensors that detect DNA damage and relay the signal via kinases to executors, who on their turn evoke a process that inhibits cell cycle progression and provokes DNA repair or, if this fails, activate the receptor and/or mitochondrial apoptotic cascade. The main DNA damage recognition factors MRN and the PI3 kinases ATM, ATR and DNA-PK, which phosphorylate a multitude of proteins and thus induce the DNA damage response (DDR), will be discussed as well as the downstream players p53, NF-κB, Akt and survivin. We review data and models describing the signaling from DNA damage to the apoptosis executing machinery and discuss the complex interplay between cell survival and death.
Collapse
Affiliation(s)
- Wynand P Roos
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
86
|
Abstract
B-cell lymphoma 2 (BCL2) proteins are important cell death regulators, whose main function is to control the release of cytochrome c from mitochondria in the intrinsic apoptotic pathway. They comprise both pro- and anti-apoptotic proteins, which interact in various ways to induce or prevent pore formation in the outer mitochondrial membrane. Due to their central function in the apoptotic machinery, BCL2 proteins are often deregulated in cancer. To this end, many anti-apoptotic BCL2 proteins have been identified as important cellular oncogenes and attractive targets for anti-cancer therapy. In this review, the existing knowledge on B-cell lymphoma 2-related protein A1 (BCL2A1)/Bcl-2-related gene expressed in fetal liver (Bfl-1), one of the less extensively studied anti-apoptotic BCL2 proteins, is summarized. BCL2A1 is a highly regulated nuclear factor κB (NF-κB) target gene that exerts important pro-survival functions. In a physiological context, BCL2A1 is mainly expressed in the hematopoietic system, where it facilitates survival of selected leukocytes subsets and inflammation. However, BCL2A1 is overexpressed in a variety of cancer cells, including hematological malignancies and solid tumors, and may contribute to tumor progression. Therefore, the development of small molecule inhibitors of BCL2A1 may be a promising approach mainly to sensitize tumor cells for apoptosis and thus improve the efficiency of anti-cancer therapy.
Collapse
Affiliation(s)
- M Vogler
- MRC Toxicology Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
87
|
Loughran ST, Campion EM, D'Souza BN, Smith SM, Vrzalikova K, Wen K, Murray PG, Walls D. Bfl-1 is a crucial pro-survival nuclear factor-κB target gene in Hodgkin/Reed-Sternberg cells. Int J Cancer 2011; 129:2787-96. [PMID: 21491422 DOI: 10.1002/ijc.25950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022]
Abstract
Hodgkin/Reed-Sternberg (H/RS) cells are believed to represent clonal progeny of Germinal Centre B cells that have escaped negative selection by evading apoptosis. Aberrant constitutive activity of the transcription factor NF-κB plays a key role in the pathogenesis of Hodgkin's Lymphoma (HL), conferring a survival advantage on H/RS cells. Bfl-1 is a pro-survival NF-κB target gene from the Bcl-2 family of apoptosis-regulating proteins. Here, we report that bfl-1 (also known as A1 or GRS) is frequently expressed in primary H/RS cells from HL tumor biopsies and that elevated bfl-1 expression is a feature of H/RS derived cell lines. We show that bfl-1 is an NF-κB target gene in this cell context and that this regulation is effected through a p65-binding DNA element located in its promoter. We demonstrate that ectopic Bfl-1 can rescue cultured H/RS cells from apoptosis induced by pharmacological inhibitors of NF-κB, and that knockdown of bfl-1 potentiates the pro-apoptotic effect of these agents. These findings are the first indication that Bfl-1 plays a crucial role in setting the elevated threshold of resistance of this malignant cell type to apoptosis.
Collapse
Affiliation(s)
- Sinéad T Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Zhai D, Godoi P, Sergienko E, Dahl R, Chan X, Brown B, Rascon J, Hurder A, Su Y, Chung TDY, Jin C, Diaz P, Reed JC. High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1. ACTA ACUST UNITED AC 2011; 17:350-60. [PMID: 22156224 DOI: 10.1177/1087057111429372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.
Collapse
Affiliation(s)
- Dayong Zhai
- Sanford-Burnham Medical Research Institute, Program on Apoptosis and Cell Death Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Willimott S, Wagner SD. miR-125b and miR-155 contribute to BCL2 repression and proliferation in response to CD40 ligand (CD154) in human leukemic B-cells. J Biol Chem 2011; 287:2608-17. [PMID: 22139839 DOI: 10.1074/jbc.m111.285718] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Developmental stage-specific regulation of BCL2 occurs during B-cell maturation and has a role in normal immunity. CD40 signaling promotes proliferation and rescues B-cells from apoptosis, partly through induction of BCL2L1 and BCL2A1 and repression of BCL2. We previously showed that a stromal cell/CD40 ligand (CD154) culture system reproduced this switch in survival protein expression in primary human leukemic B-cells and we employed this model system to investigate BCL2 repression. BCL2 was post-transcriptionally regulated and the repressed BCL2 mRNA was associated with non-polysomal, but dense fractions on sucrose density gradients. Microarrays identified a set of miRNA that were induced by culture conditions and potentially able to bind to the BCL2 3'-UTR. Luciferase reporter assays demonstrated that miR-125b and miR-155 repressed BCL2 mRNA but while stromal cell contact alone was sufficient to induce strongly miR-125b this did not cause BCL2 repression. miR-155, which is the most abundant miRNA under basal conditions, specifically required CD154 for further induction above a threshold to exert its full repressive effects. Anti-miR-125b and anti-miR-155 prevented CD154-mediated repression of BCL2 and reduced CD154-mediated proliferation in the MEC1 B-cell line. We suggest that miR-155 and miR-125b, which are induced by CD154 and stromal cell signals, contribute to regulating proliferation and that BCL2 is one of their target mRNAs.
Collapse
Affiliation(s)
- Shaun Willimott
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester LE19HN, United Kingdom
| | | |
Collapse
|
90
|
Cytotoxicity of Triptolide and Triptolide loaded polymeric micelles in vitro. Toxicol In Vitro 2011; 25:1557-67. [DOI: 10.1016/j.tiv.2011.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/08/2011] [Accepted: 05/18/2011] [Indexed: 01/29/2023]
|
91
|
Two microRNAs encoded within the bovine herpesvirus 1 latency-related gene promote cell survival by interacting with RIG-I and stimulating NF-κB-dependent transcription and beta interferon signaling pathways. J Virol 2011; 86:1670-82. [PMID: 22130548 DOI: 10.1128/jvi.06550-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons latently infected with bovine herpesvirus 1 (BHV-1) abundantly express latency-related (LR) RNA (LR-RNA). Genetic evidence indicates that LR protein expression plays a role in the latency-reactivation cycle, because an LR mutant virus that contains three stop codons downstream of the first open reading frame (ORF2) does not reactivate from latency. The LR mutant virus induces higher levels of apoptotic neurons in trigeminal ganglia, and ORF2 interferes with apoptosis. Although ORF2 is important for the latency-reactivation cycle, other factors encoded by the LR gene are believed to play a supportive role. For example, two microRNAs (miRNAs) encoded within the LR gene are expressed in trigeminal ganglia of latently infected calves. These miRNAs interfere with bICP0 protein expression and productive infection in transient-transfection assays. In this report, we provide evidence that the two LR miRNAs cooperate with poly(I·C), interferon (IFN) regulatory factor 3 (IRF3), or IRF7 to stimulate beta interferon (IFN-β) promoter activity. Both miRNAs also stimulated IFN-β promoter activity and nuclear factor-kappa B (NF-κB)-dependent transcription when cotransfected with a plasmid expressing retinoic acid-inducible gene I (RIG-I). In the presence of RIG-I, the LR miRNAs enhanced survival of mouse neuroblastoma cells, which correlated with activation of the antiapoptosis cellular transcription factor, NF-κB. Immunoprecipitation assays demonstrated that both miRNAs stably interact with RIG-I, suggesting that this interaction directly stimulates the RIG-I signaling pathway. In summary, the results of these studies suggest that interactions between LR miRNAs and RIG-I promote the establishment and maintenance of latency by enhancing survival of infected neurons.
Collapse
|
92
|
Morais C, Gobe G, Johnson DW, Healy H. The emerging role of nuclear factor kappa B in renal cell carcinoma. Int J Biochem Cell Biol 2011; 43:1537-49. [DOI: 10.1016/j.biocel.2011.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/26/2022]
|
93
|
Di Michele M, Peeters K, Loyen S, Thys C, Waelkens E, Overbergh L, Hoylaerts M, Van Geet C, Freson K. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) impairs the regulation of apoptosis in megakaryocytes by activating NF-κB: a proteomic study. Mol Cell Proteomics 2011; 11:M111.007625. [PMID: 21972247 DOI: 10.1074/mcp.m111.007625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor VPAC1 are negative regulators of megakaryopoiesis and platelet function, but their downstream signaling pathway that inhibits this process still remained unknown. A combined proteomic, transcriptomic, and bioinformatic approach was here used to elucidate the molecular mechanisms underlying PACAP signaling via VPAC1 in megakaryocytes. Two-dimensional difference gel electrophoresis and tandem MS were applied to detect differentially expressed proteins in megakaryocytic CHRF cells stimulated with PACAP. The majority of the 120 proteins modulated by PACAP belong to the class of "cell cycle and apoptosis" proteins. The up- or down-regulated expression of some proteins was confirmed by immunoblot and immunohistochemical analysis. A meta-analysis of our data and 12 other published studies was performed to evaluate signaling pathways involved in different cellular models of PACAP response. From 2384 differentially expressed genes/proteins, 83 were modulated by PACAP in at least three independent studies and Ingenuity Pathway Analysis further identified apoptosis as the highest scored network with NF-κB as a key-player. PACAP inhibited serum depletion-induced apoptosis of CHRF cells via VPAC1 stimulation. In addition, PACAP switched on NF-κB dependent gene expression since higher nuclear levels of the active NF-κB p50/p65 heterodimer were found in CHRF cells treated with PACAP. Finally, a quantitative real time PCR apoptosis array was used to study RNA from in vitro differentiated megakaryocytes from a PACAP overexpressing patient, leading to the identification of 15 apoptotic genes with a 4-fold change in expression and Ingenuity Pathway Analysis again revealed NF-κB as the central player. In conclusion, our findings suggest that PACAP interferes with the regulation of apoptosis in megakaryocytes, probably via stimulation of the NF-κB pathway.
Collapse
Affiliation(s)
| | - Karen Peeters
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Serena Loyen
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Chantel Thys
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | | | - Lutgart Overbergh
- Laboratory for Experimental Medicine and Endocrinology, Leuven, Belgium
| | - Marc Hoylaerts
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Christel Van Geet
- Center for Molecular and Vascular Biology, Leuven, Belgium; Department of Pediatrics, University Hospital Leuven, K.U. Leuven, Leuven, Belgium
| | | |
Collapse
|
94
|
Valentín-Acevedo A, Sinquett FL, Covey LR. c-Rel deficiency increases caspase-4 expression and leads to ER stress and necrosis in EBV-transformed cells. PLoS One 2011; 6:e25467. [PMID: 21984918 PMCID: PMC3184984 DOI: 10.1371/journal.pone.0025467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/05/2011] [Indexed: 01/03/2023] Open
Abstract
LMP1-mediated activation of nuclear factor of kappaB (NF-κB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-κB. However, the extent that individual NF-κB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-κB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death.
Collapse
Affiliation(s)
- Aníbal Valentín-Acevedo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Frank L. Sinquett
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
95
|
Martínez-Paniagua MA, Baritaki S, Huerta-Yepez S, Ortiz-Navarrete VF, González-Bonilla C, Bonavida B, Vega MI. Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic Obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis. Cell Cycle 2011; 10:2792-2805. [PMID: 21822052 PMCID: PMC3233494 DOI: 10.4161/cc.10.16.16952] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 01/25/2023] Open
Abstract
The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with Obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities.
Collapse
|
96
|
Kawabe T, Matsushima M, Hashimoto N, Imaizumi K, Hasegawa Y. CD40/CD40 ligand interactions in immune responses and pulmonary immunity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2011; 73:69-78. [PMID: 21928689 PMCID: PMC4831216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CD40 ligand/CD40 pathway is widely recognized for its prominent role in immune regulation and homeostasis. CD40, a member of the tumor necrosis factor receptor family, is expressed by antigen-presenting cells, as well as non-immune cells and tumors. The engagement of the CD40 and CD40 ligands, which are transiently expressed on T cells and other non-immune cells under inflammatory conditions, regulates a wide spectrum of molecular and cellular processes, including the initiation and progression of cellular and humoral adaptive immunity. Based on recent research findings, the engagement of the CD40 with a deregulated amount of CD40 ligand has been implicated in a number of inflammatory diseases. We will discuss the involvement of the CD40 ligand/CD40 interaction in the pathophysiology of inflammatory diseases, including autoimmune diseases, atherothrombosis, cancer, and respiratory diseases.
Collapse
Affiliation(s)
- Tsutomu Kawabe
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
97
|
Okera M, Bae K, Bernstein E, Cheng L, Lawton C, Wolkov H, Pollack A, Dicker A, Sandler H, Sweeney CJ. Evaluation of nuclear factor κB and chemokine receptor CXCR4 co-expression in patients with prostate cancer in the Radiation Therapy Oncology Group (RTOG) 8610. BJU Int 2011; 108:E51-8. [PMID: 21156016 PMCID: PMC3062644 DOI: 10.1111/j.1464-410x.2010.09884.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To determine the frequency of nuclear factor κB (NFκB) and the chemokine receptor CXCR4 co-expression in prostate cancer specimens from men with locally advanced disease. PATIENTS AND METHODS Paraffin-embedded samples from patients enrolled on the Radiation Therapy Oncology Group (RTOG) 8610 trial underwent immunohistochemical staining for NFκB and CXCR4. The amount of NFκB and CXCR4 was scored by a 'blinded' pathologist for the percentage of cells stained (0-100%) and staining intensity (0-3 +). Cox proportional hazard models were used for overall survival and disease-free survival to examine if NFκB and/or CXCR4 expression were associated with patient outcomes with and without adjustment for covariates. RESULTS Available material and successful staining allowed NFκB and CXCR4 status to be determined for 55 and 63 patients, respectively. Both NFκB and CXCR4 status were available for 51 patients. Of these, 53% were 2/3 + for cytoplasmic NFκB staining and 56% were 2/3 + for CXCR4. In all, 18 of the 51 patients were 2/3 + for both NFκB and CXCR4 (P = 0.129). Ten of 11 patients with 3 + NFκB had 2/3 + CXCR4 (P= 0.004). In this small study, neither NFκB nor CXCR4 were associated with prostate cancer outcomes. CONCLUSIONS High NFκB expression is associated with CXCR4 expression and they are co-expressed in about one third of patients with clinically localized prostate cancer. Larger studies to accurately determine the frequency of co-expression and prognostic utility of NFκB and CXCR4 alone and in combination are warranted.
Collapse
Affiliation(s)
- Meena Okera
- Department of Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Nguyen YH, Lee KY, Kim TJ, Kim SJ, Kang TM. CD40 Co-stimulation Inhibits Sustained BCR-induced Ca Signaling in Response to Long-term Antigenic Stimulation of Immature B Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:179-87. [PMID: 21860597 DOI: 10.4196/kjpp.2011.15.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 01/05/2023]
Abstract
Regulation of B cell receptor (BCR)-induced Ca(2+) signaling by CD40 co-stimulation was compared in long-term BCR-stimulated immature (WEHI-231) and mature (Bal-17) B cells. In response to long-term pre-stimulation of immature WEHI-231 cells to α-IgM antibody (0.5~48 hr), the initial transient decrease in BCR-induced [Ca(2+)](i) was followed by spontaneous recovery to control level within 24 hr. The recovery of Ca(2+) signaling in WEHI-231 cells was not due to restoration of internalized receptor but instead to an increase in the levels of PLCγ2 and IP(3)R-3. CD40 co-stimulation of WEHI-231 cells prevented BCR-induced cell cycle arrest and apoptosis, and it strongly inhibited the recovery of BCR-induced Ca(2+) signaling. CD40 co-stimulation also enhanced BCR internalization and reduced expression of PLCγ2 and IP(3)R-3. Pre-treatment of WEHI-231 cells with the antioxidant N-acetyl-L-cysteine (NAC) strongly inhibited CD40-mediated prevention of the recovery of Ca(2+) signaling. In contrast to immature WEHI-231 cells, identical long-term α-IgM pre-stimulation of mature Bal-17 cells abolished the increase in BCR-induced [Ca(2+)](i), regardless of CD40 co-stimulation. These results suggest that CD40-mediated signaling prevents antigen-induced cell cycle arrest and apoptosis of immature B cells through inhibition of sustained BCR-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Yen Hoang Nguyen
- Department of Physiology, SBRI, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
99
|
Shanmugam R, Kusumanchi P, Appaiah H, Cheng L, Crooks P, Neelakantan S, Peat T, Klaunig J, Matthews W, Nakshatri H, Sweeney CJ. A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species. Int J Cancer 2011; 128:2481-94. [PMID: 20669221 PMCID: PMC2982935 DOI: 10.1002/ijc.25587] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analog with preclinical activity in hematologic malignancies. Using non-small lung cancer (NSCLC) cell lines (A549 and H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC-3, HT-1197 and HT-1376) and a bladder papilloma (RT-4), we aimed to characterize DMAPT's anticancer activity in tobacco-associated neoplasms. Flow cytometric, electrophoretic mobility gel shift assays (EMSA), and Western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and antiapoptotic proteins, TRAF-2 and XIAP. DMAPT-induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type-dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Using a BrdU accumulation assay, 5-20 μM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC-3 subcutaneous xenograft growth by 54% (p = 0.015) and 63% (p < 0.01), respectively, and A549 lung metastatic volume by 28% (p = 0.043). In total, this data demonstrates DMAPT's novel anticancer properties in both early and late stage tobacco-associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC.
Collapse
Affiliation(s)
| | | | - Hitesh Appaiah
- Department of Surgery, Indiana University, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| | - Peter Crooks
- College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Sundar Neelakantan
- College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Tyler Peat
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
| | - James Klaunig
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
| | | | - Harikrishna Nakshatri
- Department of Surgery, Indiana University, Indianapolis, IN, USA
- Walther Cancer Institute, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Christopher J Sweeney
- Department of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
100
|
Sepulcre MP, López-Muñoz A, Angosto D, García-Alcazar A, Meseguer J, Mulero V. TLR agonists extend the functional lifespan of professional phagocytic granulocytes in the bony fish gilthead seabream and direct precursor differentiation towards the production of granulocytes. Mol Immunol 2011; 48:846-59. [DOI: 10.1016/j.molimm.2010.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/09/2010] [Accepted: 12/11/2010] [Indexed: 12/28/2022]
|