51
|
Wiemann P, Perevitsky A, Lim FY, Shadkchan Y, Knox BP, Landero Figueora JA, Choera T, Niu M, Steinberger AJ, Wüthrich M, Idol RA, Klein BS, Dinauer MC, Huttenlocher A, Osherov N, Keller NP. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Rep 2018; 19:1008-1021. [PMID: 28467895 DOI: 10.1016/j.celrep.2017.04.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Adi Perevitsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Julio A Landero Figueora
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | | | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Rachel A Idol
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Bruce S Klein
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA; Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Mary C Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
52
|
Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018; 124:1032-1046. [PMID: 29280540 DOI: 10.1111/jam.13681] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
With the emergence of antibiotic resistance, the interest for antimicrobial agents has recently increased again in public health. Copper was recognized in 2008 by the United States Environmental Protection Agency (EPA) as the first metallic antimicrobial agent. This led to many investigations of the various properties of copper as an antibacterial, antifungal and antiviral agent. This review summarizes the latest findings about 'contact killing', the mechanism of action of copper nanoparticles and the different ways micro-organisms develop resistance to copper.
Collapse
Affiliation(s)
- M Vincent
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France
| | - R E Duval
- CNRS, UMR 7565, SRSMC, Vandœuvre-lès-Nancy, France.,Université de Lorraine, UMR 7565, SRSMC, Nancy, France.,ABC Platform®, Nancy, France
| | - P Hartemann
- Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| | - M Engels-Deutsch
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France.,Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| |
Collapse
|
53
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
54
|
Grangeteau C, David V, Hervé A, Guilloux-Benatier M, Rousseaux S. The sensitivity of yeasts and yeasts-like fungi to copper and sulfur could explain lower yeast biodiversity in organic vineyards. FEMS Yeast Res 2017; 17:4675217. [DOI: 10.1093/femsyr/fox092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/27/2017] [Indexed: 11/14/2022] Open
|
55
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
56
|
Antsotegi-Uskola M, Markina-Iñarrairaegui A, Ugalde U. Copper Resistance in Aspergillus nidulans Relies on the P I-Type ATPase CrpA, Regulated by the Transcription Factor AceA. Front Microbiol 2017; 8:912. [PMID: 28611736 PMCID: PMC5447758 DOI: 10.3389/fmicb.2017.00912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/04/2017] [Indexed: 01/17/2023] Open
Abstract
Copper homeostasis has been extensively studied in mammals, bacteria, and yeast, but it has not been well-documented in filamentous fungi. In this report, we investigated the basis of copper tolerance in the model fungus Aspergillus nidulans. Three genes involved in copper homeostasis have been characterized. First, crpA the A. nidulans ortholog of Candida albicans CaCRP1 gene encoding a PI-type ATPase was identified. The phenotype of crpA deletion led to a severe sensitivity to Cu+2 toxicity and a characteristic morphological growth defect in the presence of high copper concentration. CrpA displayed some promiscuity regarding metal species response. The expression pattern of crpA showed an initial strong elevation of mRNA and a low continuous gene expression in response to long term toxic copper levels. Coinciding with maximum protein expression level, CrpA was localized close to the cellular surface, however protein distribution across diverse organelles suggests a complex regulated trafficking process. Secondly, aceA gene, encoding a transcription factor was identified and deleted, resulting in an even more extreme copper sensitivity than the ΔcrpA mutant. Protein expression assays corroborated that AceA was necessary for metal inducible expression of CrpA, but not CrdA, a putative metallothionein the function of which has yet to be elucidated.
Collapse
Affiliation(s)
- Martzel Antsotegi-Uskola
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque CountrySan Sebastian, Spain
| | - Ane Markina-Iñarrairaegui
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque CountrySan Sebastian, Spain
| | - Unai Ugalde
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque CountrySan Sebastian, Spain
| |
Collapse
|
57
|
Pavelková M, Kubová K, Vysloužil J, Kejdušová M, Vetchý D, Celer V, Molinková D, Lobová D, Pechová A, Vysloužil J, Kulich P. Biological Effects of Drug-Free Alginate Beads Cross-Linked by Copper Ions Prepared Using External Ionotropic Gelation. AAPS PharmSciTech 2017; 18:1343-1354. [PMID: 27502404 DOI: 10.1208/s12249-016-0601-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
External ionotropic gelation offers a unique possibility to entrap multivalent ions in a polymer structure. The aim of this experimental study was to prepare new drug-free sodium alginate (ALG) particles cross-linked by Cu2+ ions and to investigate their technological parameters (particle size, sphericity, surface topology, swelling capacity, copper content, release of Cu2+ ions, mucoadhesivity) and biological activity (cytotoxicity and efficiency against the most common vaginal pathogens-Herpes simplex, Escherichia coli, Candida albicans) with respect to potential vaginal administration. Beads prepared from NaALG dispersions (3 or 4%) were cross-linked by Cu2+ ions (0.5 or 1.0 M CuCl2) using external ionotropic gelation. Prepared mucoadhesive beads with particle size over 1000 μm exhibited sufficient sphericity (all ˃0.89) and copper content (214.8-249.07 g/kg), which increased with concentration of polymer and hardening solution. Dissolution behaviour was characterized by extended burst effect, followed by 2 h of copper release. The efficiency of all samples against the most common vaginal pathogens was observed at cytotoxic Cu2+ concentrations. Anti-HSV activity was demonstrated at a Cu2+ concentration of 546 mg/L. Antibacterial activity of beads (expressed as minimum inhibition concentration, MIC) was influenced mainly by the rate of Cu2+ release which was controlled by the extent of swelling capacity. Lower MIC values were found for E. coli in comparison with C. albicans. Sample ALG-3_1.0 exhibited the fastest copper release and was proved to be the most effective against both bacteria. This could be a result of its lower polymer concentration in combination with smaller particle size and thus larger surface area.
Collapse
|
58
|
Syntheses and characterization of 2-acetylpyridine-aminoguanidine and its copper(II) complexes: Crystallographic and antimicrobial study. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Ikeh MAC, Kastora SL, Day AM, Herrero-de-Dios CM, Tarrant E, Waldron KJ, Banks AP, Bain JM, Lydall D, Veal EA, MacCallum DM, Erwig LP, Brown AJP, Quinn J. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Mol Biol Cell 2016; 27:2784-801. [PMID: 27385340 PMCID: PMC5007097 DOI: 10.1091/mbc.e16-05-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
This study provides the first evidence that the phosphate-responsive transcription factor Pho4 is vital for survival of Candida albicans to diverse and physiologically relevant stresses. Pho4 is important for C. albicans pathogenesis, and thus these findings illustrate how metabolic adaptation promotes C. albicans survival in the host. During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.
Collapse
Affiliation(s)
- Mélanie A C Ikeh
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stavroula L Kastora
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Emma Tarrant
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - A Peter Banks
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Judith M Bain
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Donna M MacCallum
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Lars P Erwig
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
60
|
Mackie J, Szabo EK, Urgast DS, Ballou ER, Childers DS, MacCallum DM, Feldmann J, Brown AJP. Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections. PLoS One 2016; 11:e0158683. [PMID: 27362522 PMCID: PMC4928837 DOI: 10.1371/journal.pone.0158683] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.
Collapse
Affiliation(s)
- Joanna Mackie
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
- * E-mail:
| | - Edina K. Szabo
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Dagmar S. Urgast
- Trace Element Speciation Laboratory, Department of Chemistry, College of Physical Science, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - Elizabeth R. Ballou
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Joerg Feldmann
- Trace Element Speciation Laboratory, Department of Chemistry, College of Physical Science, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
61
|
Zheng S, Chang W, Li C, Lou H. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces. FEMS Yeast Res 2016; 16:fow029. [PMID: 27189057 DOI: 10.1093/femsyr/fow029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2016] [Indexed: 11/13/2022] Open
Abstract
Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans.
Collapse
Affiliation(s)
- Sha Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province 250000, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province 250000, China
| | - Chen Li
- School of Bethune Medical Sciences, Jilin University, Changchun City, Jilin Province 130000, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province 250000, China
| |
Collapse
|
62
|
Besold AN, Culbertson EM, Culotta VC. The Yin and Yang of copper during infection. J Biol Inorg Chem 2016; 21:137-44. [PMID: 26790881 PMCID: PMC5535265 DOI: 10.1007/s00775-016-1335-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 01/17/2023]
Abstract
Copper is an essential micronutrient for both pathogens and the animal hosts they infect. However, copper can also be toxic in cells due to its redox properties and ability to disrupt active sites of metalloproteins, such as Fe-S enzymes. Through these toxic properties, copper is an effective antimicrobial agent and an emerging concept in innate immunity is that the animal host intentionally exploits copper toxicity in antimicrobial weaponry. In particular, macrophages can attack invading microbes with high copper and this metal is also elevated at sites of lung infection. In addition, copper levels in serum rise during infection with a wide array of pathogens. To defend against this toxic copper, the microbial intruder is equipped with a battery of copper detoxification defenses that promote survival in the host, including copper exporting ATPases and copper binding metallothioneins. However, it is important to remember that copper is also an essential nutrient for microbial pathogens and serves as important cofactor for enzymes such as cytochrome c oxidase for respiration, superoxide dismutase for anti-oxidant defense and multi-copper oxidases that act on metals and organic substrates. We therefore posit that the animal host can also thwart pathogen growth by limiting their copper nutrients, similar to the well-documented nutritional immunity effects for starving microbes of essential zinc, manganese and iron micronutrients. This review provides both sides of the copper story and evaluates how the host can exploit either copper-the-toxin or copper-the-nutrient in antimicrobial tactics at the host-pathogen battleground.
Collapse
Affiliation(s)
- Angelique N Besold
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Edward M Culbertson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
63
|
Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:926-35. [PMID: 26751595 DOI: 10.1016/j.bbamem.2015.12.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
|
64
|
Abstract
Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.
Collapse
|
65
|
Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc Natl Acad Sci U S A 2015; 112:E5336-42. [PMID: 26351691 DOI: 10.1073/pnas.1513447112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Copper is both an essential nutrient and potentially toxic metal, and during infection the host can exploit Cu in the control of pathogen growth. Here we describe a clever adaptation to Cu taken by the human fungal pathogen Candida albicans. In laboratory cultures with abundant Cu, C. albicans expresses a Cu-requiring form of superoxide dismutase (Sod1) in the cytosol; but when Cu levels decline, cells switch to an alternative Mn-requiring Sod3. This toggling between Cu- and Mn-SODs is controlled by the Cu-sensing regulator Mac1 and ensures that C. albicans maintains constant SOD activity for cytosolic antioxidant protection despite fluctuating Cu. This response to Cu is initiated during C. albicans invasion of the host where the yeast is exposed to wide variations in Cu. In a murine model of disseminated candidiasis, serum Cu was seen to progressively rise over the course of infection, but this heightened Cu response was not mirrored in host tissue. The kidney that serves as the major site of fungal infection showed an initial rise in Cu, followed by a decline in the metal. C. albicans adjusted its cytosolic SODs accordingly and expressed Cu-Sod1 at early stages of infection, followed by induction of Mn-Sod3 and increases in expression of CTR1 for Cu uptake. Together, these studies demonstrate that fungal infection triggers marked fluctuations in host Cu and C. albicans readily adapts by modulating Cu uptake and by exchanging metal cofactors for antioxidant SODs.
Collapse
|
66
|
Crawford A, Wilson D. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res 2015; 15:fov071. [PMID: 26242402 PMCID: PMC4629794 DOI: 10.1093/femsyr/fov071] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi. The human body tightly sequesters essential micronutrients, restricting their access to invading microorganisms, and pathogenic species must counteract this action of ‘nutritional immunity’.
Collapse
Affiliation(s)
- Aaron Crawford
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Duncan Wilson
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| |
Collapse
|
67
|
Abstract
Fungal infections are responsible for millions of human deaths annually. Copper, an essential but toxic trace element, plays an important role at the host-pathogen axis during infection. In this review, we describe how the host uses either Cu compartmentalization within innate immune cells or Cu sequestration in other infected host niches such as in the brain to combat fungal infections. We explore Cu toxicity mechanisms and the Cu homeostasis machinery that fungal pathogens bring into play to succeed in establishing an infection. Finally, we address recent approaches that manipulate Cu-dependent processes at the host-pathogen axis for antifungal drug development.
Collapse
Affiliation(s)
| | - Dennis J Thiele
- From the Departments of Pharmacology & Cancer Biology and Biochemistry, Duke University, School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
68
|
Antimicrobial Properties of Microparticles Based on Carmellose Cross-Linked by Cu(2+) Ions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:790720. [PMID: 26090444 PMCID: PMC4452273 DOI: 10.1155/2015/790720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/14/2014] [Indexed: 11/21/2022]
Abstract
Carmellose (CMC) is frequently used due to its high biocompatibility, biodegradability, and low immunogenicity for development of site-specific or controlled release drug delivery systems. In this experimental work, CMC dispersions in two different concentrations (1% and 2%) cross-linked by copper (II) ions (0.5, 1, 1.5, or 2.0 M CuCl2) were used to prepare microspheres with antimicrobial activity against Escherichia coli and Candida albicans, both frequently occurring pathogens which cause vaginal infections. The microparticles were prepared by an ionotropic gelation technique which offers the unique possibility to entrap divalent copper ions in a CMC structure and thus ensure their antibacterial activity. Prepared CMC microspheres exhibited sufficient sphericity. Both equivalent diameter and copper content were influenced by CMC concentration, and the molarity of copper (II) solution affected only the copper content results. Selected samples exhibited stable but pH-responsive behaviour in environments which corresponded with natural (pH 4.5) and inflamed (pH 6.0) vaginal conditions. All the tested samples exhibited proven substantial antimicrobial activity against both Gram-negative bacteria Escherichia coli and yeast Candida albicans. Unexpectedly, a crucial parameter for microsphere antimicrobial activity was not found in the copper content but in the swelling capacity of the microparticles and in the degree of CMC surface shrinking.
Collapse
|
69
|
Hoffman AE, Miles L, Greenfield TJ, Shoen C, DeStefano M, Cynamon M, Doyle RP. Clinical isolates of Candida albicans, Candida tropicalis, and Candida krusei have different susceptibilities to Co(II) and Cu(II) complexes of 1,10-phenanthroline. Biometals 2015; 28:415-23. [PMID: 25663372 DOI: 10.1007/s10534-015-9825-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022]
Abstract
The minimal inhibitory concentrations (MICs) of copper and cobalt based dimeric pyrophosphate complexes with capping 1,10-phenanthroline groups on clinical isolates of C. albicans (28 isolates), C. krusei (20 isolates) and C. tropicalis (20 isolates) are reported. C. albicans was inhibited by the cobalt complex better than by the copper complex, while C. krusei demonstrated the opposite results. C. tropicalis showed similar sensitivities to both metals in terms of calculated MIC50 values but was more sensitive to cobalt when MIC90 values were noted. Knockout strains of C. albicans that had the copper efflux protein P-type ATPase (CRP1), the copper binding metallothionein CUP1 or both CRP1/CUP1 removed clearly demonstrate that the origins of copper resistant in C. albicans lies primarily in the P-type ATPase, with the MT playing an important secondary role in the absence of the efflux protein. This study suggests that certain strains of Candida have evolved to protect against particular metal ions and that in the case of C. albicans, a primary invasive fungal species, cobalt may be a good starting-point for new therapeutic development.
Collapse
Affiliation(s)
- Amanda E Hoffman
- Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Wei W, Smith N, Wu X, Kim H, Seravalli J, Khalimonchuk O, Lee J. YCF1-mediated cadmium resistance in yeast is dependent on copper metabolism and antioxidant enzymes. Antioxid Redox Signal 2014; 21:1475-89. [PMID: 24444374 PMCID: PMC4158973 DOI: 10.1089/ars.2013.5436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Acquisition and detoxification of metal ions are vital biological processes. Given the requirement of metallochaperones in cellular copper distribution and metallation of cuproproteins, this study investigates whether the metallochaperones also deliver metal ions for transporters functioning in metal detoxification. RESULTS Resistance to excess cadmium and copper of the yeast Saccharomyces cerevisiae, which is conferred by PCA1 and CaCRP1 metal efflux P-type ATPases, respectively, does not rely on known metallochaperones, Atx1p, Ccs1p, and Cox17p. Copper deficiency induced by the expression of CaCRP1 encoding a copper exporter occurs in the absence of Atx1p. Intriguingly, CCS1 encoding the copper chaperone for superoxide dismutase 1 (Sod1p) is necessary for cadmium resistance that is mediated by Ycf1p, a vacuolar cadmium sequestration transporter. This is attributed to Ccs1p's role in the maturation of Sod1p rather than its direct interaction with Ycf1p for cadmium transfer. Functional defect in Ycf1p associated with the absence of Sod1p as well as another antioxidant enzyme Glr1p is rescued by anaerobic growth or substitutions of specific cysteine residues of Ycf1p to alanine or serine. This further supports oxidative inactivation of Ycf1p in the absence of Ccs1p, Sod1p, or Glr1p. INNOVATION These results provide new insights into the mechanisms of metal metabolism, interaction among metal ions, and the roles for antioxidant systems in metal detoxification. CONCLUSION Copper metabolism and antioxidant enzymes maintain the function of Ycf1p for cadmium defense.
Collapse
Affiliation(s)
- Wenzhong Wei
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska
| | | | | | | | | | | | | |
Collapse
|
71
|
Ding C, Festa RA, Sun TS, Wang ZY. Iron and copper as virulence modulators in human fungal pathogens. Mol Microbiol 2014; 93:10-23. [PMID: 24851950 DOI: 10.1111/mmi.12653] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 01/22/2023]
Abstract
Fungal pathogens have evolved sophisticated machinery to precisely balance the fine line between acquiring essential metals and defending against metal toxicity. Iron and copper are essential metals for many processes in both fungal pathogens and their mammalian hosts, but reduce viability when present in excess. However, during infection, the host uses these two metals differently. Fe has a long-standing history of influencing virulence in pathogenic fungi, mostly in regards to Fe acquisition. Numerous studies demonstrate the requirement of the Fe acquisition pathway of Candida, Cryptococcus and Aspergillus for successful systemic infection. Fe is not free in the host, but is associated with Fe-binding proteins, leading fungi to develop mechanisms to interact with and to acquire Fe from these Fe-bound proteins. Cu is also essential for cell growth and development. Essential Cu-binding proteins include Fe transporters, superoxide dismutase (SOD) and cytochrome c oxidase. Although Cu acquisition plays critical roles in fungal survival in the host, recent work has revealed that Cu detoxification is extremely important. Here, we review fungal responses to altered metal conditions presented by the host, contrast the roles of Fe and Cu during infection, and outline the critical roles of fungal metal homeostasis machinery at the host-pathogen axis.
Collapse
Affiliation(s)
- Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | | | | | | |
Collapse
|
72
|
Walkenhorst WF, Sundrud JN, Laviolette JM. Additivity and synergy between an antimicrobial peptide and inhibitory ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2234-42. [PMID: 24841756 DOI: 10.1016/j.bbamem.2014.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/26/2022]
Abstract
Recently we described the pH dependence of activity for a family of cationic antimicrobial peptides (CAMPs) selected from a combinatorial library. In the current work we report on the effects of toxic ions (Cu(2+), Zn(2+), and F(-)) and the chelator EDTA on the activity profiles of one member of this family, the 12-residue cationic antimicrobial peptide *ARVA, against a panel of microorganisms. All four ions exhibited either synergy or additivity with *ARVA for all organisms tested with the exception of *ARVA combined with NaF against Candida albicans which exhibited indifference. CuCl2 and ZnCl2 exhibited synergy with *ARVA against both the Gram negative Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus as well as strong additivity against Escherichia coli at submillimolar concentrations. The chelator EDTA was synergistic with *ARVA against the two Gram negative organisms but showed only simple additivity with S. aureus and C. albicans despite their much lower MICs with EDTA. This effect may be related to the known differences in the divalent ion binding properties of the Gram negative LPS layer as compared to the peptidoglycan layer of the Gram positive organism. Unlike the other ions, NaF showed only additivity or indifference when combined with *ARVA and required much higher concentrations for activity. The yeast C. albicans did not show synergy or strong additivity with any of the inhibitory compounds tested. The effects of toxic ions and chelators observed here have important implications for applications using CAMPs and for the design of novel formulations involving CAMPs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- William F Walkenhorst
- Loyola University New Orleans, Department of Chemistry, 6363 St. Charles Avenue, New Orleans, LA 70118, USA.
| | - Justine N Sundrud
- Loyola University New Orleans, Department of Chemistry, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Joshua M Laviolette
- Loyola University New Orleans, Department of Chemistry, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| |
Collapse
|
73
|
Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2014; 5:547. [PMID: 25352857 PMCID: PMC4196481 DOI: 10.3389/fpls.2014.00547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/24/2014] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization.
Collapse
Affiliation(s)
| | | | | | - Nuria Ferrol
- *Correspondence: Nuria Ferrol, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C. Profesor Albareda 1, Granada 18008, Spain e-mail:
| |
Collapse
|
74
|
Copper(II) complexes with cyanoguanidine and o-phenanthroline: Theoretical studies, in vitro antimicrobial activity and alkaline phosphatase inhibitory effect. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Abstract
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae.
Collapse
|
76
|
Ding C, Festa RA, Chen YL, Espart A, Palacios Ò, Espín J, Capdevila M, Atrian S, Heitman J, Thiele DJ. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 2013; 13:265-76. [PMID: 23498952 PMCID: PMC3668348 DOI: 10.1016/j.chom.2013.02.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/04/2013] [Accepted: 02/01/2013] [Indexed: 11/24/2022]
Abstract
Copper (Cu) is an essential metal that is toxic at high concentrations. Thus, pathogens often rely on host Cu for growth, but host cells can hyperaccumulate Cu to exert antimicrobial effects. The human fungal pathogen Cryptococcus neoformans encodes many Cu-responsive genes, but their role in infection is unclear. We determined that pulmonary C. neoformans infection results in Cu-specific induction of genes encoding the Cu-detoxifying metallothionein (Cmt) proteins. Mutant strains lacking CMTs or expressing Cmt variants defective in Cu-coordination exhibit severely attenuated virulence and reduced pulmonary colonization. Consistent with the upregulation of Cmt proteins, C. neoformans pulmonary infection results in increased serum Cu concentrations and increases and decreases alveolar macrophage expression of the Cu importer (Ctr1) and ATP7A, a transporter implicated in phagosomal Cu compartmentalization, respectively. These studies indicate that the host mobilizes Cu as an innate antifungal defense but C. neoformans senses and neutralizes toxic Cu to promote infection.
Collapse
Affiliation(s)
- Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
| | - Richard A. Festa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
| | - Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA 27710
| | - Anna Espart
- Departament de Genètica, Universitat de Barcelona, 08028-Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Spain
| | - Jordi Espín
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Spain
| | - Sílvia Atrian
- Departament de Genètica, Universitat de Barcelona, 08028-Barcelona, Spain
| | - Joseph Heitman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA 27710
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
| |
Collapse
|
77
|
Gupta A, Lutsenko S. Evolution of copper transporting ATPases in eukaryotic organisms. Curr Genomics 2012; 13:124-33. [PMID: 23024604 PMCID: PMC3308323 DOI: 10.2174/138920212799860661] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/22/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022] Open
Abstract
Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
78
|
Marrero K, Sánchez A, González LJ, Ledón T, Rodríguez-Ulloa A, Castellanos-Serra L, Pérez C, Fando R. Periplasmic proteins encoded by VCA0261-0260 and VC2216 genes together with copA and cueR products are required for copper tolerance but not for virulence in Vibrio cholerae. MICROBIOLOGY-SGM 2012; 158:2005-2016. [PMID: 22653946 DOI: 10.1099/mic.0.059345-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial pathogen Vibrio cholerae requires colonizination of the human small intestine to cause cholera. The anaerobic and slightly acidic conditions predominating there enhance toxicity of low copper concentrations and create a selective environment for bacteria with evolved detoxifying mechanisms. We reported previously that the VCA0260, VCA0261 and VC2216 gene products were synthesized only in V. cholerae grown in microaerobiosis or anaerobiosis. Here we show that ORFs VCA0261 and VCA0260 are actually combined into a single gene encoding a 18.7 kDa protein. Bioinformatic analyses linked this protein and the VC2216 gene product to copper tolerance. Following the approach of predict-mutate and test, we describe for the first time, to our knowledge, the copper tolerance systems operating in V. cholerae. Copper susceptibility analyses of mutants in VCA0261-0260, VC2216 or in the putative copper-tolerance-related VC2215 (copA ATPase) and VC0974 (cueR), under aerobic and anaerobic growth, revealed that CopA represents the main tolerance system under both conditions. The VC2216-encoded periplasmic protein contributes to resistance only under anaerobiosis in a CopA-functional background. The locus tag VCA0261-0260 encodes a copper-inducible, CueR-dependent, periplasmic protein, which mediates tolerance in aerobiosis, but under anaerobiosis its role is only evident in CopA knock-out mutants. None of the genes involved in copper homeostasis were required for V. cholerae virulence or colonization in the mouse model. We conclude that copper tolerance in V. cholerae, which lacks orthologues of the periplasmic copper tolerance proteins CueO, CusCFBA and CueP, involves CopA and CueR proteins along with the periplasmic Cot (VCA0261-0260) and CopG (VC2216) V. cholerae homologues.
Collapse
Affiliation(s)
- Karen Marrero
- Department of Molecular Biology, National Centre for Scientific Research, PO Box 6412, Havana, Cuba
| | - Aniel Sánchez
- Department of Proteomics, Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Luis Javier González
- Department of Proteomics, Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Talena Ledón
- Department of Molecular Biology, National Centre for Scientific Research, PO Box 6412, Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Department of Bioinformatics, Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Lila Castellanos-Serra
- Department of Proteomics, Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Celso Pérez
- Department of Molecular Biology, National Centre for Scientific Research, PO Box 6412, Havana, Cuba
| | - Rafael Fando
- Department of Molecular Biology, National Centre for Scientific Research, PO Box 6412, Havana, Cuba
| |
Collapse
|
79
|
Gudipaty SA, Larsen AS, Rensing C, McEvoy MM. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 2012; 330:30-7. [PMID: 22348296 DOI: 10.1111/j.1574-6968.2012.02529.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/14/2012] [Indexed: 01/26/2023] Open
Abstract
Two-component systems are widely used by bacteria to mediate adaptive responses to a variety of environmental stimuli. The CusR/CusS two-component system in Escherichia coli induces expression of genes involved in metal efflux under conditions of elevated Cu(I) and Ag(I) concentrations. As seen in most prototypical two-component systems, signal recognition and transmission is expected to occur by ligand binding in the periplasmic sensor domain of the histidine kinase CusS. Although discussed in the extant literature, little experimental evidence is available to establish the role of CusS in metal homeostasis. In this study, we show that the cusS gene is required for Cu(I) and Ag(I) resistance in E. coli and that CusS is linked to the expression of the cusCFBA genes. These results show a metal-dependent mechanism of CusS activation and suggest an absolute requirement for CusS in Cu(I)- and Ag(I)-dependent upregulation of cusCFBA expression in E. coli.
Collapse
|
80
|
Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa. Appl Environ Microbiol 2012; 78:2272-81. [PMID: 22247176 DOI: 10.1128/aem.06745-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment size) at three different stringency levels and then assembling each data set with Velvet. A simple approach was devised to determine which filter stringency was "best." Venn diagrams identified the regions containing reads that were used in an assembly but were of a low-enough quality to be removed by a filter. By plotting base quality histograms of reads in this region, we judged whether a filter was too stringent or not stringent enough. Our best assembly had a genome size of 33.6 Mb, an N50 of 65.8 kb for a k-mer of 51, and a maximum contig length of 347 kb. Using GeneMark, 9,262 genes were predicted. TargetP and SignalP analyses showed that among the 1,213 genes with secreted products, 986 had motifs for signal peptides and 227 had motifs for signal anchors. Blast2GO analysis provided functional annotation for 5,407 genes. We identified 29 genes with putative roles in copper tolerance and 73 genes for lignocellulose degradation. A search for homologs of these 102 genes showed that F. radiculosa exhibited more similarity to Postia placenta than Serpula lacrymans. Notable differences were found, however, and their involvements in copper tolerance and wood decay are discussed.
Collapse
|
81
|
Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. mBio 2011; 3:mBio.00254-11. [PMID: 22202230 PMCID: PMC3244266 DOI: 10.1128/mbio.00254-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The human fungal pathogen Candida albicans causes lethal systemic infections because of its ability to grow and disseminate in a host. The C. albicans plasma membrane is essential for virulence by acting as a protective barrier and through its key roles in interfacing with the environment, secretion of virulence factors, morphogenesis, and cell wall synthesis. Difficulties in studying hydrophobic membranes have limited the understanding of how plasma membrane organization contributes to its function and to the actions of antifungal drugs. Therefore, the role of the recently discovered plasma membrane subdomains termed the membrane compartment containing Can1 (MCC) was analyzed by assessing the virulence of a sur7Δ mutant. Sur7 is an integral membrane protein component of the MCC that is needed for proper localization of actin, morphogenesis, cell wall synthesis, and responding to cell wall stress. MCC domains are stable 300-nm-sized punctate patches that associate with a complex of cytoplasmic proteins known as an eisosome. Analysis of virulence-related properties of a sur7Δ mutant revealed defects in intraphagosomal growth in macrophages that correlate with increased sensitivity to oxidation and copper. The sur7Δ mutant was also strongly defective in pathogenesis in a mouse model of systemic candidiasis. The mutant cells showed a decreased ability to initiate an infection and greatly diminished invasive growth into kidney tissues. These studies on Sur7 demonstrate that the plasma membrane MCC domains are critical for virulence and represent an important new target for the development of novel therapeutic strategies. Candida albicans, the most common human fungal pathogen, causes lethal systemic infections by growing and disseminating in a host. The plasma membrane plays key roles in enabling C. albicans to grow in vivo, and it is also the target of the most commonly used antifungal drugs. However, plasma membrane organization is poorly understood because of the experimental difficulties in studying hydrophobic components. Interestingly, recent studies have identified a novel type of plasma membrane subdomain in fungi known as the membrane compartment containing Can1 (MCC). Cells lacking the MCC-localized protein Sur7 display broad defects in cellular organization and response to stress in vitro. Consistent with this, C. albicans cells lacking the SUR7 gene were more susceptible to attack by macrophages than cells with the gene and showed greatly reduced virulence in a mouse model of systemic infection. Thus, Sur7 and other MCC components represent novel targets for antifungal therapy.
Collapse
|
82
|
Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 2010; 77:416-26. [PMID: 21097600 DOI: 10.1128/aem.01704-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC(2)(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated.
Collapse
|
83
|
Functional characterization of the copper-transporting P-type ATPase gene of Penicillium janthinellum strain GXCR. J Microbiol 2010; 47:736-45. [DOI: 10.1007/s12275-009-0074-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/14/2009] [Indexed: 01/09/2023]
|
84
|
Villegas LB, Amoroso MJ, de Figueroa LIC. Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. J Basic Microbiol 2009; 49:395-403. [PMID: 19322830 DOI: 10.1002/jobm.200800218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of high Cu(II) concentrations on superoxide dismutase (SOD) and catalase (CAT) activity in Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11, previously isolated from a copper filter at a mine plant in Argentina, was studied. Addition of 0.1, 0.2 and 0.5 mM Cu(II) to the culture medium increased total SOD and CAT activity in both strains. Native polyacrylamide gel electrophoresis revealed two bands with SOD activity for C. fukuyamaensis RCL-3 and only one for R. mucilaginosa RCL-11; the three bands corresponded to MnSOD.Intracellular accumulation of copper and morphological changes was observed using electron microscopy. Dark bodies examined with transmission electron microscopy (TEM) after 48 h of incubation probably corresponded to copper deposits. The number of dark bodies in R. mucilaginosa RCL-11 grew with increasing incubation time, whereas in C. fukuyamaensis RCL-3 the amount decreased. Scanning electron micrographs (SEM) of C. fukuyamaensis RCL-3 did not reveal any differences compared with the control, but R. mucilaginosa RCL-11 cells were bigger than control ones. TEM confirmed absence of compartmentalization mechanisms in Cu(II) detoxification since electron-dense bodies were mainly found in the cytoplasm.
Collapse
|
85
|
Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J. Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. ACTA ACUST UNITED AC 2009; 113:1377-88. [PMID: 19770041 DOI: 10.1016/j.mycres.2009.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/04/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
The ascomycete Cadophora finlandica, which can form mycorrhizas with ectomycorrhizal and ericoid hosts, is commonly found in heavy metal polluted soils. To understand the selective advantage of this organism at contaminated sites heavy metal regulated genes from C. finlandica were investigated. For gene identification a strategy based on a genomic microarray was chosen, which allows a rapid, genome-wide screening in genetically poorly characterized organisms. In a preliminary screen eleven plasmids covering eight distinct genomic regions and encoding a total of ten Cd-regulated genes were identified. Northern analyses with RNA from C. finlandica grown in the presence of either Cd, Pb or Zn revealed different transcription patterns in response to the heavy metals present in the growth medium. The Cd-regulated genes are predicted to encode several extracellular proteins with unknown functions, transporters, a centaurin-type regulator of intracellular membrane trafficking, a GNAT-family acetyltransferase and a B-type cyclin.
Collapse
Affiliation(s)
- Markus Gorfer
- Department of Applied Genetics and Cell Biology, Fungal Genomics Unit, Austrian Research Centers and BOKU-University Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
86
|
Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus. ACTA ACUST UNITED AC 2009; 113:737-45. [DOI: 10.1016/j.mycres.2009.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/16/2009] [Accepted: 02/18/2009] [Indexed: 02/06/2023]
|
87
|
Adle DJ, Lee J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 2008; 283:31460-8. [PMID: 18753133 DOI: 10.1074/jbc.m806054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium is a highly toxic environmental contaminant implicated in various diseases. Our previous data demonstrated that Pca1, a P1B-type ATPase, plays a critical role in cadmium resistance in yeast S. cerevisiae by extruding intracellular cadmium. This illustrates the first cadmium-specific efflux pump in eukaryotes. In response to cadmium, yeast cells rapidly enhance expression of Pca1 by a post-transcriptional mechanism. To gain mechanistic insights into the cadmium-dependent control of Pca1 expression, we have characterized the pathway for Pca1 turnover and the mechanism of cadmium sensing that leads to up-regulation of Pca1. Pca1 is a short-lived protein (t1/2 < 5 min) and is subject to ubiquitination when cells are growing in media lacking cadmium. Distinct from many plasma membrane transporters targeted to the vacuole for degradation via endocytosis, cells defective in this pathway did not stabilize Pca1. Rather, Pca1 turnover was dependent on the proteasome. These data suggest that, in the absence of cadmium, Pca1 is targeted for degradation before reaching the plasma membrane. Mapping of the N terminus of Pca1 identified a metal-responding degradation signal encompassing amino acids 250-350. Fusion of this domain to a stable protein demonstrated that it functions autonomously in a metal-responsive manner. Cadmium sensing by cysteine residues within this domain circumvents ubiquitination and degradation of Pca1. These data reveal a new mechanism for substrate-mediated control of P1B-type ATPase expression. Cells have likely evolved this mode of regulation for a rapid and specific cellular response to cadmium.
Collapse
Affiliation(s)
- David J Adle
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
88
|
Woodacre A, Mason RP, Jeeves RE, Cashmore AM. Copper-dependent transcriptional regulation by Candida albicans Mac1p. MICROBIOLOGY-SGM 2008; 154:1502-1512. [PMID: 18451059 DOI: 10.1099/mic.0.2007/013441-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously shown that copper uptake and regulation in the opportunistic pathogen Candida albicans has some similarities to those in Saccharomyces cerevisiae, including the activation of the copper transporter gene CaCTR1 under low-copper conditions by the transcription factor CaMac1p. However, in this study, further analysis has shown that the actual mechanism of regulation by CaMac1p is different from that of its S. cerevisiae homologue. We demonstrate for the first time, to our knowledge, that the CaMAC1 gene is transcriptionally autoregulated in a copper-dependent manner, in contrast to ScMAC1, which is constitutively transcribed. We also demonstrate that the presence of one copper response element in the promoters of CaCTR1, CaMAC1 and the ferric/cupric reductase gene CaFRE7 is sufficient for normal levels of copper-responsive transcription. In contrast, two promoter elements are essential for normal levels of copper-dependent transcriptional activation by ScMac1p. CaMac1p is also involved in the regulation of the iron-responsive transcriptional repressor gene SFU1 and the alternative oxidase gene AOX2. This work describes a key feature of the copper uptake system in C. albicans that distinguishes it from similar processes in the model yeast S. cerevisiae. The importance of copper uptake in the environment of the human host and the implications for the disease process are discussed.
Collapse
Affiliation(s)
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Rose E Jeeves
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
89
|
Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 2008; 476:22-32. [PMID: 18534184 DOI: 10.1016/j.abb.2008.05.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/06/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules or melanosomes. The multiple functions of human Cu-ATPase necessitate complex regulation of these transporters that is mediated through the presence of regulatory domains in their structure, posttranslational modification and intracellular trafficking, as well as interactions with the copper chaperone Atox1 and other regulatory molecules. In this review, we summarize the current information on the function and regulatory mechanisms acting on human Cu-ATPases ATP7A and ATP7B. Brief comparison with the Cu-ATPase orthologs from other species is included.
Collapse
|
90
|
Maranhão FCA, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog 2007; 43:166-72. [PMID: 17590307 DOI: 10.1016/j.micpath.2007.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
Trichophyton rubrum is a cosmopolitan and anthropophilic fungus able to invade keratinized tissue, causing infection in human skin and nails. This work evaluated the changes in the extracellular pH during its growth in keratin (after 6, 12, 24, 48, 72h and 7 days) at initial pH 5.0. We observed a gradual increase of basal pH under keratin exposure when compared to glucose condition. Also, we identified 576T. rubrum transcripts differentially expressed by subtractive suppression hybridization (SSH) using conidia cultivated for 72h in keratin as tester, and cultivated in glucose as driver. The over-expression of 238 transcripts obtained under keratin condition was confirmed by macro-array dot-blot, revealing 28 unigenes. Putative proteins encoded by these genes showed similarity to fungi proteins involved in basic metabolism, growth and virulence, i.e., transporters ABC-MDR, MFS and ATPase of copper, NIMA interactive protein, Gag-Pol polyprotein, virulence factors serine-protease subtilisin and metalloprotease, cytochrome P450, GlcN-6-phosphate deaminase and Hsp30. The upregulation of T. rubrum genes encoding subtilisin, metalloprotease and Gag-Pol polyprotein was also validated by northern blot. The results of this study provide the first insight into genes differentially expressed during T. rubrum grown in keratin that may be involved in fungal pathogenesis.
Collapse
Affiliation(s)
- Fernanda C A Maranhão
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
91
|
Paião FG, Segato F, Cursino-Santos JR, Peres NTA, Martinez-Rossi NM. Analysis of Trichophyton rubrum gene expression in response to cytotoxic drugs. FEMS Microbiol Lett 2007; 271:180-6. [PMID: 17425668 DOI: 10.1111/j.1574-6968.2007.00710.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Suppressive subtractive hybridization was used to isolate transcripts specifically upregulated during Trichophyton rubrum exposure to acriflavin, fluconazole, griseofulvin, terbinafine or undecanoic acid. Macro-array dot-blot and sequencing of 132 clones, which correspond to genes differentially expressed after exposition of T. rubrum to at least one of these cytotoxic drugs, revealed 39 unique genes. Of these, 32 have not been previously described in T. rubrum, representing an increase in the number of T. rubrum genes that have been identified. The upregulation of the novel genes encoding a retrotransposon element, a carboxylic ester hydrolase, a copper resistance-associated P-type ATPase, a DNA mismatch repair protein and a NIMA (never in mitosis A) interactive protein was confirmed by Northern blot.
Collapse
Affiliation(s)
- Fernanda G Paião
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
92
|
Gebhart D, Bahrami AK, Sil A. Identification of a copper-inducible promoter for use in ectopic expression in the fungal pathogen Histoplasma capsulatum. EUKARYOTIC CELL 2006; 5:935-44. [PMID: 16757741 PMCID: PMC1489277 DOI: 10.1128/ec.00028-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the existence of a number of genetic tools to study the fungal pathogen Histoplasma capsulatum, strategies for conditional gene expression have not been developed. We used microarray analysis to identify genes that are transcriptionally induced or repressed by the addition of copper sulfate (CuSO(4)) to H. capsulatum yeast cultures. One of these genes, CRP1, encodes a putative copper efflux pump that is significantly induced in the presence of CuSO(4). The upstream regulatory region of CRP1 was sufficient to drive copper-regulated expression of two reporter genes, lacZ and the gene encoding green fluorescent protein. Microarray experiments were performed to determine a copper concentration that triggers accumulation of the CRP1 transcript without significant perturbation of global gene expression. These studies show that the CRP1 upstream regulatory region can be used for ectopic expression of heterologous genes in H. capsulatum. Furthermore, they demonstrate the strategic use of microarrays to identify conditional promoters that confer induction in the absence of large-scale shifts in gene expression.
Collapse
Affiliation(s)
- Dana Gebhart
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
93
|
Davis AK, Hildebrand M, Palenik B. Gene expression induced by copper stress in the diatom Thalassiosira pseudonana. EUKARYOTIC CELL 2006; 5:1157-68. [PMID: 16835459 PMCID: PMC1489294 DOI: 10.1128/ec.00042-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/26/2006] [Indexed: 11/20/2022]
Abstract
Utilizing a PCR-based subtractive cDNA approach, we demonstrated that the marine diatom Thalassiosira pseudonana exhibits a rapid response at the gene level to elevated concentrations of copper and that this response attenuates over 24 h of continuous exposure. A total of 16 copper-induced genes were identified, 11 of which were completely novel; however, many of the predicted amino acid sequences had characteristics suggestive of roles in ameliorating copper toxicity. Most of the novel genes were not equivalently induced by H2O2- or Cd-induced stress, indicating specificity in response. Two genes that could be assigned functions based on homology were also induced under conditions of general cellular stress. Half of the identified genes were located within two inverted repeats in the genome, and novel genes in one inverted repeat had mRNA levels induced by approximately 500- to 2,000-fold by exposure to copper for 1 h. Additionally, some of the inverted repeat genes demonstrated a dose-dependent response to Cu, but not Cd, and appear to belong to a multigene family. This multigene family may be the diatom functional homolog of metallothioneins.
Collapse
Affiliation(s)
- Aubrey K Davis
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California--San Diego, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
94
|
Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:225-36. [PMID: 16367966 DOI: 10.1111/j.1365-313x.2005.02601.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Since copper (Cu) is essential in key physiological oxidation reactions, organisms have developed strategies for handling Cu while avoiding its potentially toxic effects. Among the tools that have evolved to cope with Cu is a network of Cu homeostasis factors such as Cu-transporting P-type ATPases that play a key role in transmembrane Cu transport. In this work we present the functional characterization of an Arabidopsis Cu-transporting P-type ATPase, denoted heavy metal ATPase 5 (HMA5), and its interaction with Arabidopsis metallochaperones. HMA5 is primarily expressed in roots, and is strongly and specifically induced by Cu in whole plants. We have identified and characterized plants carrying two independent T-DNA insertion alleles, hma5-1 and hma5-2. Both mutants are hypersensitive to Cu but not to other metals such as iron, zinc or cadmium. Interestingly, root tips from Cu-treated hma5 mutants exhibit a wave-like phenotype at early stages and later on main root growth completely arrests whereas lateral roots emerge near the crown. Accordingly, these lines accumulate Cu in roots to a greater extent than wild-type plants under Cu excess. Finally, yeast two-hybrid experiments demonstrate that the metal-binding domains of HMA5 interact with Arabidopsis ATX1-like Cu chaperones, and suggest a regulatory role for the plant-specific domain of the CCH Cu chaperone. Based on these findings, we propose a role for HMA5 in Cu compartmentalization and detoxification.
Collapse
Affiliation(s)
- Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Av. Dr Moliner, 50, E-46100 Burjassot, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Chikamori M, Fukushima K. A new hexose transporter from Cryptococcus neoformans: molecular cloning and structural and functional characterization. Fungal Genet Biol 2005; 42:646-55. [PMID: 15907385 DOI: 10.1016/j.fgb.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/28/2005] [Accepted: 04/03/2005] [Indexed: 11/22/2022]
Abstract
We carried out a screen for Cryptococcus neoformans genes involved in resistance to copper ion toxicity and identified a new hexose transporter (Hxt) gene, HXT1. Hxt1 consists of 520 amino acids and functions to transport hexoses such as glucose. Although Hxt1 conferred copper resistance to Saccharomyces cerevisiae, disruption of the HXT1 gene showed that Hxt1 is not necessary for copper resistance. In virulence tests, an hxt1 mutant strain showed 12% less phenoloxidase activity than the wild-type strain, and no difference in the ability to form melanin was identified. In addition, the hxt1 mutant strain showed virulence similar to that of the wild-type strain in experiments with Caenorhabditis elegans. However, the hxt1 mutant strain generated larger capsules than were generated by the wild-type strain. Thus, Hxt1 appears to be involved in capsule formation.
Collapse
Affiliation(s)
- Minoru Chikamori
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chuo-ku, Chiba 260-8673, Japan
| | | |
Collapse
|
96
|
Gildor T, Shemer R, Atir-Lande A, Kornitzer D. Coevolution of cyclin Pcl5 and its substrate Gcn4. EUKARYOTIC CELL 2005; 4:310-8. [PMID: 15701793 PMCID: PMC549342 DOI: 10.1128/ec.4.2.310-318.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gcn4, a transcription factor that plays a key role in the response of Saccharomyces cerevisiae to amino acid starvation, is regulated at both the levels of translation and of protein stability. Regulated degradation of Gcn4 depends on its phosphorylation by the cyclin-dependent kinase Pho85, in conjunction with the cyclin Pcl5. The pathogenic yeast Candida albicans contains a functional homolog of Gcn4, which is involved in amino acid metabolism, as well as in the regulation of filamentous growth in response to starvation. Here, we show that C. albicans Gcn4 (CaGcn4) is rapidly degraded and that this degradation depends on a Pho85 cyclin homolog, CaPcl5. The regulatory loop that includes Gcn4 and Pcl5 is conserved in C. albicans: like in S. cerevisiae, CaPcl5 is transcriptionally induced by CaGcn4 and is required for CaGcn4 degradation. However, the proteins have coevolved so that there is no cross-recognition between the proteins from the two species: phosphorylation-dependent degradation of CaGcn4 occurs only in the presence of CaPcl5, and S. cerevisiae Gcn4 (ScGcn4) requires ScPcl5 for its degradation. Phenotypic analysis of the Capcl5 mutant indicates that CaPcl5 also modulates the filamentous response of C. albicans in amino acid-rich media.
Collapse
Affiliation(s)
- Tsvia Gildor
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion-IIT, Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel
| | | | | | | |
Collapse
|
97
|
Poltermann S, Nguyen M, Günther J, Wendland J, Härtl A, Künkel W, Zipfel PF, Eck R. The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. MICROBIOLOGY-SGM 2005; 151:1645-1655. [PMID: 15870472 DOI: 10.1099/mic.0.27505-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) component Vma7p of the human-pathogenic yeast Candida albicans regulates hyphal growth induced by serum and Spider medium and is essential for virulence. In order to characterize the functions of the putative V-ATPase subunit Vma7p of C. albicans, null mutants were generated. The resulting mutants showed reduced vacuole acidification, which correlated with defective growth at alkaline pH. In addition, defects in degradation of intravacuolar putative endosomal structures were observed. vma7 null mutants were sensitive towards the presence of metal ions. It is concluded that the sequestration of toxic ions in the vacuole via a H+ gradient generated by the V-ATPase is affected. The vma7 null mutant strains were avirulent in a mouse model of systemic candidiasis. In addition, C. albicans vma7 null mutants and the null mutant strain of the Vma7p-interacting phosphatidylinositol 3-kinase Vps34p showed similar phenotypes. In summary, the V-ATPase subunit Vma7p is involved in vacuolar ion transport and this transport is required for hyphal growth and virulence of C. albicans.
Collapse
Affiliation(s)
- Sophia Poltermann
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Monika Nguyen
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Juliane Günther
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Jürgen Wendland
- Friedrich Schiller University, Department of Microbiology, D-07745 Jena, Germany
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Albert Härtl
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Waldemar Künkel
- University of Applied Sciences, Tatzendpromenade 1b, D-07745 Jena, Germany
| | - Peter F Zipfel
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Raimund Eck
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| |
Collapse
|
98
|
Atir-Lande A, Gildor T, Kornitzer D. Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol Biol Cell 2005; 16:2772-85. [PMID: 15814839 PMCID: PMC1142423 DOI: 10.1091/mbc.e05-01-0079] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ability of Candida albicans, a major fungal pathogen, to switch between a yeast form, and a hyphal (mold) form is recognized as being important for the ability of the organism to invade the host and cause disease. We found that a C. albicans mutant deleted for CaCDC4, a homologue of the Saccharomyces cerevisiae F-box protein component of the SCF(CDC4) ubiquitin ligase, is viable and displays constitutive filamentous, mostly hyphal, growth. The phenotype of the Cacdc4-/- mutant suggests that ubiquitin-mediated protein degradation is involved in the regulation of the dimorphic switch of C. albicans and that one or more regulators of the yeast-to-mold switch are among the substrates of SCF(CaCDC4). Epistasis analysis indicates that the Cacdc4-/- phenotype is largely independent of the filamentation-inducing transcription factors Efg1 and Cph1. We identify C. albicans Far1 and Sol1, homologues of the S. cerevisiae SCF(CDC4) substrates Far1 and Sic1, and show that Sol1 is a substrate of C. albicans Cdc4. Neither protein is essential for the hyphal phenotype of the Cacdc4-/- mutant. However, ectopic expression and deletion of SOL1 indicate a role for this gene in C. albicans morphogenesis.
Collapse
Affiliation(s)
- Avigail Atir-Lande
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion-IIT, and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | |
Collapse
|
99
|
Adaikkalam V, Swarup S. Characterization ofcopABCDoperon from a copper-sensitivePseudomonasputidastrain. Can J Microbiol 2005; 51:209-16. [PMID: 15920618 DOI: 10.1139/w04-135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe an operon, copABCD, that encodes copper-binding and sequestering proteins for copper homeostasis in the copper-sensitive strain Pseudomonas putida PNL-MK25. This is the second operon characterized as being involved in copper homeostasis, in addition to a P1-type ATPase encoded by cueAR, which was previously shown to be active in the same strain. In this study, 3 copper-responsive mutants were obtained through mini-Tn5::gfp mutagenesis and were found to exhibit reduced tolerance to copper. Sequencing analysis of the transposon-tagged region in the 3 mutants revealed insertions in 2 genes of an operon homologous to the copABCD of P. syringae and pcoABCD of Escherichia coli. Gene expression studies demonstrated that the P. putida copABCD is inducible starting from 3 µmol/L copper levels. Copper-sensitivity studies revealed that the tolerance of the mutant strains was reduced only marginally (only 0.16-fold) in comparison to a 6-fold reduced tolerance of the cueAR mutant. Thus, the cop operon in this strain has a minimal role when compared with its role both in other copper-resistant strains, such as P. syringae pv. syringae, and in the cueAR operon of the same strain. We propose that the reduced function of the copABCD operon is likely to be due to the presence of fewer metal-binding domains in the encoded proteins.Key words: cop operon, copper-binding proteins, mini-Tn5::gfp mutagenesis, transition metal.
Collapse
|
100
|
Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N. A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 2004; 569:140-8. [PMID: 15225623 DOI: 10.1016/j.febslet.2004.05.036] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 05/16/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022]
Abstract
Thlaspi caerulescens exhibits a unique capacity for cadmium tolerance and accumulation. We investigated the molecular basis of this exceptional Cd(2+) tolerance by screening for T. caerulescens genes, which alleviate Cd(2+) toxicity upon expression in Saccharomyces cerevisiae. This allowed for the isolation of a cDNA encoding a peptide with homology to the C-terminal part of a heavy metal ATPase. The corresponding TcHMA4 full-length sequence was isolated from T. caerulescens and compared to its homolog from Arabidopsis thaliana (AtHMA4). Expression of TcHMA4 and AtHMA4 cDNAs conferred Cd sensitivity in yeast, while expression of TcHMA4-C and AtHMA4-C cDNAs encoding the C-termini of, respectively, TcHMA4 and AtHMA4 conferred Cd tolerance. Moreover, heterologous expression in yeast suggested a higher Cd binding capacity of TcHMA4-C compared to AtHMA4-C. In planta, both HMA4 genes were expressed at a higher level in roots than in shoots. However, TcHMA4 shows a much higher constitutive expression than AtHMA4. Our data indicate that HMA4 could be involved in Cd(2+) transport and possibly in the Cd hyperaccumulation character.
Collapse
Affiliation(s)
- Catherine Bernard
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine-CP242, Bd. du Triomphe, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|