51
|
Amillis S, Koukaki M, Diallinas G. Substitution F569S converts UapA, a specific uric acid-xanthine transporter, into a broad specificity transporter for purine-related solutes. J Mol Biol 2001; 313:765-74. [PMID: 11697902 DOI: 10.1006/jmbi.2001.5087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UapA, a highly specific uric acid-xanthine transporter in Aspergillus nidulans, is a member of a large family of nucleobase-ascorbate transporters conserved in all domains of life. We have investigated structure-function relationships in UapA, by studying chimeric transporters and missense mutations, and showed that specific polar or charged amino acid residues (E412, E414, Q449, N450, T457) on either side of an amphipathic alpha-helical transmembrane segment (TMS10) are critical for purine binding and transport. Here, the mutant Q449E, having no uric acid-xanthine transport activity at 25 degrees C, was used to isolate second-site revertants that restore function. Seven of them were found to have acquired the capacity to transport novel substrates (hypoxanthine and adenine) in addition to uric acid and xanthine. All seven revertants were found to carry the mutation F569S within the last transmembrane segment (TMS14) of UapA. Further kinetic analysis of a selected suppressor showed that UapA-Q449E/F569S transports with high affinity (K(M) values of 4-10 microM) xanthine, hypoxanthine and uracil. Uptake competition experiments suggested that UapA-Q449E/F569S also binds guanine, 6-thioguanine, adenosine or ascorbic acid. A strain carrying mutation F569S by itself conserves high-capacity, high-affinity (K(M) values of 1.5-15 microM), transport activity for purine-uracil transport. Compared to UapA-Q449E/F569S, UapA-F569S has a distinct capacity to bind several nucleobase-related compounds and different kinetic parameters of transport. These results show that molecular determinants external to the central functional domain (L9-TMS10-L10) are critical for the uptake specificity and transport kinetics of UapA.
Collapse
Affiliation(s)
- S Amillis
- Faculty of Biology, Department of Botany, University of Athens, Panepistimioupolis, Athens, 15781, Greece
| | | | | |
Collapse
|
52
|
Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 2001; 183:5684-97. [PMID: 11544232 PMCID: PMC95461 DOI: 10.1128/jb.183.19.5684-5697.2001] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPbeta plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how plasmids are structured, and thus evolve, to encode the catabolism of compounds recently added to the biosphere.
Collapse
Affiliation(s)
- B Martinez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
53
|
Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy. Biochem J 2001. [PMID: 10861212 DOI: 10.1042/0264-6021: 3490067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium, the aetiologic agent of malaria, cannot synthesize purines de novo, and hence depends upon salvage from the host. Here we describe the molecular cloning and functional expression in Xenopus oocytes of the first purine transporter to be identified in this parasite. This 422-residue protein, which we designate PfENT1, is predicted to contain 11 membrane-spanning segments and is a distantly related member of the widely distributed eukaryotic protein family the equilibrative nucleoside transporters (ENTs). However, it differs profoundly at the sequence and functional levels from its homologous counterparts in the human host. The parasite protein exhibits a broad substrate specificity for natural nucleosides, but transports the purine nucleoside adenosine with a considerably higher apparent affinity (K(m) 0.32+/-0.05 mM) than the pyrimidine nucleoside uridine (K(m) 3.5+/-1.1 mM). It also efficiently transports nucleobases such as adenine (K(m) 0.32+/-0.10 mM) and hypoxanthine (K(m) 0.41+/-0.1 mM), and anti-viral 3'-deoxynucleoside analogues. Moreover, it is not sensitive to classical inhibitors of mammalian ENTs, including NBMPR [6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, or nitrobenzylthioinosine] and the coronary vasoactive drugs, dipyridamole, dilazep and draflazine. These unique properties suggest that PfENT1 might be a viable target for the development of novel anti-malarial drugs.
Collapse
|
54
|
Pérez-García A, Snoeijers SS, Joosten MH, Goosen T, De Wit PJ. Expression of the Avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:316-325. [PMID: 11277429 DOI: 10.1094/mpmi.2001.14.3.316] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here we describe the role of the Cladosporium fulvum nitrogen response factor 1 (Nrf1) gene in regulation of the expression of avirulence gene Avr9 and virulence on tomato. The Nrf1 gene, which was isolated by a polymerase chain reaction-based strategy, is predicted to encode a protein of 918 amino acid residues. The protein contains a putative zinc finger DNA-binding domain that shares 98% amino acid identity with the zinc finger of the major nitrogen regulatory proteins AREA and NIT2 of Aspergillus nidulans and Neurospora crassa, respectively. Functional equivalence of Nrf1 to areA was demonstrated by complementation of an A. nidulans areA loss-of-function mutant with Nrf1. Nrf1-deficient transformants of C. fulvum obtained by homologous recombination were unable to utilize nitrate and nitrite as a nitrogen source. In contrast to what was observed in the C. fulvum wild-type, the Avr9 gene was no longer induced under nitrogen-starvation conditions in Nrf1-deficient strains. On susceptible tomato plants, the Nrf1-deficient strains were as virulent as wild-type strains of C. fulvum, although the expression of the Avr9 gene was strongly reduced. In addition, Nrf1-deficient strains were still avirulent on tomato plants containing the functional Cf-9 resistance gene, indicating that in planta, apparently sufficient quantities of stable AVR9 elicitor are produced. Our results suggest that the NRF1 protein is a major regulator of the Avr9 gene.
Collapse
Affiliation(s)
- A Pérez-García
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | | | | | | | | |
Collapse
|
55
|
Fraser JA, Davis MA, Hynes MJ. The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 2001; 157:119-31. [PMID: 11139496 PMCID: PMC1461490 DOI: 10.1093/genetics/157.1.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to utilize formamide as a sole nitrogen source has been found in numerous fungi. We have cloned the fmdS gene encoding a formamidase from Aspergillus nidulans and found that it belongs to a highly conserved family of proteins separate from the major amidase families. The expression of fmdS is primarily regulated via AreA-mediated nitrogen metabolite repression and does not require the addition of exogenous inducer. Consistent with this, deletion analysis of the 5' region of fmdS has confirmed the presence of multiple AreA-binding sites containing a characteristic core GATA sequence. Under carbon starvation conditions the response to nitrogen starvation is eliminated, indicating that the lack of a carbon source may result in inactivation of AreA. Sequence analysis and isolation of cDNAs show that a gene of unknown function lies directly 5' of fmdS with its transcript overlapping the fmdS coding region. Disruption of the 5' gene and analysis of the effects of overexpression of this gene on fmdS expression has shown that expression of this upstream gene interferes with fmdS transcription, resulting in a strong dependence on AreA activation for expression. Therefore the relative position of these two genes is essential for normal regulation of fmdS.
Collapse
Affiliation(s)
- J A Fraser
- Department of Genetics, University of Melbourne, Victoria, 3010 Australia
| | | | | |
Collapse
|
56
|
Parker MD, Hyde RJ, Yao SY, McRobert L, Cass CE, Young JD, McConkey GA, Baldwin SA. Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy. Biochem J 2000; 349:67-75. [PMID: 10861212 PMCID: PMC1221121 DOI: 10.1042/0264-6021:3490067] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium, the aetiologic agent of malaria, cannot synthesize purines de novo, and hence depends upon salvage from the host. Here we describe the molecular cloning and functional expression in Xenopus oocytes of the first purine transporter to be identified in this parasite. This 422-residue protein, which we designate PfENT1, is predicted to contain 11 membrane-spanning segments and is a distantly related member of the widely distributed eukaryotic protein family the equilibrative nucleoside transporters (ENTs). However, it differs profoundly at the sequence and functional levels from its homologous counterparts in the human host. The parasite protein exhibits a broad substrate specificity for natural nucleosides, but transports the purine nucleoside adenosine with a considerably higher apparent affinity (K(m) 0.32+/-0.05 mM) than the pyrimidine nucleoside uridine (K(m) 3.5+/-1.1 mM). It also efficiently transports nucleobases such as adenine (K(m) 0.32+/-0.10 mM) and hypoxanthine (K(m) 0.41+/-0.1 mM), and anti-viral 3'-deoxynucleoside analogues. Moreover, it is not sensitive to classical inhibitors of mammalian ENTs, including NBMPR [6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, or nitrobenzylthioinosine] and the coronary vasoactive drugs, dipyridamole, dilazep and draflazine. These unique properties suggest that PfENT1 might be a viable target for the development of novel anti-malarial drugs.
Collapse
Affiliation(s)
- M D Parker
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Valdez-Taubas J, Diallinas G, Scazzocchio C, Rosa AL. Protein expression and subcellular localization of the general purine transporter UapC from Aspergillus nidulans. Fungal Genet Biol 2000; 30:105-13. [PMID: 11017766 DOI: 10.1006/fgbi.2000.1197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The uapC gene of Aspergillus nidulans belongs to a family of nucleobase-specific transporters conserved in prokaryotic and eucaryotic organisms. We report the use of immunological and green fluorescent protein based strategies to study protein expression and subcellular distribution of UapC. A chimeric protein containing a plant-adapted green fluorescent protein (sGFP) fused to the C-terminus of UapC was shown to be functional in vivo, as it complements a triple mutant (i.e., uapC(-) uapA(-) azgA(-)) unable to grow on uric acid as the sole nitrogen source. UapC-GFP is located in the plasma membrane and, secondarily, in internal structures observed as fluorescent dots. A strong correlation was found between cellular levels of UapC-GFP fluorescence and known patterns of uapC gene expression. This work represents the first in vivo study of protein expression and subcellular localization of a filamentous fungal nucleobase transporter.
Collapse
Affiliation(s)
- J Valdez-Taubas
- Departamento de Química Biológica (CIQUIBIC-CONICET), Universidad de Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
58
|
Abstract
Purines and pyrimidines play a key role in nucleic acid and nucleotide metabolism of all cells. In addition, they can be used as nitrogen sources in plants and many microorganisms. Transport of nucleobases across biological membranes is mediated by specific transmembrane transport proteins. Nucleobase transporters have been identified genetically and/or physiologically in bacteria, fungi, protozoa, algae, plants and mammals. A limited number of bacterial and fungal transporter genes have been cloned and analysed in great detail at the molecular level. Very recently, nucleobase transporters have been identified in plants. In other systems, with less accessible genetics, such as vertebrates and protozoa, no nucleobase transporter genes have been identified, and the transporters have been characterized and classified by physiological and biochemical approaches instead. In this review, it is shown that nucleobase transporters and similar sequences of unknown function present in databases constitute three basic families, which will be designated NAT, PRT and PUP. The first includes members from archea, eubacteria, fungi, plants and metazoa, the second is restricted to prokaryotes and fungi, and the last one is only found in plants. Interestingly, mammalian ascorbate transporters are homologous to NAT sequences. The function of different nucleobase transporters is also described, as is how their expression is regulated and what is currently known about their structure-function relationships. Common features emerging from these studies are expected to prove critical in understanding what governs nucleobase transporter specificity and in selecting proper model microbial systems for cloning and studying plant, protozoan and mammalian nucleobase transporters of agricultural, pharmacological and medical importance.
Collapse
Affiliation(s)
- H de Koning
- Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
59
|
Meintanis C, Karagouni AD, Diallinas G. Amino acid residues N450 and Q449 are critical for the uptake capacity and specificity of UapA, a prototype of a nucleobase-ascorbate transporter family. Mol Membr Biol 2000; 17:47-57. [PMID: 10824738 DOI: 10.1080/096876800294489] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Specific carrier-mediated transport of purine and pyrimidine nucleobases across cell membranes is a basic biological process in both prokaryotes and eukaryotes. Recent in silico analysis has shown that the Aspergillus nidulans (UapA, UapC) and bacterial (PbuX, UraA, PyrP) nucleobase transporters, and a group of mammalian L-ascorbic acid transporters (SVCT1 and SVCT2), constitute a unique protein family which includes putative homologues from archea, bacteria, plants and metazoans. The construction and functional analysis of chimeric purine transporters (UapA-UapC) and UapA-specific missense mutations in A. nidulans has previously shown that the region including amino acid residues 378-446 in UapA is critical for purine recognition and transport. Here, we extend our studies on UapA structure-function relationships by studying missense mutations constructed within a 'signature' sequence motif [(F/Y/S)X(Q/E/P)NXGXXXXT(K/R/G)] which is conserved in the putative functional region of all members of the nucleobase/ascorbate transporter family. Residues Q449 and N450 were found to be critical for purine recognition and transport. The results suggest that these residues might directly or indirectly be involved in specific interactions with the purine ring. In particular, interaction of residue 449 with C-2 groups of purines might act as a critical molecular filter involved in the selection of transported substrates. The present and previous mutagenic analyses in UapA suggest that specific polar or charged amino acid residues on either side of an amphipathic alpha-helical transmembrane segment are critical for purine binding and transport.
Collapse
Affiliation(s)
- C Meintanis
- Department of Biology, University of Athens, Panepistimioupolis, Greece
| | | | | |
Collapse
|
60
|
Hogue DL, Ling V. A human nucleobase transporter-like cDNA (SLC23A1): member of a transporter family conserved from bacteria to mammals. Genomics 1999; 59:18-23. [PMID: 10395795 DOI: 10.1006/geno.1999.5847] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A family of related polytopic membrane proteins that mediate the transport of nucleobases has been extended to Homo sapiens by the cloning of a full-length human cDNA that encodes a nucleobase transporter-like protein. The protein is predicted to contain 11-14 transmembrane-spanning regions, exhibits 20-28% overall sequence identity to fungal and bacterial transporters, and contains a conserved signature motif found in this family. Fluorescence in situ hybridization localized the gene (HGMW-approved symbol SLC23A1) to human chromosome 20p13. Human nucleobase transporter-like mRNA was present in all tissues examined, with lower levels found in heart, skeletal muscle, and ovary. Expression of the 60-kDa cDNA-encoded protein was demonstrated by an in vitro transcription-translation approach. The identification of this nucleobase transporter-like protein will allow the further elucidation of the interaction of human cells with physiological nucleobases and pharmacologically important drugs such as 5-F-uracil, dideoxynucleosides, and acyclic nucleosides.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacteria/genetics
- Base Sequence
- Carrier Proteins/genetics
- Chromosome Banding
- Chromosome Mapping
- Chromosomes, Human, Pair 20/genetics
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mammals/genetics
- Membrane Proteins/genetics
- Molecular Sequence Data
- Nucleoside Transport Proteins
- Organic Anion Transporters, Sodium-Dependent
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium-Coupled Vitamin C Transporters
- Symporters
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- D L Hogue
- British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 4L3, Canada.
| | | |
Collapse
|
61
|
Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999; 399:70-5. [PMID: 10331392 DOI: 10.1038/19986] [Citation(s) in RCA: 646] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin C (L-ascorbic acid) is essential for many enzymatic reactions, in which it serves to maintain prosthetic metal ions in their reduced forms (for example, Fe2+, Cu+), and for scavenging free radicals in order to protect tissues from oxidative damage. The facilitative sugar transporters of the GLUT type can transport the oxidized form of the vitamin, dehydroascorbic acid, but these transporters are unlikely to allow significant physiological amounts of vitamin C to be taken up in the presence of normal glucose concentrations, because the vitamin is present in plasma essentially only in its reduced form. Here we describe the isolation of two L-ascorbic acid transporters, SVCT1 and SVCT2, from rat complementary DNA libraries, as the first step in investigating the importance of L-ascorbic acid transport in regulating the supply and metabolism of vitamin C. We find that SVCT1 and SVCT2 each mediate concentrative, high-affinity L-ascorbic acid transport that is stereospecific and is driven by the Na+ electrochemical gradient. Despite their close sequence homology and similar functions, the two isoforms of the transporter are discretely distributed: SVCT1 is mainly confined to epithelial systems (intestine, kidney, liver), whereas SVCT2 serves a host of metabolically active cells and specialized tissues in the brain, eye and other organs.
Collapse
Affiliation(s)
- H Tsukaguchi
- Membrane Biology Program, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Leimkühler S, Klipp W. Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. J Bacteriol 1999; 181:2745-51. [PMID: 10217763 PMCID: PMC93714 DOI: 10.1128/jb.181.9.2745-2751.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus xanthine dehydrogenase (XDH) is composed of two subunits, XDHA and XDHB. Immediately downstream of xdhB, a third gene was identified, designated xdhC, which is cotranscribed with xdhAB. Interposon mutagenesis revealed that the xdhC gene product is required for XDH activity. However, XDHC is not a subunit of active XDH, which forms an alpha2beta2 heterotetramer in R. capsulatus. It was shown that XDHC neither is a transcriptional regulator for xdh gene expression nor influences XDH stability. To analyze the function of XDHC for XDH in R. capsulatus, inactive XDH was purified from an xdhC mutant strain. Analysis of the molybdenum cofactor content of this enzyme demonstrated that in the absence of XDHC, no molybdopterin cofactor MPT is present in the XDHAB tetramer. In contrast, absorption spectra of inactive XDH isolated from the xdhC mutant revealed the presence of iron-sulfur clusters and flavin adenine dinucleotide, demonstrating that XDHC is not required for the insertion of these cofactors. The absence of MPT from XDH isolated from an xdhC mutant indicates that XDHC either acts as a specific MPT insertase or might be a specific chaperone facilitating the insertion of MPT and/or folding of XDH during or after cofactor insertion.
Collapse
Affiliation(s)
- S Leimkühler
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
63
|
Saier MH, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng TT, Wachi S, Young GB. Phylogenetic characterization of novel transport protein families revealed by genome analyses. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:1-56. [PMID: 10082980 DOI: 10.1016/s0304-4157(98)00023-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
As a result of recent genome sequencing projects as well as detailed biochemical, molecular genetic and physiological experimentation on representative transport proteins, we have come to realize that all organisms possess an extensive but limited array of transport protein types that allow the uptake of nutrients and excretion of toxic substances. These proteins fall into phylogenetic families that presumably reflect their evolutionary histories. Some of these families are restricted to a single phylogenetic group of organisms and may have arisen recently in evolutionary time while others are found ubiquitously and may be ancient. In this study we conduct systematic phylogenetic analyses of 26 families of transport systems that either had not been characterized previously or were in need of updating. Among the families analyzed are some that are bacterial-specific, others that are eukaryotic-specific, and others that are ubiquitous. They can function by either a channel-type or a carrier-type mechanism, and in the latter case, they are frequently energized by coupling solute transport to the flux of an ion down its electrochemical gradient. We tabulate the currently sequenced members of the 26 families analyzed, describe the properties of these families, and present partial multiple alignments, signature sequences and phylogenetic trees for them all.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Amrani L, Cecchetto G, Scazzocchio C, Glatigny A. The hxB gene, necessary for the post-translational activation of purine hydroxylases in Aspergillus nidulans, is independently controlled by the purine utilization and the nicotinate utilization transcriptional activating systems. Mol Microbiol 1999; 31:1065-73. [PMID: 10096075 DOI: 10.1046/j.1365-2958.1999.01242.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molybdenum-containing enzymes of the hydroxylase class (such as xanthine dehydrogenase, aldehyde oxidase and nicotinate dehydrogenase) require a terminal sulphur atom attached to the molybdenum to hydroxylate their specific substrates. The transulphurylation reaction is carried out in Drosophila melanogaster by the product of the ma-I gene. In Aspergillus nidulans, the activity of the isofunctional and homologous HxB protein is needed in at least two different metabolic contexts, when the organism grows on purines and when it grows on nicotinate as nitrogen sources. We show here that the expression of the hxB gene is not constitutive. It is induced independently and additively by the inducers of the purine and of the nicotinate utilization pathways. Each of these induction pathways is affected independently by mutations in their cognate genes, uric acid induction by mutations in the UaY protein and nicotinate and 6-nicotinate induction by those in the hxnR/aplA complex. It is, in both metabolic contexts, exquisitely sensitive to nitrogen metabolite repression and highly dependent on the AreA GATA factor.
Collapse
Affiliation(s)
- L Amrani
- Institut de Génétique et Microbiologie, Orsay, France
| | | | | | | |
Collapse
|
65
|
Faaland CA, Race JE, Ricken G, Warner FJ, Williams WJ, Holtzman EJ. Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:353-60. [PMID: 9804989 DOI: 10.1016/s0167-4781(98)00151-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase transport is important for the metabolism of nucleic acids and antiviral and antineoplastic drugs. This transport has been functionally described in several mammalian cells but has not been well characterized molecularly. We report the cloning of two novel transporters. YSPL2 encodes a 650-residue protein and has an ubiquitous 8 kb transcript. The human and pig homologs are 95% similar. YSPL3 encodes a 598-residue protein with a 3 kb transcript that is expressed only in kidney and liver. Human YSPL2 and YSPL3 are 60% similar at the amino acid level and both show 31% similarity to the first nucleobase permease gene described in vertebrates, YSPL1. These proteins appear to be members of a new family of possible nucleobase transporters with significant sequence similarities with bacterial and Aspergillus nucleobase transporters. Further functional studies will be needed to unveil the role of these transporters in nucleic acid metabolism in normal and in disease states.
Collapse
Affiliation(s)
- C A Faaland
- Renal Division, Department of Medicine, SUNY-Health Science Center, Syracuse, NY, USA
| | | | | | | | | | | |
Collapse
|
66
|
Wilson RA, Arst HN. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the "streetwise" GATA family of transcription factors. Microbiol Mol Biol Rev 1998; 62:586-96. [PMID: 9729601 PMCID: PMC98926 DOI: 10.1128/mmbr.62.3.586-596.1998] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activator AREA is a member of the GATA family of transcription factors and mediates nitrogen metabolite repression in the fungus Aspergillus nidulans. The nutritional versatility of A. nidulans and its amenability to classical and reverse genetic manipulations make the AREA DNA binding domain (DBD) a useful model for analyzing GATA family DBDs, particularly as structures of two AREA-DNA complexes have been determined. The 109 extant mutant forms of the AREA DBD surveyed here constitute one of the highest totals of eukaryotic transcription factor DBD mutants, are discussed in light of the roles of individual residues, and are compared to corresponding mutant sequence changes in other fungal GATA factor DBDs. Other topics include delineation of the DBD using both homology and mutational truncation, use of frameshift reversion to detect regions of tolerance to mutational change, the finding that duplication of the DBD can apparently enhance AREA function, and use of the AREA system to analyze a vertebrate GATA factor DBD. Some major points to emerge from work on the AREA DBD are (i) tolerance to sequence change (with retention of function) is surprisingly great, (ii) mutational changes in a transcription factor can have widely differing, even opposing, effects on expression of different structural genes so that monitoring expression of one or even several structural genes can be insufficient and possibly misleading, and (iii) a mutational change altering local hydrophobic packing and DNA binding target specificity can markedly influence the behavior of mutational changes elsewhere in the DBD.
Collapse
Affiliation(s)
- R A Wilson
- Department of Infectious Diseases, Imperial College School of Medicine at Hammersmith Hospital, London W12 ONN, United Kingdom
| | | |
Collapse
|
67
|
Diallinas G, Valdez J, Sophianopoulou V, Rosa A, Scazzocchio C. Chimeric purine transporters of Aspergillus nidulans define a domain critical for function and specificity conserved in bacterial, plant and metazoan homologues. EMBO J 1998; 17:3827-37. [PMID: 9670000 PMCID: PMC1170718 DOI: 10.1093/emboj/17.14.3827] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Aspergillus nidulans, purine uptake is mediated by three transporter proteins: UapA, UapC and AzgA. UapA and UapC have partially overlapping functions, are 62% identical and have nearly identical predicted topologies. Their structural similarity is associated with overlapping substrate specificities; UapA is a high-affinity, high-capacity specific xanthine/uric acid transporter. UapC is a low/moderate-capacity general purine transporter. We constructed and characterized UapA/UapC, UapC/UapA and UapA/UapC/UapA chimeric proteins and UapA point mutations. The region including residues 378-446 in UapA (336-404 in UapC) has been shown to be critical for purine recognition and transport. Within this region, we identified: (i) one amino acid residue (A404) important for transporter function but probably not for specificity and two residues (E412 and R414) important for UapA function and specificity; and (ii) a sequence, (F/Y/S)X(Q/E/P) NXGXXXXT(K/R/G), which is highly conserved in all homologues of nucleobase transporters from bacteria to man. The UapC/UapA series of chimeras behaves in a linear pattern and leads to an univocal assignment of functional domains while the analysis of the reciprocal and 'sandwich' chimeras revealed unexpected inter-domain interactions. cDNAs coding for transporters including the specificity region defined by these studies have been identified for the first time in the human and Caenorhabditis elegans databases.
Collapse
Affiliation(s)
- G Diallinas
- Institute of Molecular Biology and Biotechnology, FORTH, P.O. Box 1527, Heraklion 71110, Crete
| | | | | | | | | |
Collapse
|
68
|
Starich MR, Wikström M, Schumacher S, Arst HN, Gronenborn AM, Clore GM. The solution structure of the Leu22-->Val mutant AREA DNA binding domain complexed with a TGATAG core element defines a role for hydrophobic packing in the determination of specificity. J Mol Biol 1998; 277:621-34. [PMID: 9533884 DOI: 10.1006/jmbi.1997.1626] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The seemingly innocuous leucine-to-valine mutation at position 22 of the AREA DNA binding domain results in dramatic changes in the in vivo expression profile of genes controlled by this GATA transcription factor. This is associated with a preference of the Leu22-->Val mutant for TGATAG sites over (A/C)GATAG sites. Quantitative gel retardation assays confirm this observation and show that the Leu22-->Val mutant AREA DNA binding domain has a approximately 30-fold lower affinity than the wild-type domain for a 13 base-pair oligonucleotide containing the wild-type CGATAG target. To gain insight into the measured affinity data and further explore sequence specificity of the AREA protein, the solution structure of a complex between the Leu22-->Val mutant AREA DNA binding domain and a 13 base-pair oligonucleotide containing its physiologically relevant TGATAG target sequence has been determined by multidimensional nuclear magnetic resonance spectroscopy. Comparison of this structure with that of the wild-type AREA DNA binding domain complexed to its cognate CGATAG target site shows how subtle changes in amino acid side-chain length and hydrophobic packing can affect affinity and specificity for GATA-containing sequences, and how changes in DNA sequence can be compensated for by changes in protein sequence.
Collapse
Affiliation(s)
- M R Starich
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | | | |
Collapse
|
69
|
Brynestad S, Synstad B, Granum PE. The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2109-2115. [PMID: 9245800 DOI: 10.1099/00221287-143-7-2109] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Clostridium perfringens enterotoxin gene (cpe) is rarely found in naturally isolated strains. In human food poisoning strains, cpe is found on the chromosome, and is located episomally in animal isolates. Observations that the gene was somewhat unstable and could be gained or lost suggested that the gene was on a mobile element. An IS200-like element, IS1469, is almost always upstream of cpe. A new insertion element was identified, IS1470, a member of the IS30 family, which is found both up-an downstream of cpe in the type A strain NCTC 8239. PCR results confirmed that this configuration was conserved in type A human food poisoning strains. The enterotoxin gene was on a 6.3 kb transposon which, in addition to the two flanking copies of IS1470, included IS1469 and two 1 kb stretches, one on each side of cpe, with no open reading frames. Results indicated that 14 bp was copied from the genome during insertion. Details of the configuration of DNA in this transposon are presented, and the possible connection of this transposon with the movement of the enterotoxin gene is discussed.
Collapse
Affiliation(s)
- Sigrid Brynestad
- Department of pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, PO Box 8146, Dep., N-0033 Oslo, Norway
| | - Bjørnar Synstad
- Department of pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, PO Box 8146, Dep., N-0033 Oslo, Norway
| | - Per Einar Granum
- Department of pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, PO Box 8146, Dep., N-0033 Oslo, Norway
| |
Collapse
|
70
|
Abstracts. Folia Microbiol (Praha) 1997. [DOI: 10.1007/bf02819002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
71
|
Christiansen LC, Schou S, Nygaard P, Saxild HH. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 1997; 179:2540-50. [PMID: 9098051 PMCID: PMC179002 DOI: 10.1128/jb.179.8.2540-2550.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The xpt and pbuX genes from Bacillus subtilis were cloned, and their nucleotide sequences were determined. The xpt gene encodes a specific xanthine phosphoribosyltransferase, and the pbuX gene encodes a xanthine-specific purine permease. The genes have overlapping coding regions, and Northern (RNA) blot analysis indicated an operon organization. The translation of the second gene, pbuX, was strongly dependent on the translation of the first gene, xpt. Expression of the operon was repressed by purines, and the effector molecules appear to be hypoxanthine and guanine. When hypoxanthine and guanine were added together, a 160-fold repression was observed. The regulation of expression was at the level of transcription, and we propose that a transcription termination-antitermination control mechanism similar to the one suggested for the regulation of the purine biosynthesis operon exists. The expression of the xpt-pbuX operon was reduced when hypoxanthine served as the sole nitrogen source. Under these conditions, the level of the hypoxanthine- and xanthine-degrading enzyme, xanthine dehydrogenase, was induced more than 80-fold. The xanthine dehydrogenase level was completely derepressed in a glnA (glutamine synthetase) genetic background. Although the regulation of the expression of the xpt-pbuX operon was found to be affected by the nitrogen source, it was normal in a glnA mutant strain. This result suggests the existence of different signalling pathways for repression of the transcription of the xpt-pbuX operon and the induction of xanthine dehydrogenase.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacillus subtilis/enzymology
- Bacillus subtilis/genetics
- Bacterial Proteins
- Base Sequence
- Cloning, Molecular
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/physiology
- Genes, Bacterial
- Glutamate-Ammonia Ligase/metabolism
- Membrane Transport Proteins/genetics
- Molecular Sequence Data
- Nitrogen/pharmacology
- Nucleic Acid Conformation
- Operon/genetics
- Pentosyltransferases/genetics
- Pentosyltransferases/metabolism
- Protein Biosynthesis/genetics
- Purines/metabolism
- Purines/pharmacology
- RNA, Bacterial/analysis
- RNA, Bacterial/chemistry
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- Recombinant Fusion Proteins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic/genetics
- Xanthine
- Xanthines/metabolism
Collapse
Affiliation(s)
- L C Christiansen
- Department of Biological Chemistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
72
|
Arst Jr. HN. Nitrogen metabolite repression inAspergillus nidulans: an historical perspective. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paper of Arst and Cove (Mol. Gen. Genet. 126: 111 – 141, 1973) on "Nitrogen metabolite repression in Aspergillus nidulans" has influenced studies and perceptions of gene regulation in filamentous fungi during the past 21 years. Here I attempt to appraise the contributions of that paper and assess its role in further developments. Nitrogen metabolite repression, carbon catabolite repression, pathway-specific and integrated induction, as-acting regulatory mutations, a useful class of growth inhibitors, and a homologous Neurospora crassa gene are all discussed. Key words: Aspergillus nidulans, carbon catabolite repression, nitrogen metabolite repression.
Collapse
|
73
|
Tazebay UH, Sophianopoulou V, Cubero B, Scazzocchio C, Diallinas G. Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans. FEMS Microbiol Lett 1995; 132:27-37. [PMID: 7590163 DOI: 10.1111/j.1574-6968.1995.tb07806.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the filamentous fungus Aspergillus nidulans, L-proline uptake is mediated by the product of the prnB gene which codes for a member of a family of amino acid transporters found both in pro- and eukaryotes. Regulation of prnB gene expression has previously been studied in great detail at the molecular level. However, no studies have addressed possible post-transcriptional controls or the kinetic characterisation of the PrnB transporter. Here we develop a rapid and efficient method for direct uptake measurements of proline in germinating conidiospores of A. nidulans. We make use of this method and Northern blot analyses in parallel to study the regulation of PrnB expression both at the level of prnB message accumulation and at a post-transcriptional level. These studies show that (i) pathway-specific and wide-domain regulatory systems, previously shown to control prnB gene expression in multicellular mycelia, also operate in unicellular conidia committed to germination; and (ii) PrnB activity is regulated in response to the nitrogen source present in the medium and the level of internally accumulated proline or other amino acids. We also characterise kinetically the PrnB transporter and a secondary proline transport system. Our results open new possibilities for studies using unicellular conidiospores of filamentous fungi and constitute a necessary first step for a subsequent structure-function analysis of the PrnB transporter.
Collapse
Affiliation(s)
- U H Tazebay
- Institut de Génétique et Microbiologie, IGM, Université Paris-Sud, Centre d'Orsay, France
| | | | | | | | | |
Collapse
|
74
|
Guimarães MJ, Bazan JF, Zlotnik A, Wiles MV, Grimaldi JC, Lee F, McClanahan T. A new approach to the study of haematopoietic development in the yolk sac and embryoid bodies. Development 1995; 121:3335-46. [PMID: 7588067 DOI: 10.1242/dev.121.10.3335] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the mechanisms that control the differentiation of uncommitted mesoderm precursors into haematopoietic stem cells (HSCs) and the activation of haematopoiesis, we conducted a study to identify genes expressed at the earliest stages of both in vivo and in vitro haematopoietic development. Our strategy was to utilize Differential Display by means of the Polymerase Chain Reaction (DD-PCR) to compare patterns of gene expression between mRNA populations representing different levels of haematopoietic activity obtained from the mouse embryo, embryoid bodies (EBs) and mouse cell lines. We report the molecular cloning of two groups of genes expressed in the yolk sac: a group of genes expressed in the day-8.5 yolk sac at higher levels than in the day-8.5 embryo proper and up-regulated during EB development, and another group of day-8.5 yolk sac genes not expressed in the day-8.5 embryo proper or in EBs. Specifically, we describe the molecular cloning of the first nucleobase permease gene to be found in vertebrates, yolk sac permease-like molecule 1 (Ysp11). The Ysp11 gene has the unique property of encoding both intracellular, transmembrane and extracellular protein forms, revealing novel aspects of nucleotide metabolism that may be relevant during mammalian development.
Collapse
Affiliation(s)
- M J Guimarães
- DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|