51
|
Crowe A, Henderson MJ, Anderson J, Titus SA, Zakharov A, Simeonov A, Buist A, Delay C, Moechars D, Trojanowski JQ, Lee VMY, Brunden KR. Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. J Biol Chem 2020; 295:4001-4013. [PMID: 32034092 DOI: 10.1074/jbc.ra119.010532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) brains are senile plaques, comprising β-amyloid (Aβ) peptides, and neuronal inclusions formed from tau protein. These plaques form 10-20 years before AD symptom onset, whereas robust tau pathology is more closely associated with symptoms and correlates with cognitive status. This temporal sequence of AD pathology development, coupled with repeated clinical failures of Aβ-directed drugs, suggests that molecules that reduce tau inclusions have therapeutic potential. Few tau-directed drugs are presently in clinical testing, in part because of the difficulty in identifying molecules that reduce tau inclusions. We describe here two cell-based assays of tau inclusion formation that we employed to screen for compounds that inhibit tau pathology: a HEK293 cell-based tau overexpression assay, and a primary rat cortical neuron assay with physiological tau expression. Screening a collection of ∼3500 pharmaceutical compounds with the HEK293 cell tau aggregation assay, we obtained only a low number of hit compounds. Moreover, these compounds generally failed to inhibit tau inclusion formation in the cortical neuron assay. We then screened the Prestwick library of mostly approved drugs in the cortical neuron assay, leading to the identification of a greater number of tau inclusion inhibitors. These included four dopamine D2 receptor antagonists, with D2 receptors having previously been suggested to regulate tau inclusions in a Caenorhabditis elegans model. These results suggest that neurons, the cells most affected by tau pathology in AD, are very suitable for screening for tau inclusion inhibitors.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Johnathon Anderson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Arjan Buist
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Charlotte Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
52
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
53
|
Samimi N, Asada A, Ando K. Tau Abnormalities and Autophagic Defects in Neurodegenerative Disorders; A Feed-forward Cycle. Galen Med J 2020; 9:e1681. [PMID: 34466566 PMCID: PMC8343705 DOI: 10.31661/gmj.v9i0.1681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 11/16/2022] Open
Abstract
Abnormal deposition of misfolded proteins is a neuropathological characteristic shared by many neurodegenerative disorders including Alzheimer’s disease (AD). Generation of excessive amounts of aggregated proteins and impairment of degradation systems for misfolded proteins such as autophagy can lead to accumulation of proteins in diseased neurons. Molecules that contribute to both these effects are emerging as critical players in disease pathogenesis. Furthermore, impairment of autophagy under disease conditions can be both a cause and a consequence of abnormal protein accumulation. Specifically, disease-causing proteins can impair autophagy, which further enhances the accumulation of abnormal proteins. In this short review, we focus on the relationship between the microtubule-associated protein tau and autophagy to highlight a feed-forward mechanism in disease pathogenesis.
Collapse
Affiliation(s)
- Nastaran Samimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Akiko Asada
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence to: Kanae Ando, Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192- 0397, Japan Telephone Number: +81-42-677-2769 Email Address:
| |
Collapse
|
54
|
Wu HY, Kuo PC, Wang YT, Lin HT, Roe AD, Wang BY, Han CL, Hyman BT, Chen YJ, Tai HC. β-Amyloid Induces Pathology-Related Patterns of Tau Hyperphosphorylation at Synaptic Terminals. J Neuropathol Exp Neurol 2019; 77:814-826. [PMID: 30016458 DOI: 10.1093/jnen/nly059] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A synergy between β-amyloid (Aβ) and tau appears to occur in Alzheimer disease (AD), but the mechanisms of interaction, and potential locations, are little understood. This study investigates the possibility of such interactions within the cortical synaptic compartments of APP/PS1 mice. We used label-free quantitative mass spectrometry to study the phosphoproteome of synaptosomes, covering 2400 phosphopeptides and providing an unbiased survey of phosphorylation changes associated with amyloid pathology. Hyperphosphorylation was detected on 36 synaptic proteins, many of which are associated with the cytoskeleton. Importantly, tau is one of the most hyperphosphorylated proteins at the synapse, upregulated at both proline-directed kinase (PDK) sites (S199/S202, S396/S404) and nonPDK sites (S400). These PDK sites correspond to well-known pathological tau epitopes in AD patients, recognized by AT8 and PHF-1 antibodies, respectively. Hyperphosphorylation at S199/S202, a rarely examined combination, was further validated in patient-derived human synaptosomes by immunoblotting. Global surveys of upregulated phosphosites revealed 2 potential kinase motifs, which resemble those of cyclin-dependent kinase 5 (CDK5, a PDK) and casein kinase II (CK2, a nonPDK). Our data demonstrate that, within synaptic compartments, amyloid pathology is associated with tau hyperphosphorylation at disease-relevant epitopes. This provides a plausible mechanism by which Aβ promotes the spreading of tauopathy.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Po-Cheng Kuo
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hao-Tai Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Allyson D Roe
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bo Y Wang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ju Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
55
|
Melchior B, Mittapalli GK, Lai C, Duong‐Polk K, Stewart J, Güner B, Hofilena B, Tjitro A, Anderson SD, Herman DS, Dellamary L, Swearingen CJ, Sunil K, Yazici Y. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer's disease. Aging Cell 2019; 18:e13000. [PMID: 31267651 PMCID: PMC6718548 DOI: 10.1111/acel.13000] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A) is known to phosphorylate the microtubule-associated tau protein. Overexpression is correlated with tau hyperphosphorylation and neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). This study assessed the potential of SM07883, an oral DYRK1A inhibitor, to inhibit tau hyperphosphorylation, aggregation, NFT formation, and associated phenotypes in mouse models. Exploratory neuroinflammatory effects were also studied. SM07883 specificity was tested in a kinase panel screen and showed potent inhibition of DYRK1A (IC50 = 1.6 nM) and GSK-3β (IC50 = 10.8 nM) kinase activity. Tau phosphorylation measured in cell-based assays showed a reduction in phosphorylation of multiple tau epitopes, especially the threonine 212 site (EC50 = 16 nM). SM07883 showed good oral bioavailability in multiple species and demonstrated a dose-dependent reduction of transient hypothermia-induced phosphorylated tau in the brains of wild-type mice compared to vehicle (47%, p < 0.001). Long-term efficacy assessed in aged JNPL3 mice overexpressing the P301L human tau mutation (3 mg/kg, QD, for 3 months) exhibited significant reductions in tau hyperphosphorylation, oligomeric and aggregated tau, and tau-positive inclusions compared to vehicle in brainstem and spinal cord samples. Reduced gliosis compared to vehicle was further confirmed by ELISA. SM07883 was well tolerated with improved general health, weight gain, and functional improvement in a wire-hang test compared to vehicle-treated mice (p = 0.048). SM07883, a potent, orally bioavailable, brain-penetrant DYRK1A inhibitor, significantly reduced effects of pathological tau overexpression and neuroinflammation, while functional endpoints were improved compared to vehicle in animal models. This small molecule has potential as a treatment for AD.
Collapse
|
56
|
Trushina NI, Bakota L, Mulkidjanian AY, Brandt R. The Evolution of Tau Phosphorylation and Interactions. Front Aging Neurosci 2019; 11:256. [PMID: 31619983 PMCID: PMC6759874 DOI: 10.3389/fnagi.2019.00256] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Tau is a neuronal microtubule-associated protein (MAP) that is involved in the regulation of axonal microtubule assembly. However, as a protein with intrinsically disordered regions (IDRs), tau also interacts with many other partners in addition to microtubules. Phosphorylation at selected sites modulates tau's various intracellular interactions and regulates the properties of IDRs. In Alzheimer's disease (AD) and other tauopathies, tau exhibits pathologically increased phosphorylation (hyperphosphorylation) at selected sites and aggregates into neurofibrillary tangles (NFTs). By bioinformatics means, we tested the hypothesis that the sequence of tau has changed during the vertebrate evolution in a way that novel interactions developed and also the phosphorylation pattern was affected, which made tau prone to the development of tauopathies. We report that distinct regions of tau show functional specialization in their molecular interactions. We found that tau's amino-terminal region, which is involved in biological processes related to "membrane organization" and "regulation of apoptosis," exhibited a strong evolutionary increase in protein disorder providing the basis for the development of novel interactions. We observed that the predicted phosphorylation sites have changed during evolution in a region-specific manner, and in some cases the overall number of phosphorylation sites increased owing to the formation of clusters of phosphorylatable residues. In contrast, disease-specific hyperphosphorylated sites remained highly conserved. The data indicate that novel, non-microtubule related tau interactions developed during evolution and suggest that the biological processes, which are mediated by these interactions, are of pathological relevance. Furthermore, the data indicate that predicted phosphorylation sites in some regions of tau, including a cluster of phosphorylatable residues in the alternatively spliced exon 2, have changed during evolution. In view of the "antagonistic pleiotropy hypothesis" it may be worth to take disease-associated phosphosites with low evolutionary conservation as relevant biomarkers into consideration.
Collapse
Affiliation(s)
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
57
|
Ittner A, Ittner LM. Dendritic Tau in Alzheimer's Disease. Neuron 2019; 99:13-27. [PMID: 30001506 DOI: 10.1016/j.neuron.2018.06.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
The microtubule-associated protein tau and amyloid-β (Aβ) are key players in Alzheimer's disease (AD). Aβ and tau are linked in a molecular pathway at the post-synapse with tau-dependent synaptic dysfunction being a major pathomechanism in AD. Recent work on site-specific modification of dendritic and more specifically post-synaptic tau has revealed new endogenous functions of tau that limits synaptic Aβ toxicity. Thus, molecular studies opened a new perspective on tau, placing it at the center of neurotoxic and neuroprotective signaling at the post-synapse. Here, we review recent advances on tau in the dendritic compartments, with implications for understanding and treatment of AD and related neurological conditions.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Neuroscience Research Australia, Sydney, New South Wales 2031, Australia; Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
58
|
Despres C, Di J, Cantrelle FX, Li Z, Huvent I, Chambraud B, Zhao J, Chen J, Chen S, Lippens G, Zhang F, Linhardt R, Wang C, Klärner FG, Schrader T, Landrieu I, Bitan G, Smet-Nocca C. Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chem Biol 2019; 14:1363-1379. [PMID: 31046227 PMCID: PMC6636790 DOI: 10.1021/acschembio.9b00325] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Self-assembly of
the microtubule-associated protein tau into neurotoxic
oligomers, fibrils, and paired helical filaments, and cell-to-cell
spreading of these pathological tau species are critical processes
underlying the pathogenesis of Alzheimer’s disease and other
tauopathies. Modulating the self-assembly process and inhibiting formation
and spreading of such toxic species are promising strategies for therapy
development. A challenge in investigating tau self-assembly in vitro
is that, unlike most amyloidogenic proteins, tau does not aggregate
in the absence of posttranslational modifications (PTM), aggregation
inducers, or preformed seeds. The most common induction method is
addition of polyanions, such as heparin; yet, this artificial system
may not represent adequately tau self-assembly in vivo, which is driven
by aberrant phosphorylation and other PTMs, potentially leading to
in vitro data that do not reflect the behavior of tau and its interaction
with modulators in vivo. To tackle these challenges, methods for in
vitro phosphorylation of tau to produce aggregation-competent forms
recently have been introduced (Despres
et al. (2017) Proc. Natl. Acad. Sci. U.S.A., 114, 9080−908528784767). However, the oligomerization, seeding, and interaction
with assembly modulators of the different forms of tau have not been
studied to date. To address these knowledge gaps, we compared here
side-by-side the self-assembly and seeding activity of heparin-induced
tau with two forms of in vitro phosphorylated tau and tested how the
molecular tweezer CLR01, a negatively charged compound, affected these
processes. Tau was phosphorylated by incubation either with activated
extracellular signal-regulated kinase 2 or with a whole rat brain
extract. Seeding activity was measured using a fluorescence-resonance
energy transfer-based biosensor-cell method. We also used solution-state
NMR to investigate the binding sites of CLR01 on tau and how they
were impacted by phosphorylation. Our systematic structure–activity
relationship study demonstrates that heparin-induced tau behaves differently
from in vitro phosphorylated tau. The aggregation rates of the different
forms are distinct as is the intracellular localization of the induced
aggregates, which resemble brain-derived tau strains suggesting that
heparin-induced tau and in vitro phosphorylated tau have different
conformations, properties, and activities. CLR01 inhibits aggregation
and seeding of both heparin-induced and in vitro phosphorylated tau
dose-dependently, although heparin induction interferes with the interaction
between CLR01 and tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianle Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Shiguo Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Guy Lippens
- Lille University CNRS UMR 8576, UGSF, F-59000 Lille, France
| | | | - Robert Linhardt
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | | | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | |
Collapse
|
59
|
Saito T, Oba T, Shimizu S, Asada A, Iijima KM, Ando K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum Mol Genet 2019; 28:3062-3071. [DOI: 10.1093/hmg/ddz120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Abstract
Hyperphosphorylation of the microtubule-associated protein tau is associated with many neurodegenerative diseases, including Alzheimer’s disease. Microtubule affinity-regulating kinases (MARK) 1–4 and cyclin-dependent kinase 5 (Cdk5) are tau kinases under physiological and pathological conditions. However, their functional relationship remains elusive. Here, we report a novel mechanism by which Cdk5 activates MARK4 and augments tau phosphorylation, accumulation and toxicity. MARK4 is highly phosphorylated at multiple sites in the brain and in cultured neurons, and inhibition of Cdk5 activity reduces phosphorylation levels of MARK4. MARK4 is known to be activated by phosphorylation at its activation loop by liver kinase B1 (LKB1). In contrast, Cdk5 increased phosphorylation of MARK4 in the spacer domain, but not in the activation loop, and enhanced its kinase activity, suggesting a novel mechanism by which Cdk5 regulates MARK4 activity. We also demonstrated that co-expression of Cdk5 and MARK4 in mammalian cultured cells significantly increased the levels of tau phosphorylation at both Cdk5 target sites (SP/TP sites) and MARK target sites (Ser262), as well as the levels of total tau. Furthermore, using a Drosophila model of tau toxicity, we demonstrated that Cdk5 promoted tau accumulation and tau-induced neurodegeneration via increasing tau phosphorylation levels at Ser262 by a fly ortholog of MARK, Par-1. This study suggests a novel mechanism by which Cdk5 and MARK4 synergistically increase tau phosphorylation and accumulation, consequently promoting neurodegeneration in disease pathogenesis.
Collapse
Affiliation(s)
- Taro Saito
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshiya Oba
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Sawako Shimizu
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Koichi M Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
60
|
Sharma G, Huo A, Kimura T, Shiozawa S, Kobayashi R, Sahara N, Ishibashi M, Ishigaki S, Saito T, Ando K, Murayama S, Hasegawa M, Sobue G, Okano H, Hisanaga SI. Tau isoform expression and phosphorylation in marmoset brains. J Biol Chem 2019; 294:11433-11444. [PMID: 31171723 DOI: 10.1074/jbc.ra119.008415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/23/2019] [Indexed: 01/07/2023] Open
Abstract
Tau is a microtubule-associated protein expressed in neuronal axons. Hyperphosphorylated tau is a major component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). Hyperphosphorylated tau aggregates are also found in many neurodegenerative diseases, collectively referred to as "tauopathies," and tau mutations are associated with familial frontotemporal lobar degeneration (FTLD). Previous studies have generated transgenic mice with mutant tau as tauopathy models, but nonhuman primates, which are more similar to humans, may be a better model to study tauopathies. For example, the common marmoset is poised as a nonhuman primate model for investigating the etiology of age-related neurodegenerative diseases. However, no biochemical studies of tau have been conducted in marmoset brains. Here, we investigated several important aspects of tau, including expression of different tau isoforms and its phosphorylation status, in the marmoset brain. We found that marmoset tau does not possess the "primate-unique motif" in its N-terminal domain. We also discovered that the tau isoform expression pattern in marmosets is more similar to that of mice than that of humans, with adult marmoset brains expressing only four-repeat tau isoforms as in adult mice but unlike in adult human brains. Of note, tau in brains of marmoset newborns was phosphorylated at several sites associated with AD pathology. However, in adult marmoset brains, much of this phosphorylation was lost, except for Ser-202 and Ser-404 phosphorylation. These results reveal key features of tau expression and phosphorylation in the marmoset brain, a potentially useful nonhuman primate model of neurodegenerative diseases.
Collapse
Affiliation(s)
- Govinda Sharma
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Anni Huo
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Taeko Kimura
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan
| | - Reona Kobayashi
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Minaka Ishibashi
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shinsuke Ishigaki
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shigeo Murayama
- Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan .,Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
61
|
Wang X, Chang C, Wang D, Hong S. Systematic profiling of SH3-mediated Tau-Partner interaction network in Alzheimer's disease by integrating in silico analysis and in vitro assay. J Mol Graph Model 2019; 90:265-272. [PMID: 31112821 DOI: 10.1016/j.jmgm.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
The aberrant assembly of microtubule-associated protein Tau (τ) into insoluble aggregates is closely related to Alzheimer's disease (AD), which is elicited from Tau phosphorylation events and regulated by the specific intermolecular recognition between the proline-rich PxxP motifs of Tau and the SH3 domains of its diverse partner proteins/kinases. Here, we attempt to create a systematic interaction profile for the 10 SH3 domains of previously reported Tau partners across all the 18 Tau PxxP peptides. A number of biologically functional SH3-PxxP interaction events are identified from the profile and then tested using fluorescence spectroscopy. It is revealed that (i) the region (residues 520-560) precedent to the tubulin-binding partial repeats of Tau protein is an important target of SH3 domains, where contains the three PxxP peptides τp527-536, τp530-539 and τp547-556 that exhibit different binding profiles towards the investigated SH3 domains, (ii) as compared to τp527-536 and τp547-556, the τp530-539 peptide located between them has only a modest binding potency to most SH3 domains, suggesting that the three peptides contribute unevenly to Tau-SH3 interactions, and (iii) some other Tau PxxP peptides, particularly those within the residue range 490-510 that is neighboring to the region 520-560, can also interact effectively with several SH3 domains. The SH3 domain of the well known Tau partner kinase Fyn is determined to have high or moderate affinity for an array of Tau PxxP peptides, including τp137-146, τp493-502, τp527-536 and τp547-556 (Kd ranges 15.7-85.6 μM).
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Neurology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Chunyan Chang
- Center of Clinical Research, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Dongxue Wang
- Department of Cardiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Shanchao Hong
- Department of Medical Clinical Laboratory, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
62
|
Dávila-Bouziguet E, Targa-Fabra G, Ávila J, Soriano E, Pascual M. Differential accumulation of Tau phosphorylated at residues Thr231, Ser262 and Thr205 in hippocampal interneurons and its modulation by Tau mutations (VLW) and amyloid-β peptide. Neurobiol Dis 2019; 125:232-244. [DOI: 10.1016/j.nbd.2018.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
|
63
|
Saha P, Sen N. Tauopathy: A common mechanism for neurodegeneration and brain aging. Mech Ageing Dev 2019; 178:72-79. [PMID: 30668956 DOI: 10.1016/j.mad.2019.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Tau, a microtubule-associated protein promotes assembly and stability of microtubules which is related to axoplasmic flow and critical neuronal activities upon physiological conditions. Under neurodegenerative condition such as in Alzheimer's Disease (AD), tau-microtubule binding dynamics and equilibrium are severely affected due to its aberrant post-translational modifications including acetylation and hyperphosphorylation. This event results in its conformational changes to form neurofibrillary tangles (NFT) after aggregation in the cytosol. The formation of NFT is more strongly correlated with cognitive decline than the distribution of senile plaque, which is formed by polymorphous beta-amyloid (Aβ) protein deposits, another pathological hallmark of AD. In neurodegenerative conditions, other than AD, the disease manifestation is correlated with mutations of the MAPT gene. In Primary age-related tauopathy (PART), which is commonly observed in the brains of aged individuals, tau deposition is directly correlated with cognitive deficits even in the absence of Aβ deposition. Thus, tauopathy has been considered as an essential hallmark in neurodegeneration and normal brain aging. In this review, we highlighted the recent progress about the tauopathies in the light of its posttranslational modifications and its implication in AD and the aged brain.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States.
| |
Collapse
|
64
|
Hasegawa M. Structure of NFT: Biochemical Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:23-34. [PMID: 32096025 DOI: 10.1007/978-981-32-9358-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurofibrillary tangle (NFT), bundle of paired helical filaments in neurons is one of the defining features of Alzheimer's disease (AD) and their spreads well correlate with disease symptoms and progression of AD. Using the unusual insolubility, NFTs were partially purified and the antibodies were produced. Characterization of these antibodies and biochemical studies of tau in AD revealed that a hyperphosphorylated tau protein is the major component of NFTs. In 1998, mutations in the tau gene were discovered in FTDP-17, demonstrating that abnormalities of tau cause accumulation of tau and neurodegeneration. Abnormal tau pathology occurs not only in AD, but also in other neurodegenerative dementing disorders, such as Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). The tau isoforms accumulated in these inclusions are different among the diseases. Biochemical and proteinchemical analyses of these pathological tau proteins in these tauopathies demonstrated that the protease-resistant cores of the tau aggregates are composed of different microtubule binding regions and distinct between the diseases. Recent Cryo-EM analyses revealed the core structures of tau filaments in AD and PiD, confirming our biochemical observations. Further studies of tau and other abnormal proteins will provide important insights into molecular mechanisms of protein aggregation and prion-like propagation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
65
|
Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It's all about tau. Prog Neurobiol 2018; 175:54-76. [PMID: 30605723 DOI: 10.1016/j.pneurobio.2018.12.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic structure and function, and neuronal signaling pathways. Although tau plays important physiological roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a thorough knowledge of the physiological functions of tau and its post-translational modifications under normal conditions are necessary to provide the foundation for understanding its role in pathological settings. In this review, we will focus on human tau, summarizing tau structure and organization, as well as its posttranslational modifications associated with physiological processes. We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss newly elucidated tau functions in a physiological context.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Fabian Cabezas-Opazo
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Carol A Deaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Erick H Vergara
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIIA), Santiago, Chile.
| |
Collapse
|
66
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
67
|
Maleiner B, Tomasch J, Heher P, Spadiut O, Rünzler D, Fuchs C. The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Front Physiol 2018; 9:1130. [PMID: 30246791 PMCID: PMC6113794 DOI: 10.3389/fphys.2018.01130] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options.
Collapse
Affiliation(s)
- Babette Maleiner
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Janine Tomasch
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Trauma Care Consult GmbH, Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Dominik Rünzler
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christiane Fuchs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
68
|
Ferrero H, Larrayoz IM, Gil-Bea FJ, Martínez A, Ramírez MJ. Adrenomedullin, a Novel Target for Neurodegenerative Diseases. Mol Neurobiol 2018; 55:8799-8814. [PMID: 29600350 DOI: 10.1007/s12035-018-1031-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer's disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hilda Ferrero
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Francisco J Gil-Bea
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
- Neuroscience Area, Biodonostia Health Research Institute, CIBERNED, San Sebastian, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain.
| |
Collapse
|
69
|
Pérez M, Medina M, Hernández F, Avila J. Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro. Biomol Concepts 2018; 9:1-11. [DOI: 10.1515/bmc-2018-0001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/25/2018] [Indexed: 01/18/2023] Open
Abstract
AbstractThe microtubule-associated protein Tau plays a crucial role in stabilizing neuronal microtubules. In Tauopathies, Tau loses its ability to bind microtubules, detach from them and forms intracellular aggregates. Increasing evidence in recent years supports the notion that Tau pathology spreading throughout the brain in AD and other Tauopathies is the consequence of the propagation of specific Tau species along neuroanatomically connected brain regions in a so-called “prion-like” manner. A number of steps are assumed to be involved in this process, including secretion, cellular uptake, transcellular transfer and/or seeding, although the precise mechanisms underlying propagation of Tau pathology are not fully understood yet. This review summarizes recent evidence on the nature of the specific Tau species that are propagated and the different mechanisms of Tau pathology spreading.
Collapse
Affiliation(s)
- Mar Pérez
- Departamento de Anatomía Histología y Neurociencia, Facultad de Medicina UAM, 28029Madrid, Spain
| | - Miguel Medina
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031Madrid, Spain
- CIEN Foundation, Carlos III Institute of Health, 28031Madrid, Spain
| | - Félix Hernández
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSICUAM), 28049Madrid, Spain
| | - Jesús Avila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSICUAM), 28049Madrid, Spain
| |
Collapse
|
70
|
Kimura T, Sharma G, Ishiguro K, Hisanaga SI. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front Neurosci 2018; 12:44. [PMID: 29467609 PMCID: PMC5808175 DOI: 10.3389/fnins.2018.00044] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein which regulates the assembly and stability of microtubules in the axons of neurons. Tau is also a major component of neurofibrillary tangles (NFTs), a pathological hallmark in Alzheimer's disease (AD). A characteristic of AD tau is hyperphosphorylation with more than 40 phosphorylation sites. Aggregates of hyperphosphorylated tau are also found in other neurodegenerative diseases which are collectively called tauopathies. Although a large number of studies have been performed on the phosphorylation of AD tau, it is not known if there is disease-specific phosphorylation among tauopathies. This is due to the lack of a proper method for analyzing tau phosphorylation in vivo. Most previous phosphorylation studies were conducted using a range of phosphorylation site-specific antibodies. These studies describe relative changes of different phosphorylation sites, however, it is hard to estimate total, absolute and collective changes in phosphorylation. To overcome these problems, we have recently applied the Phos-Tag technique to the analysis of tau phosphorylation in vitro and in vivo. This method separates tau into many bands during SDS-PAGE depending on its phosphorylation states, creating a bar code appearance. We propose calling this banding pattern of tau the "phospho-tau bar code." In this review article, we describe what is newly discovered regarding tau phosphorylation through the use of the Phos-Tag. We would like to propose its use for the postmortem diagnosis of tauopathy which is presently done by immunostaining diseased brains with anti-phospho-antibodies. While Phos-tag SDS-PAGE, like other biochemical assays, will lose morphological information, it could provide other types of valuable information such as disease-specific phosphorylation.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
71
|
Carnwath T, Mohammed R, Tsiang D. The direct and indirect effects of α-synuclein on microtubule stability in the pathogenesis of Parkinson's disease. Neuropsychiatr Dis Treat 2018; 14:1685-1695. [PMID: 29983568 PMCID: PMC6027679 DOI: 10.2147/ndt.s166322] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite decades of research, the mechanism of Parkinson's disease pathogenesis remains unclear. Studies have focused heavily on the protein α-synuclein, which is the primary component of Lewy bodies, the pathologic inclusions that are the hallmark of Parkinson's on the cellular level. While the roles of α-synuclein in causing mitochondrial dysfunction and disruptions to the proteasomal system have been well documented, recently, its role in effecting microtubule dynamics has been investigated as a potential source of pathogenicity. Here, we evaluate the evidence for and against the role of α-synuclein in destabilizing microtubules, causing axonal transport deficits and eventually neurodegeneration. We present evidence for a model where α-synuclein has both a direct and indirect effect on microtubule stability. Directly, it may act as a microtubule-associated protein, binding to microtubules and directly effecting their dynamics. Indirectly, it may promote the hyperphosphorylation of the microtubule stabilizing protein, tau, leading to tau aggregation with other microtubule stabilizing proteins, hence indirectly causing microtubule destabilization. This model provides insights into the function of α-synuclein and tau in Parkinson's disease pathogenesis and raises the possibility that this role that may also be conserved in Alzheimer's disease.
Collapse
Affiliation(s)
- Tom Carnwath
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Raihan Mohammed
- Faculty of Medicine, University of Cambridge, Cambridge, UK,
| | - Daniel Tsiang
- Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
72
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
73
|
Shahpasand K, Sepehri Shamloo A, Nabavi SM, Ping Lu K, Zhen Zhou X. "Tau immunotherapy: Hopes and hindrances". Hum Vaccin Immunother 2017; 14:277-284. [PMID: 29049003 DOI: 10.1080/21645515.2017.1393594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder having two major pathological hallmarks: the extracellular senile plaques and intracellular neurofibrillary tangles composed of amyloid beta protein and hyperphosphorylated tau respectively. Removal of protein deposits from AD brains are the newer attempts for treating AD. The major developments in this direction have been the amyloid and tau based therapeutics. While senile plaque removal employing monoclonal antibodies (mAbs) restore brain function in mouse models of AD, tau has been recently introduced as the major neurodegenerative factor mediating neural cell death. So, several research groups have focused on tau therapy. So far, the outcome of tau immunotherapy has been promising and clearance of hyperphosphorylated tau has been shown to restore the brain function in animal models. But the point is which phosphorylated tau is the most critical form to be removed from the brain, especially because removal of physiologic tau can cause neurodegenerative consequence. Recently, we have shown that phosphorylated tau at Thr231 in the cis conformation is a very early driver of neurodegeneration and cis mAb treatment efficiently restores brain structure and function in TBI models. Because of efficient therapeutic effects in mice model of TBI and considering cis pT231-tau accumulation in AD brains, it could be a very good candidate for tau immunotherapy upon several tauopathy disorders including AD.
Collapse
Affiliation(s)
- Koorosh Shahpasand
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Alireza Sepehri Shamloo
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Seyed Massood Nabavi
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Kun Ping Lu
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Xiao Zhen Zhou
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
74
|
Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, Saito T, Hisanaga SI, Iijima KM, Ando K. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem 2017; 162:335-342. [PMID: 28992057 DOI: 10.1093/jb/mvx038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023] Open
Abstract
Abnormal deposition of the microtubule-associated protein tau is a common pathological feature of multiple neurodegenerative diseases, including Alzheimer's disease (AD), and plays critical roles in their pathogenesis. Disruption of calcium homeostasis and the downstream kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) coincides with pathological phosphorylation of tau in AD brains. However, it remains unclear whether and how dysregulation of CaMKII affects tau toxicity. Using a Drosophila model, we found that CaMKII promotes neurodegeneration caused by tau phosphorylated at the AD-associated sites Ser262/356. Overexpression of CaMKII promoted, while RNA-mediated knockdown of CaMKII and inhibition of CaMKII activity by expression of an inhibitory peptide suppressed, tau-mediated neurodegeneration. Blocking tau phosphorylation at Ser262/356 by alanine substitutions suppressed promotion of tau toxicity by CaMKII, suggesting that tau phosphorylation at these sites is required for this phenomenon. However, neither knockdown nor overexpression of CaMKII affected tau phosphorylation levels at Ser262/356, suggesting that CaMKII is not directly involved in tau phosphorylation at Ser262/356 in this model. These results suggest that a pathological cascade of events, including elevated levels of tau phosphorylated at Ser262/356 and aberrant activation of CaMKII, work in concert to promote tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mikiko Oka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sawako Shimizu
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
75
|
Strang KH, Goodwin MS, Riffe C, Moore BD, Chakrabarty P, Levites Y, Golde TE, Giasson BI. Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau. Acta Neuropathol Commun 2017; 5:58. [PMID: 28760159 PMCID: PMC5537986 DOI: 10.1186/s40478-017-0458-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023] Open
Abstract
Tauopathies are a group of neurodegenerative disorders, including Alzheimer’s disease, defined by the presence of brain pathological inclusions comprised of abnormally aggregated and highly phosphorylated tau protein. The abundance of brain tau aggregates correlates with disease severity and select phospho-tau epitopes increase at early stages of disease. We generated and characterized a series of novel monoclonal antibodies directed to tau phosphorylated at several of these phospho-epitopes, including Ser396/Ser404, Ser404 and Thr205. We also generated phosphorylation independent antibodies against amino acid residues 193–211. We show that most of these antibodies are highly specific for tau and strongly recognize pathological inclusions in human brains and in a transgenic mouse model of tauopathy. They also reveal epitope-specific differences in the biochemical properties of Alzheimer’s disease sarkosyl-insoluble tau. These new reagents will be useful for investigating the progression of tau pathology and further as tools to target the cellular transmission of tau pathology.
Collapse
|
76
|
Effect of GAPT extract on expression of tau protein and its phosphorylation related enzymes in hippocampal neurons of APPV717I transgenic mice. Chin J Integr Med 2017. [PMID: 28634862 DOI: 10.1007/s11655-017-2545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the effect of GAPT, an extract mixture from Radix Ginseng, Rhizoma Acor tatarinowii, Radix Polygalae and Radix Curcuma (containing ingredient of turmeric), etc. on expression of tau protein and its phosphorylation related enzyme in hippocampal neurons of APPV717I transgenic mice. METHODS Sixty three-month-old APPV717I transgenic mice were randomly divided into model group, donepezil group [0.92 mg/(kg•d)], the low, medium and high dosage of GAPT groups [0.075, 0.15, 0.30 g/(kg•d), 12 in each group], and 12 three-month-old C57BL/6J mice were set as a normal control group, treatments were administered orally once a day respectively, and both the normal group and model group were given 0.5% sodium carboxymethyl cellulose solution. Immunohistochemistry (IHC) and Western blot analysis were used to detect the expression of total tau protein (Tau-5), cyclin-dependent kinase 5 (CDK5) and protein phosphatase 2A (PP2A) in hippocampal neurons of experimental mice after 8-month drug administration (11 months old). RESULTS In the model group, the expression of Tau-5 and CDK5 were increased, whereas the expression of PP2A was decreased in hippocampal neurons, which were signifificantly different compared with that in the normal group (all P<0.01). IHC test indicated the number and area of either Tau-5 or CDK5 positive cells were decreased with a dose-depended way in GAPT groups, and an increase of PP2A. Compared with the model group, the changes were signifificant in GAPT groups (P<0.05 or P<0.01). Similar results were shown by Western blot. CONCLUSION GAPT could attenuate abnormal hyperphosphorylation of tau protein in hippocampal neurons of APPV717I transgenic mice via inhibiting the expression of CDK5 and activating the expression of PP2A.
Collapse
|
77
|
Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther 2017; 172:22-33. [DOI: 10.1016/j.pharmthera.2016.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Ontiveros-Torres MÁ, Labra-Barrios ML, Díaz-Cintra S, Aguilar-Vázquez AR, Moreno-Campuzano S, Flores-Rodríguez P, Luna-Herrera C, Mena R, Perry G, Florán-Garduño B, Luna-Muñoz J, Luna-Arias JP. Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse. J Alzheimers Dis 2017; 52:243-69. [PMID: 27031470 DOI: 10.3233/jad-150837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a degenerative and irreversible disorder whose progressiveness is dependent on age. It is histopathologically characterized by the massive accumulation of insoluble forms of tau and amyloid-β (Aβ) asneurofibrillary tangles and neuritic plaques, respectively. Many studies have documented that these two polypeptides suffer several posttranslational modifications employing postmortem tissue sections from brains of patients with AD. In order to elucidate the molecular mechanisms underlying the posttranslational modifications of key players in this disease, including Aβ and tau, several transgenic mouse models have been developed. One of these models is the 3×Tg-AD transgenic mouse, carrying three transgenes encoding APPSWE, S1M146V, and TauP301L proteins. To further characterize this transgenicmouse, we determined the accumulation of fibrillar Aβ as a function of age in relation to the hyperphosphorylation patterns of TauP301L at both its N- and C-terminus in the hippocampal formation by immunofluorescence and confocal microscopy. Moreover, we searched for the expression of activated protein kinases and mediators of inflammation by western blot of wholeprotein extracts from hippocampal tissue sections since 3 to 28 months as well. Our results indicate that the presence of fibrillar Aβ deposits correlates with a significant activation of astrocytes and microglia in subiculum and CA1 regions of hippocampus. Accordingly, we also observed a significant increase in the expression of TNF-α associated to neuritic plaques and glial cells. Importantly, there is an overexpression of the stress activated protein kinases SAPK/JNK and Cdk-5 in pyramidal neurons, which might phosphorylate several residues at the C-terminus of TauP301L. Therefore, the accumulation of Aβ oligomers results in an inflammatory environment that upregulates kinases involved in hyperphosphorylation of TauP301L polypeptide.
Collapse
Affiliation(s)
- Miguel Ángel Ontiveros-Torres
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - Sofía Díaz-Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Qro., México
| | | | - Samadhi Moreno-Campuzano
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - Paola Flores-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México.,Present address: Departamento de Fisiología, Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Durango, Dgo., México
| | - Claudia Luna-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Ciudad de México, México
| | - Raúl Mena
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Benjamín Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - José Luna-Muñoz
- Banco Nacional de Cerebros, Laboratorio Nacional de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Col. San Pedro Zacatenco, Ciudad de México, México
| |
Collapse
|
79
|
Gandhi NS, Kukic P, Lippens G, Mancera RL. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns. Methods Mol Biol 2017; 1523:33-59. [PMID: 27975243 DOI: 10.1007/978-1-4939-6598-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.
Collapse
Affiliation(s)
- Neha S Gandhi
- School of Biomedical Sciences, CHIRI Biosciences and Curtin Institute for Computation, Curtin University, G.P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Predrag Kukic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Guy Lippens
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, INRA, INSA Toulouse, 135Avenue de Rangueil, 31077, Toulouse, France
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Ricardo L Mancera
- School of Biomedical Sciences, CHIRI Biosciences and Curtin Institute for Computation, Curtin University, G.P.O. Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
80
|
The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein. Methods Mol Biol 2017; 1523:179-213. [PMID: 27975251 DOI: 10.1007/978-1-4939-6598-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy can be used as an analytical tool to investigate posttranslational modifications of protein. NMR is a valuable tool to map the interaction regions of protein partners. Here, we present protocols that have been developed in the course of our studies of the neuronal Tau protein. Tau is found aggregated in the neurons of Alzheimer's disease patients. Development of the disease is accompanied by increased, abnormal phosphorylation and acetylation of Tau. We have used NMR to investigate how these posttranslational modifications of Tau affect the interactions with its partners. We present here detailed protocols of in vitro phosphorylation of Tau by recombinant kinase, ERK2, or kinase activity of rat brain extracts, and acetylation by recombinant Creb-binding protein (CBP) acetyltransferase. The analytical characterization of the modified Tau by NMR spectroscopy is additionally described.
Collapse
|
81
|
Protective Effect of Genistein against Neuronal Degeneration in ApoE -/- Mice Fed a High-Fat Diet. Nutrients 2016; 8:nu8110692. [PMID: 27809235 PMCID: PMC5133079 DOI: 10.3390/nu8110692] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Altered cholesterol metabolism is believed to play a causal role in major pathophysiological changes in neurodegeneration. Several studies have demonstrated that the absence of apolipoprotein E (ApoE), a predominant apolipoprotein in the brain, leads to an increased susceptibility to neurodegeneration. Previously, we observed that genistein, a soy isoflavone, significantly alleviated apoptosis and tau hyperphosphorylation in SH-SY5Y cells. Therefore, we investigated the neuroprotective effects of dietary genistein supplementation (0.5 g/kg diet) in the cortex and hippocampus of wild-type C57BL/6 (WT) and ApoE knockout (ApoE−/−) mice fed a high-fat diet (HFD) for 24 weeks. Genistein supplementation alleviated neuroinflammation and peripheral and brain insulin resistance. Reductions in oxidative and endoplasmic reticulum stress were also observed in ApoE−/− mice fed a genistein-supplemented diet. Beta-secretase 1 and presenilin 1 mRNA levels and beta-amyloid peptide (Aβ) protein levels were reduced in response to genistein supplementation in ApoE−/− mice but not in WT mice. Although the absence of ApoE did not increase tau hyperphosphorylation, genistein supplementation reduced tau hyperphosphorylation in both WT and ApoE−/− mice. Consistent with this result, we also observed that genistein alleviated activity of c-Jun N-terminal kinase and glycogen synthase kinase 3β, which are involved in tau hyperphosphorylation. Taken together, these results demonstrate that genistein alleviated neuroinflammation, Aβ deposition, and hyperphosphorylation in ApoE−/− mice fed an HFD.
Collapse
|
82
|
Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Anal Chim Acta 2016; 940:21-37. [DOI: 10.1016/j.aca.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
|
83
|
Khanna MR, Kovalevich J, Lee VMY, Trojanowski JQ, Brunden KR. Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimers Dement 2016; 12:1051-1065. [PMID: 27751442 PMCID: PMC5116305 DOI: 10.1016/j.jalz.2016.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 01/25/2023]
Abstract
A group of neurodegenerative diseases referred to as tauopathies are characterized by the presence of brain cells harboring inclusions of pathological species of the tau protein. These disorders include Alzheimer's disease and frontotemporal lobar degeneration due to tau pathology, including progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. Tau is normally a microtubule (MT)-associated protein that appears to play an important role in ensuring proper axonal transport, but in tauopathies tau becomes hyperphosphorylated and disengages from MTs, with consequent misfolding and deposition into inclusions that mainly affect neurons but also glia. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, and there is a growing interest in developing tau-directed therapeutic agents. The following review provides a summary of strategies under investigation for the potential treatment of tauopathies, highlighting both the promises and challenges associated with these various therapeutic approaches.
Collapse
Affiliation(s)
- Mansi R Khanna
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Jane Kovalevich
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
84
|
Kimura T, Hosokawa T, Taoka M, Tsutsumi K, Ando K, Ishiguro K, Hosokawa M, Hasegawa M, Hisanaga SI. Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants. Sci Rep 2016; 6:33479. [PMID: 27641626 PMCID: PMC5027580 DOI: 10.1038/srep33479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
Tau is hyperphosphorylated in the brains of patients with tauopathies, such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). However, neither the mechanism of hyperphosphorylation nor its contribution to pathogenesis is known. We applied Phos-tag SDS-PAGE, a phosphoaffinity electrophoresis, to the analysis of tau phosphorylation in vitro by Cdk5, in cultured cells and in mouse brain. Here, we found that Cdk5-p25 phosphorylated tau in vitro at Ser404, Ser235, Thr205 and Ser202 in this order. In contrast in cultured cells, Ser404 was preferentially phosphorylated by Cdk5-p35, whereas Thr205 was not phosphorylated. Ser202 and Ser235 were phosphorylated by endogenous kinases. Tau exhibited ~12 phosphorylation isotypes in COS-7 cells with different combinations of phosphorylation at Thr181, Ser202, Thr231, Ser235 and Ser404. These phosphorylation sites were similar to tau phosphorylated in mouse brains. FTDP-17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. In particular, it was clear that the R406W mutation causes loss of Ser404 phosphorylation. These results demonstrate the usefulness of the Phos-tag technique in the quantitative analysis of site-specific in vivo phosphorylation of tau and provide detailed information on in situ combinatory phosphorylation of tau.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tomohisa Hosokawa
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | - Masato Hosokawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Shin-ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
85
|
Tiernan CT, Combs B, Cox K, Morfini G, Brady ST, Counts SE, Kanaan NM. Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Exp Neurol 2016; 283:318-29. [PMID: 27373205 PMCID: PMC4992631 DOI: 10.1016/j.expneurol.2016.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
In Alzheimer's disease (AD), tau undergoes numerous modifications, including increased phosphorylation at serine-422 (pS422). In the human brain, pS422 tau protein is found in prodromal AD, correlates well with cognitive decline and neuropil thread pathology, and appears associated with increased oligomer formation and exposure of the N-terminal phosphatase-activating domain (PAD). However, whether S422 phosphorylation contributes to toxic mechanisms associated with disease-related forms of tau remains unknown. Here, we report that S422-pseudophosphorylated tau (S422E) lengthens the nucleation phase of aggregation without altering the extent of aggregation or the types of aggregates formed. When compared to unmodified tau aggregates, the S422E modification significantly increased the amount of SDS-stable tau dimers, despite similar levels of immunoreactivity with an oligomer-selective antibody (TOC1) and another antibody that reports PAD exposure (TNT1). Vesicle motility assays in isolated squid axoplasm further revealed that S422E tau monomers inhibited anterograde, kinesin-1 dependent fast axonal transport (FAT). Unexpectedly, and unlike unmodified tau aggregates, which selectively inhibit anterograde FAT, aggregates composed of S422E tau were found to inhibit both anterograde and retrograde FAT. Highlighting the relevance of these findings to human disease, pS422 tau was found to colocalize with tau oligomers and with a fraction of tau showing increased PAD exposure in the human AD brain. This study identifies novel effects of pS422 on tau biochemical properties, including prolonged nucleation and enhanced dimer formation, which correlate with a distinct inhibitory effect on FAT. Taken together, these findings identify a novel mechanistic basis by which pS422 confers upon tau a toxic effect that may directly contribute to axonal dysfunction in AD and other tauopathies.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Benjamin Combs
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Kristine Cox
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI 49503, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI 49503, USA.
| |
Collapse
|
86
|
Niewidok B, Igaev M, Sündermann F, Janning D, Bakota L, Brandt R. Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes. Mol Biol Cell 2016; 27:3537-3549. [PMID: 27582388 PMCID: PMC5221586 DOI: 10.1091/mbc.e16-06-0402] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
A refined FDAP approach is used to analyze tau’s behavior in axon-like processes. A conserved C-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau’s microtubule interaction. The results contribute to an understanding of pathological processes that lead to tau’s redistribution during disease. A current challenge of cell biology is to investigate molecular interactions in subcellular compartments of living cells to overcome the artificial character of in vitro studies. To dissect the interaction of the neuronal microtubule (MT)-associated protein tau with MTs in axon-like processes, we used a refined fluorescence decay after photoactivation approach and single-molecule tracking. We found that isoform variation had only a minor influence on the tau–MT interaction, whereas the presence of a C-terminal pseudorepeat region (PRR) greatly increased MT binding by a greater-than-sixfold reduction of the dissociation rate. Bioinformatic analysis revealed that the PRR contained a highly conserved motif of 18 amino acids. Disease-associated tau mutations in the PRR (K369I, G389R) did not influence apparent MT binding but increased its dynamicity. Simulation of disease-like tau hyperphosphorylation dramatically diminished the tau–MT interaction by a greater-than-fivefold decrease of the association rate with no major change in the dissociation rate. Apparent binding of tau to MTs was similar in axons and dendrites but more sensitive to increased phosphorylation in axons. Our data indicate that under the conditions of high MT density that prevail in the axon, tau’s MT binding and localization are crucially affected by the presence of the PRR and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Dennis Janning
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
87
|
Li T, Paudel HK. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells. PLoS One 2016; 11:e0160635. [PMID: 27548710 PMCID: PMC4993442 DOI: 10.1371/journal.pone.0160635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ.
Collapse
Affiliation(s)
- Tong Li
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Hemant K Paudel
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,The Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
88
|
Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated. Biochem Biophys Res Commun 2016; 478:929-34. [PMID: 27520376 DOI: 10.1016/j.bbrc.2016.08.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023]
Abstract
Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains.
Collapse
|
89
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
90
|
Ohizumi Y. [A new strategy for preventive and functional therapeutic methods for dementia--approach using natural products]. YAKUGAKU ZASSHI 2016; 135:449-64. [PMID: 25759053 DOI: 10.1248/yakushi.14-00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) has become a serious social problem in Japan. However, effective preventive and fundamental therapeutic methods for AD have not yet been developed. Using a new strategy in the course of our survey of numerous natural resouces having neurotrophic activity, we isolated a variety of active constituents and proved their pharmacological properties. As a result, we successfully found nobiletin, a compound with anti-dementia activity that comes from citrus peels. Also, we have demonstrated that nobiletin ameliorates cognitive impairment in several dementia model animals such as chronically amyloid β(Aβ) infused rats, amyloid precursor protein transgenic (APPTg) mice, olfactory-bulbectomized (OBX) mice, N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801)-treated mice, senescence-accelated mice and bilaterial common carotid arteries occlusion mice. In a APPTg mouse of AD, nobiletin greatly improved memory impairment, and this was accompanied by a marked decrease in Aβ deposition. Also, in OBX mice memory impairment was markedly recoverd by nobiletin, accompanied by improvement of a decrease indensity of cholinergic neurons. Interestingly, nobiletin improves age-related congnitive impairment and decreased hyperphosphorylation of tau as well as oxidative stress in senescence-accelerated mice. In cultured cells, nobiletin reversed the Aβ-induced inhibition of glutamate-induced increases in cAMP response element binding protein (CREB) phosphorylation and modulated gen expression of thioredoxin-interacting protein and NMDA resceptor subunits. These results suggest that nobiletin prevents memory impairment and exhibits a protecting action against neurodgeneration in AD model animals. Nobiletin and citrus peels thus have potential as functional foods for prevention of dementia.
Collapse
Affiliation(s)
- Yasushi Ohizumi
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Graduate School of Engineering, Tohoku University; 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579; Faculty of Pharmaceutical Sciences, University of Shizuoka; 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Kansei Research Institute, Tohoku Fukushi University; 1-19-1 Kunimi, Aoba-ku, Sendai 989-3201, Japan; Yokohama College of Pharmacy; 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
91
|
Regan P, Whitcomb DJ, Cho K. Physiological and Pathophysiological Implications of Synaptic Tau. Neuroscientist 2016; 23:137-151. [DOI: 10.1177/1073858416633439] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tauopathies encompass a broad range of neurodegenerative diseases featuring extensive neuronal death and cognitive decline. However, research over the past 30 years has failed to significantly advance our understanding of how tau causes dementia, limiting the design of rational therapeutics. It has become evident that we need to expand our understanding of tau in physiology, in order to delineate how tau may contribute to pathology. This review discusses recent evidence that has uncovered a novel aspect of tau function, based on its previously uncharacterized localization to the synapse. Here, multiple streams of evidence support a critical role for synaptic tau in the regulation of synapse physiology. In particular, long-term depression, a form of synaptic weakening, is dependent on the presence of tau in hippocampal neurons. The regulation of tau by specific phosphorylation events downstream of GSK-3β activation appears to be integral to this signaling role. We also describe how the regulation of synapse physiology by tau and its phosphorylation may inform our understanding of tauopathies and comorbid diseases. This work should provide a platform for future tau biology research in addition to therapeutic design.
Collapse
Affiliation(s)
- Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
- Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
- Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
92
|
Abstract
Abundant neurofibrillary lesions in certain brain regions constitute one of the defining neuropathological characteristics of Alzheimer's disease, where their presence correlates with the degree of dementia. An understanding of the mechanisms that lead to the neurofibrillary pathology is critical for elucidating the pathogenesis of Alzheimer's disease and for developing effective therapeutic strategies. Neurofibrillary lesions consist of neurofibrillary tangles, neuropil threads, and abnormal neurites. Ultrastructurally, each of these lesions consists of abnormal paired helical and straight filaments. These filaments are made of the six brain isoforms of microtubule-associated protein tau in a hyperphosphorylated and an abnormally phosphorylated state. Several candidate protein kinases and protein phosphatases for the hyperphos phorylation of tau have been identified. Moreover, recent results suggest that an interaction between tau protein and sulfated glycosaminoglycans may play an important role in inducing both the hyperphosphor ylation of tau and the formation of paired helical and straight filaments. NEUROSCIENTIST 3:131-141, 1997
Collapse
Affiliation(s)
- Michel Goedert
- Medical Research Council Laboratory of Molecular Biology Cambridge
| |
Collapse
|
93
|
Kim SI, Lee HJ, Kim SS, Kwon YS, Chun W. Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:387-97. [PMID: 27382355 PMCID: PMC4930907 DOI: 10.4196/kjpp.2016.20.4.387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 04/09/2016] [Indexed: 11/15/2022]
Abstract
Neurofi brillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active GSK3β (GSK3β-S9A) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin-induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin signifi cantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.
Collapse
Affiliation(s)
- Song-In Kim
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Hee Jae Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sung-Soo Kim
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Soo Kwon
- School of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Wanjoo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
94
|
NMR Meets Tau: Insights into Its Function and Pathology. Biomolecules 2016; 6:biom6020028. [PMID: 27338491 PMCID: PMC4919923 DOI: 10.3390/biom6020028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
In this review, we focus on what we have learned from Nuclear Magnetic Resonance (NMR) studies on the neuronal microtubule-associated protein Tau. We consider both the mechanistic details of Tau: the tubulin relationship and its aggregation process. Phosphorylation of Tau is intimately linked to both aspects. NMR spectroscopy has depicted accurate phosphorylation patterns by different kinases, and its non-destructive character has allowed functional assays with the same samples. Finally, we will discuss other post-translational modifications of Tau and its interaction with other cellular factors in relationship to its (dys)function.
Collapse
|
95
|
Hasegawa M. Molecular Mechanisms in the Pathogenesis of Alzheimer's disease and Tauopathies-Prion-Like Seeded Aggregation and Phosphorylation. Biomolecules 2016; 6:biom6020024. [PMID: 27136595 PMCID: PMC4919919 DOI: 10.3390/biom6020024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022] Open
Abstract
Neurofibrillary tau pathology (tangles and threads) and extracellular amyloid-β (Aβ) pathology are defining features of Alzheimer’s disease. For 25 years, most research has focused on the amyloid hypothesis of AD pathogenesis and progression. But, because of failures in clinical trials of Aβ-targeted therapies and the new concept of prion-like propagation of intracellular abnormal proteins, tau has come back into the spotlight as a candidate therapeutic target in AD. Tau pathologies are found in a range of neurodegenerative disorders, but extensive analyses of pathological tau in diseased brains has demonstrated that the abnormal tau protein in each disease is structurally distinct, supporting the idea that progression of the diverse but characteristic tau pathologies occurs through prion-like seed-dependent aggregation. Therefore, intervention in the conversion of normal tau to abnormal forms and in cell-to-cell transmission of tau may be the key to development of disease-modifying therapies for AD and other dementing disorders.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science; Setagaya-ku 156-8506, Japan.
| |
Collapse
|
96
|
Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet 2016; 12:e1005917. [PMID: 27023670 PMCID: PMC4811436 DOI: 10.1371/journal.pgen.1005917] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. Alzheimer’s disease (AD) is the most common cause of dementia resulting from progressive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its stability; in AD brains, however, tau is detached from microtubules and phosphorylated at multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in generation of pathological tau species that mediate neuron loss. However, the detailed mechanisms underlying this event remain incompletely understood. Using transgenic flies expressing human tau and Aβ as a model system, we found that tau phosphorylation at specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mismetabolism to generate toxic tau species. Moreover, this process is critical for Aβ to promote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical step in the initiation of tau mismetabolism, and this process may represent a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KA); (KMI)
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Motoki Hayashishita
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail: (KA); (KMI)
| |
Collapse
|
97
|
Sydow A, Hochgräfe K, Könen S, Cadinu D, Matenia D, Petrova O, Joseph M, Dennissen FJ, Mandelkow EM. Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathol Commun 2016; 4:17. [PMID: 26916334 PMCID: PMC4766625 DOI: 10.1186/s40478-016-0281-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
Introduction Mutations of Tau are associated with several neurodegenerative disorders. Recently, the Tau mutation A152T was described as a novel risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. In vitro Tau-A152T shows a decreased binding to microtubules and a reduced tendency to form abnormal fibers. Results To study the effects of this mutation we generated a mouse model expressing human full-length Tau with this mutation (hTau40AT). At young age (2–3 months) immunohistological analysis reveals pathological Tau conformation and Tau-hyperphosphorylation combined with Tau missorting into the somatodendritic compartment of neurons. With increasing age there is Tau aggregation including co-aggregates of endogenous mouse Tau and exogenous human Tau, accompanied by loss of synapses (especially presynaptic failure) and neurons. From ~10 months onwards the mice show a prominent neuroinflammatory response as judged by activation of microglia and astrocytes. This progressive neuroinflammation becomes visible by in vivo bioluminescence imaging after crossbreeding of hTau40AT mice and Gfap-luciferase reporter mice. In contrast to other Tau-transgenic models and Alzheimer disease patients with reduced protein clearance, hTau40AT mice show a strong induction of autophagy. Although Tau-hyperphosphorylation and aggregation is also present in spinal cord and motor cortex (due to the Thy1.2 promoter), neuromotor performance is not affected. Deficits in spatial reference memory are manifest at ~16 months and are accompanied by neuronal death. Conclusions The hTau40AT mice mimic pathological hallmarks of tauopathies including a cognitive phenotype combined with pronounced neuroinflammation visible by bioluminescence. Thus the mice are suitable for mechanistic studies of Tau induced toxicity and in vivo validation of neuroprotective compounds. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0281-z) contains supplementary material, which is available to authorized users.
Collapse
|
98
|
Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol 2016; 131:267-280. [PMID: 26538150 PMCID: PMC4713716 DOI: 10.1007/s00401-015-1503-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 01/17/2023]
Abstract
Intracellular filamentous tau pathology is the defining feature of tauopathies, which form a subset of neurodegenerative diseases. We have analyzed pathological tau in Alzheimer’s disease, and in frontotemporal lobar degeneration associated with tauopathy to include cases with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, and ones due to intronic mutations in MAPT. We found that the C-terminal band pattern of the pathological tau species is distinct for each disease. Immunoblot analysis of trypsin-resistant tau indicated that the different band patterns of the 7–18 kDa fragments in these diseases likely reflect different conformations of tau molecular species. Protein sequence and mass spectrometric analyses revealed the carboxyl-terminal region (residues 243–406) of tau comprises the protease-resistant core units of the tau aggregates, and the sequence lengths and precise regions involved are different among the diseases. These unique assembled tau cores may be used to classify and diagnose disease strains. Based on these results, we propose a new clinicopathological classification of tauopathies based on the biochemical properties of tau.
Collapse
|
99
|
Platt TL, Beckett TL, Kohler K, Niedowicz DM, Murphy MP. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience 2015; 315:162-74. [PMID: 26701291 DOI: 10.1016/j.neuroscience.2015.12.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) convey an increased risk for developing dementia. The microtubule-associated protein tau is implicated in neurodegenerative disease by undergoing hyperphosphorylation and aggregation, leading to cytotoxicity and neurodegeneration. Enzymes involved in the regulation of tau phosphorylation, such as GSK3β, are tightly associated with pathways found to be dysregulated in T2DM. We have shown previously that leptin-resistant mice, which develop obesity and a diabetic phenotype, display elevated levels of tau phosphorylation. Here we show cells cultured with leptin, an adipokine shown to have neuroprotective effects, reduces tau phosphorylation. To explore how this mechanism works in vivo we transduced an existing diabetic mouse line (Lepr(db/db)) with a tau mutant (tau(P301L)) via adeno-associated virus (AAV). The resulting phenotype included a striking increase in tau phosphorylation and the number of neurofibrillary tangles (NFTs) found within the hippocampus. We conclude that leptin resistance-induced obesity and diabetes accelerates the development of tau pathology. This model of metabolic dysfunction and tauopathy provides a new system in which to explore the mechanisms underlying the ways in which leptin resistance and diabetes influence development of tau pathology, and may ultimately be related to the development of NFTs.
Collapse
Affiliation(s)
- T L Platt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, United States
| | - T L Beckett
- Sanders Brown Center on Aging, University of Kentucky, United States
| | - K Kohler
- Sanders Brown Center on Aging, University of Kentucky, United States
| | - D M Niedowicz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, United States; Sanders Brown Center on Aging, University of Kentucky, United States
| | - M P Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, United States; Sanders Brown Center on Aging, University of Kentucky, United States.
| |
Collapse
|
100
|
Kimura T, Hatsuta H, Masuda-Suzukake M, Hosokawa M, Ishiguro K, Akiyama H, Murayama S, Hasegawa M, Hisanaga SI. The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:398-409. [PMID: 26687814 DOI: 10.1016/j.ajpath.2015.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by aggregates of hyperphosphorylated tau. Previous studies have identified many disease-related phosphorylation sites on tau. However, it is not understood how tau is hyperphosphorylated and what extent these sites are phosphorylated in both diseased and normal brains. Most previous studies have used phospho-specific antibodies to analyze tau phosphorylation. These results are useful but do not provide information about nonphosphorylated tau. Here, we applied the method of Phos-tag SDS-PAGE, in which phosphorylated tau was separated from nonphosphorylated tau in vivo. Among heterogeneously phosphorylated tau species in adult mouse brains, the nonphosphorylated 0N4R isoform was detected most abundantly. In contrast, perinatal tau and tau in cold water-stressed mice were all phosphorylated with a similar extent of phosphorylation. In normal elderly human brains, nonphosphorylated 0N3R and 0N4R tau were most abundant. A slightly higher phosphorylation of tau, which may represent the early step of hyperphosphorylation, was increased in Alzheimer disease patients at Braak stage V. Tau with this phosphorylation state was pelleted by centrifugation, and sarkosyl-soluble tau in either Alzheimer disease or corticobasal degeneration brains showed phosphorylation profiles similar to tau in normal human brain, suggesting that hyperphosphorylation occurs in aggregated tau. These results indicate that tau molecules are present in multiple phosphorylation states in vivo, and nonphosphorylated forms are highly expressed among them.
Collapse
Affiliation(s)
- Taeko Kimura
- Department of Biological Sciences, Laboratory of Molecular Neuroscience, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | - Hiroyuki Hatsuta
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Masami Masuda-Suzukake
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Masato Hosokawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Shin-ichi Hisanaga
- Department of Biological Sciences, Laboratory of Molecular Neuroscience, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|