51
|
Farrell HM, Qi PX, Brown EM, Cooke PH, Tunick MH, Wickham ED, Unruh JJ. Molten globule structures in milk proteins: implications for potential new structure-function relationships. J Dairy Sci 2002; 85:459-71. [PMID: 11949847 DOI: 10.3168/jds.s0022-0302(02)74096-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in the field of protein chemistry have significantly enhanced our understanding of the possible intermediates that may occur during protein folding and unfolding. In particular, studies on alpha-lactalbumin have led to the theory that the molten globule state may be a possible intermediate in the folding of many proteins. The molten globule state is characterized by a somewhat compact structure, a higher degree of hydration and side chain flexibility, a significant amount of native secondary structure but little tertiary folds, and the ability to react with chaperones. Purified alpha(s1)- and kappa-caseins share many of these same properties; these caseins may thus occur naturally in a molten globule-like state with defined, persistent structures. The caseins appear to have defined secondary structures and to proceed to quaternary structures without tertiary folds. This process may be explained, in part, by comparison with the architectural concepts of tensegrity. By taking advantage of this "new view" of protein folding, and applying these concepts to dairy proteins, it may be possible to generate new and useful forms of proteins for the food ingredient market.
Collapse
Affiliation(s)
- H M Farrell
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
A global energy minimization method based on what is known about the mechanisms of the GroEL/GroES chaperonin system is applied to two 22-mers of an off-lattice protein model whose native states are beta-hairpins and which have structural similarity to short peptides known to interact strongly with the GroEL substrate binding domain. These model substrates have been used by other workers to test the effectiveness of a number of global minimization techniques, and are regarded as providing a significant challenge. The minimization method developed here is progressively elaborated from an initial simple form that targets exposed hydrophobic regions for unfolding to include a refolding phase that encourages the later recompactification of partly unfolded substrate; this refolding phase is seen to be crucial in the successful application of the method. The optimal handling of hydrophilic monomers within the model is also systematically explored, and it is seen that the best interpretation of their role is one that allows the chaperonin model to operate in "proofreading" mode whereby misfolded substrates are recognized by their surface exposure of a large proportion of hydrophobic monomers. The final version of the model allows native-like structures to be found quickly, on average for the two 22-mer substrates after 6 or 7 chaperone contacts. These results compare very favorably with those that have been obtained elsewhere using generic global minimization methods such as those based on thermal annealing. The paper concludes with a discussion of the place of the technique within the general category of hypersurface deformation methods for global minimization, and with suggestions as to how the chaperone-based method developed here could be elaborated so as to be effective on longer substrate chains that give rise to more complex tertiary structures in their native states.
Collapse
Affiliation(s)
- D Gorse
- Department of Computer Science, University College, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
53
|
|
54
|
Thirumalai D, Lorimer GH. Chaperonin-mediated protein folding. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:245-69. [PMID: 11340060 DOI: 10.1146/annurev.biophys.30.1.245] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are required to assist folding of a subset of proteins in Escherichia coli. We describe a conceptual framework for understanding how the GroEL-GroES system assists misfolded proteins to reach their native states. The architecture of GroEL consists of double toroids stacked back-to-back. However, most of the fundamentals of the GroEL action can be described in terms of the single ring. A key idea in our framework is that, with coordinated ATP hydrolysis and GroES binding, GroEL participates actively by repeatedly unfolding the substrate protein (SP), provided that it is trapped in one of the misfolded states. We conjecture that the unfolding of SP becomes possible because a stretching force is transmitted to the SP when the GroEL particle undergoes allosteric transitions. Force-induced unfolding of the SP puts it on a higher free-energy point in the multidimensional energy landscape from which the SP can either reach the native conformation with some probability or be trapped in one of the competing basins of attraction (i.e., the SP undergoes kinetic partitioning). The model shows, in a natural way, that the time scales in the dynamics of the allosteric transitions are intimately coupled to folding rates of the SP. Several scenarios for chaperonin-assisted folding emerge depending on the interplay of the time scales governing the cycle. Further refinement of this framework may be necessary because single molecule experiments indicate that there is a great dispersion in the time scales governing the dynamics of the chaperonin cycle.
Collapse
Affiliation(s)
- D Thirumalai
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, Collge Park, Maryland 20742,
| | | |
Collapse
|
55
|
Liang Y, Li J, Chen J, Wang CC. Thermodynamics of the folding of D-glyceraldehyde-3-phosphate dehydrogenase assisted by protein disulfide isomerase studied by microcalorimetry. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4183-9. [PMID: 11488911 DOI: 10.1046/j.1432-1327.2001.02330.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thermodynamics of the refolding of denatured D-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) assisted by protein disulfide isomerase (PDI), a molecular chaperone, has been studied by isothermal microcalorimetry at different molar ratios of PDI/GAPDH and temperatures using two thermodynamic models proposed for chaperone-substrate binding and chaperone-assisted substrate folding, respectively. The binding of GAPDH folding intermediates to PDI is driven by a large favorable enthalpy decrease with a large unfavorable entropy reduction, and shows strong enthalpy-entropy compensation and weak temperature dependence of Gibbs free energy change. A large negative heat-capacity change of the binding, -156 kJ.mol(-1).K(-1), at all temperatures examined indicates that hydrophobic interaction is a major force for the binding. The binding stoichiometry shows one dimeric GAPDH intermediate per PDI monomer. The refolding of GAPDH assisted by PDI is a largely exothermic reaction at 15.0-25.0 degrees C. With increasing temperature from 15.0 to 37.0 degrees C, the PDI-assisted reactivation yield of denatured GAPDH upon dilution decreases. At 37.0 degrees C, the spontaneous reactivation, PDI-assisted reactivation and intrinsic molar enthalpy change during the PDI-assisted refolding of GAPDH are not detected.
Collapse
Affiliation(s)
- Y Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China
| | | | | | | |
Collapse
|
56
|
Park YD, Ou WB, Yu TW, Zhou HM. Folding pathway for partially folded rabbit muscle creatine kinase. Biochem Cell Biol 2001. [DOI: 10.1139/o01-129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rabbit muscle creatine kinase (CK) was modified by 5,5'-dithio-bis(2-nitrobenzoic acid) accompanied by 3 M guanidine hydrochloride denaturation to produce a partially folded state with modified thiol groups. The partially folded CK was in a monomeric state detected by size exclusion chromatography, native-polyacrylamide gel electrophoresis, circular dichroism, and intrinsic fluorescence studies. After dithiothreitol (DTT) treatment, about 70% CK activity was regained with a two-phase kinetic course. Rate constants calculated for regaining of activity and refolding were compared with those for CK modified with various treatments to show that refolding and recovery of activity were synchronized. To further characterize the partially folded CK state and its folding pathway, the molecular chaperone GroEL was used to evaluate whether it can bind with partly folded CK during refolding, and 1-anilinonaphthalene-8-sulfonate was used to detect the hydrophobic surface of the monomeric state of CK. The monomeric state of CK did not bind with GroEL, although it had a larger area of hydrophobic surface relative to the native state. These results may provide different evidence for the structural requirement of GroEL recognition to the substrate protein compared with previously reported results that GroEL bound with substrate proteins mainly through hydrophobic surface. The present study provides data for a monomeric intermediate trapped by the modification of the SH groups during the refolding of CK. Schemes are given for explaining both the partial folding CK pathway and the refolding pathway.Key words: creatine kinase; partially folded state; reactivation; refolding; GroEL; intermediate.
Collapse
|
57
|
Rye HS. Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction. Methods 2001; 24:278-88. [PMID: 11403576 PMCID: PMC3744193 DOI: 10.1006/meth.2001.1188] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is a sensitive and flexible method for studying protein-protein interactions. Here it is applied to the GroEL-GroES chaperonin system to examine the ATP-driven dynamics that underlie protein folding by this chaperone. Relying on the known structures of GroEL and GroES, sites for attachment of fluorescent probes are designed into the sequence of both proteins. Because these sites are brought close in space when GroEL and GroES form a complex, excitation energy can pass from a donor to an acceptor chromophore by FRET. While in ideal circumstances FRET can be used to measure distances, significant population heterogeneity in the donor-to-acceptor distances in the GroEL-GroES complex makes distance determination difficult. This is due to incomplete labeling of these large, oligomeric proteins and to their rotational symmetry. It is shown, however, that FRET can still be used to follow protein-protein interaction dynamics even in a case such as this, where distance measurements are either not practical or not meaningful. In this way, the FRET signal is used as a simple proximity sensor to score the interaction between GroEL and GroES. Similarly, FRET can also be used to follow interactions between GroEL and a fluorescently labeled substrate polypeptide. Thus, while knowledge of molecular structure aids enormously in the design of FRET experiments, structural information is not necessarily required if the aim is to measure the thermodynamics or kinetics of a protein interaction event by following changes in the binding proximity of two components.
Collapse
Affiliation(s)
- H S Rye
- Department of Molecular Biology, Princeton University, 229 Lewis Thomas Laboratory, Princeton, New Jersey 08544, USA.
| |
Collapse
|
58
|
Falke S, Fisher MT, Gogol EP. Structural changes in GroEL effected by binding a denatured protein substrate. J Mol Biol 2001; 308:569-77. [PMID: 11350160 DOI: 10.1006/jmbi.2001.4613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the absence of nucleotides or cofactors, the Escherichia coli chaperonin GroEL binds select proteins in non-native conformations, such as denatured glutamine synthetase (GS) monomers, preventing their aggregation and spontaneous renaturation. The nature of the GroEL-GS complexes thus formed, specifically the effect on the conformation of the GroEL tetradecamer, has been examined by electron microscopy. We find that specimens of GroEL-GS are visibly heterogeneous, due to incomplete loading of GroEL with GS. Images contain particles indistinguishable from GroEL alone, and also those with consistent identifiable differences. Side-views of the modified particles reveal additional protein density at one end of the GroEL-GS complex, and end-views display chirality in the heptameric projection not seen in the unliganded GroEL. The coordinate appearance of these two projection differences suggests that binding of GS, as representative of a class of protein substrates, induces or stabilizes a conformation of GroEL that differs from the unliganded chaperonin. Three-dimensional reconstruction of the GroEL-GS complex reveals the location of the bound protein substrate, as well as complex conformational changes in GroEL itself, both cis and trans with respect to the bound GS. The most apparent structural alterations are inward movements of the apical domains of both GroEL heptamers, protrusion of the substrate protein from the cavity of the cis ring, and a narrowing of the unoccupied opening of the trans ring.
Collapse
Affiliation(s)
- S Falke
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
59
|
Hua Q, Dementieva IS, Walsh MA, Hallenga K, Weiss MA, Joachimiak A. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions. J Mol Biol 2001; 306:513-25. [PMID: 11178910 DOI: 10.1006/jmbi.2000.4405] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A homologue of the Escherichia coli GroEL apical domain was obtained from thermophilic eubacterium Thermus thermophilus. The domains share 70 % sequence identity (101 out of 145 residues). The thermal stability of the T. thermophilus apical domain (Tm>100 degrees C as evaluated by circular dichroism) is at least 35 degrees C greater than that of the E. coli apical domain (Tm=65 degrees C). The crystal structure of a selenomethione-substituted apical domain from T. thermophilus was determined to a resolution of 1.78 A using multiwavelength-anomalous-diffraction phasing. The structure is similar to that of the E. coli apical domain (root-mean-square deviation 0.45 A based on main-chain atoms). The thermophilic structure contains seven additional salt bridges of which four contain charge-stabilized hydrogen bonds. Only one of the additional salt bridges would face the "Anfinsen cage" in GroEL. High temperatures were exploited to map sites of interactions between the apical domain and molten globules. NMR footprints of apical domain-protein complexes were obtained at elevated temperature using 15N-1H correlation spectra of 15N-labeled apical domain. Footprints employing two polypeptides unrelated in sequence or structure (an insulin monomer and the SRY high-mobility-group box, each partially unfolded at 50 degrees C) are essentially the same and consistent with the peptide-binding surface previously defined in E. coli GroEL and its apical domain-peptide complexes. An additional part of this surface comprising a short N-terminal alpha-helix is observed. The extended footprint rationalizes mutagenesis studies of intact GroEL in which point mutations affecting substrate binding were found outside the "classical" peptide-binding site. Our results demonstrate structural conservation of the apical domain among GroEL homologues and conservation of an extended non-polar surface recognizing diverse polypeptides.
Collapse
Affiliation(s)
- Q Hua
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Inobe T, Makio T, Takasu-Ishikawa E, Terada TP, Kuwajima K. Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:160-73. [PMID: 11342042 DOI: 10.1016/s0167-4838(00)00274-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by GroEL, which undergoes a large structural change by the ATP binding or hydrolysis. One of the main concerns of GroEL is the mechanism of the productive and cooperative structural change of GroEL induced by the nucleotide. We studied the cooperative nature of GroEL by nucleotide titration using isothermal titration calorimetry and fluorescence spectroscopy. Our results indicated that the binding of ADP and ATP analogs to a single ring mutant (SR1), as well as that to GroEL, was non-cooperative. Only ATP induces an apparently cooperative conformational change in both proteins. Furthermore, the fluorescence changes of pyrene-labeled GroEL indicated that GroEL has two kinds of nucleotide binding sites. The fluorescence titration result fits well with a model in which two kinds of binding sites are both non-cooperative and independent of each other. These results suggest that the binding and hydrolysis of ATP may be necessary for the cooperative transition of GroEL.
Collapse
Affiliation(s)
- T Inobe
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
61
|
Abstract
This review focuses on a very important but little understood type of molecular recognition--the recognition between highly flexible molecular structures. The formation of a specific complex in this case is a dynamic process that can occur through sequential steps of mutual conformational adaptation. This allows modulation of specificity and affinity of interaction in extremely broad ranges. The interacting partners can interact together to form a complex with entirely new properties and produce conformational signal transduction at substantial distance. We show that this type of recognition is frequent in formation of different protein-protein and protein-nucleic acid complexes. It is also characteristic for self-assembly of protein molecules from their unfolded fragments as well as for interaction of molecular chaperones with their substrates and it can be the origin of 'protein misfolding' diseases. Thermodynamic and kinetic features of this type of dynamic recognition and the principles underlying their modeling and analysis are discussed.
Collapse
Affiliation(s)
- A P Demchenko
- The Palladin Institute of Biochemistry of the Academy of Sciences of Ukraine, Kiev 252030, Ukraine.
| |
Collapse
|
62
|
Wang Q, Buckle AM, Fersht AR. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones. J Mol Biol 2000; 304:873-81. [PMID: 11124033 DOI: 10.1006/jmbi.2000.4276] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We are reconstructing the mechanism of action of GroEL by a reductionist approach of isolating its minimal fragment that has residual activity (the "minichaperone" core) and then identifying how additional elements of structure confer further activity and function. We report here the 2.0 A resolution crystal structure of the minichaperone GroEL(193-345). The structure provides further clues on the nature of GroEL-polypeptide substrate interactions, because two molecules in the asymmetric unit interact by the binding of one molecule in the active site of its partner, thus mimicking a chaperone-polypeptide substrate complex. The results may explain some experimental observations, including the preference of GroEL for net positive charges (mediated by Glu238 and Glu257) and the key role of Tyr203 in mediating polypeptide binding. The larger binding site identified by these studies forms a continuous surface near the opening of the central cavity of GroEL that can accommodate a wide range of non-native protein conformations that differ in size and in structural and chemical properties.
Collapse
Affiliation(s)
- Q Wang
- MRC Centre, Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
63
|
Voziyan PA, Fisher MT. Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement. Protein Sci 2000; 9:2405-12. [PMID: 11206062 PMCID: PMC2144532 DOI: 10.1110/ps.9.12.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One of the proposed roles of the GroEL-GroES cavity is to provide an "infinite dilution" folding chamber where protein substrate can fold avoiding deleterious off-pathway aggregation. Support for this hypothesis has been strengthened by a number of studies that demonstrated a mandatory GroES requirement under nonpermissive solution conditions, i.e., the conditions where proteins cannot spontaneously fold. We have found that the refolding of glutamine synthetase (GS) does not follow this pattern. In the presence of natural osmolytes trimethylamine N-oxide (TMAO) or potassium glutamate, refolding GS monomers readily aggregate into very large inactive complexes and fail to reactivate even at low protein concentration. Surprisingly, under these "nonpermissive" folding conditions, GS can reactivate with GroEL and ATP alone and does not require the encapsulation by GroES. In contrast, the chaperonin dependent reactivation of GS under another nonpermissive condition of low Mg2+ (<2 mM MgCl2) shows an absolute requirement of GroES. High-performance liquid chromatography gel filtration analysis and irreversible misfolding kinetics show that a major species of the GS folding intermediates, generated under these "low Mg2+" conditions exist as long-lived metastable monomers that can be reactivated after a significantly delayed addition of the GroEL. Our results indicate that the GroES requirement for refolding of GS is not simply dictated by the aggregation propensity of this protein substrate. Our data also suggest that the GroEL-GroES encapsulated environment is not required under all nonpermissive folding conditions.
Collapse
Affiliation(s)
- P A Voziyan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
64
|
Scherrer S, Iriarte A, Martinez-Carrion M. Stability and release requirements of the complexes of GroEL with two homologous mammalian aminotransferases. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:591-602. [PMID: 11233173 DOI: 10.1023/a:1007102402925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitochondrial (mAAT) and cytosolic (cAAT) homologous isozymes of aspartate aminotransferase are two relatively large proteins that in their nonnative states interact very differently with GroEL. MgATP alone can increase the rate of GroEL-assisted reactivation of cAAT, yet the presence of GroES is mandatory for mAAT. Addition of an excess of a denatured substrate accelerates reactivation of cAAT in the presence of GroEL, but has no effect on mAAT. These competition studies suggest that the more stringent substrate mAAT forms a thermodynamically stable complex with GroEL, while rebinding affects the slow reactivation kinetics of cAAT with GroEL alone. However, the competitor appears to accelerate the release of cAAT from GroEL, most likely by displacing bound cAAT from the GroEL cavity. Moreover, cAAT, but not mAAT, shows a time-dependent increase in protease resistance while bound to GroEL at low temperature. These results suggest that folding and release of cAAT from GroEL in the absence of cofactors may occur stepwise with certain interactions being broken and reformed until the protein escapes binding. The distinct behavior of these two isozymes most likely results from differences in the structure of the nonnative states that bind to GroEL.
Collapse
Affiliation(s)
- S Scherrer
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | |
Collapse
|
65
|
Abstract
GroEL recognizes proteins that are folding improperly or that have aggregation-prone intermediates. Here we have used as substrates for GroEL, wildtype (WT) coat protein of phage P22 and 3 coat proteins that carry single amino acid substitutions leading to a temperature-sensitive folding (tsf) phenotype. In vivo, WT coat protein does not require GroEL for proper folding, whereas GroEL is necessary for the folding of the tsf coat proteins; thus, the single amino acid substitutions cause coat protein to become a substrate for GroEL. The conformation of WT and tsf coat proteins when in a binary complex with GroEL was investigated using tryptophan fluorescence, quenching of fluorescence, and accessibility of the coat proteins to proteolysis. WT coat protein and the tsf coat protein mutants were each found to be in a different conformation when bound to GroEL. As an additional measure of the changes in the bound conformation, the affinity of binding of WT and tsf coat proteins to GroEL was determined using a fluorescence binding assay. The tsf coat proteins were bound more tightly by GroEL than WT coat protein. Therefore, even though the proteins are identical except for a single amino acid substitution, GroEL did not bind these substrate polypeptides in the same conformation within its central cavity. Therefore, GroEL is likely to bind coat protein in a conformation consistent with a late folding intermediate, with substantial secondary and tertiary structure formed.
Collapse
Affiliation(s)
- M D de Beus
- University of Connecticut, Department of Molecular and Cell Biology, Storrs 06269-3125, USA
| | | | | |
Collapse
|
66
|
Aoki K, Motojima F, Taguchi H, Yomo T, Yoshida M. GroEL binds artificial proteins with random sequences. J Biol Chem 2000; 275:13755-8. [PMID: 10788496 DOI: 10.1074/jbc.275.18.13755] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonin GroEL from Escherichia coli binds to the non-native states of many unrelated proteins, and GroEL-recognizable structural features have been argued. As model substrate proteins of GroEL, we used seven artificial proteins (138 approximately 141 residues), each of which has a unique but randomly chosen amino acid sequence and no propensity to fold into a certain structure. Two of them were water-soluble, and the rest were soluble in 3 m urea. The soluble ones interacted with GroEL in a manner similar to that of a natural substrate; they stimulated the ATPase cycle of GroEL and GroEL/GroES and inhibited GroEL-assisted folding of other protein. All seven artificial proteins were able to bind to GroEL. The results suggest that the secondary structure as well as the specific sequence motif of the substrate proteins are not necessary to be recognized by GroEL.
Collapse
Affiliation(s)
- K Aoki
- Tokyo Institute of Technology, Research Laboratory of Resources Utilization, R-1, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
67
|
Pack CG, Aoki K, Taguchi H, Yoshida M, Kinjo M, Tamura M. Effect of electrostatic interactions on the binding of charged substrate to GroEL studied by highly sensitive fluorescence correlation spectroscopy. Biochem Biophys Res Commun 2000; 267:300-4. [PMID: 10623614 DOI: 10.1006/bbrc.1999.1864] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding processes of GroEL with apo cytochrome c (apo-cyt c) and disulfide-reduced apo alpha-lactalbumin (rLA) in homogeneous solution at low concentration were analyzed by fluorescence correlation spectroscopy (FCS) with extremely high sensitivity. Although apo-cyt c, a positively charged substrate, was tightly bound to GroEL in both the absence and the presence of 200 mM KCl, the strength of the binding was changed with varying salt concentration. Results from experiments when two different salts (KCl or MgCl(2)) were titrated into a sample solution containing GroEL and apo-cyt c clearly showed that the binding strength decreased with increasing salt concentration. On the other hand, the binding affinity of GroEL for rLA, a negatively charged substrate, increased by adding of 200 mM KCl. These results indicate that electrostatic interactions substantially contribute to the binding interactions by manipulating the binding affinity of charged substrates.
Collapse
Affiliation(s)
- C G Pack
- Research Institute for Electronic Science, Hokkaido University, N12W6, Kita-ku, Sapporo, 060-0812, Japan.
| | | | | | | | | | | |
Collapse
|
68
|
Chen L, Sigler PB. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 1999; 99:757-68. [PMID: 10619429 DOI: 10.1016/s0092-8674(00)81673-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chaperonin GroEL is a double toriodal assembly that with its cochaperonin GroES facilitates protein folding with an ATP-dependent mechanism. Nonnative conformations of diverse protein substrates bind to the apical domains surrounding the opening of the double toroid's central cavity. Using phage display, we have selected peptides with high affinity for the isolated apical domain. We have determined the crystal structures of the complexes formed by the most strongly bound peptide with the isolated apical domain, and with GroEL. The peptide interacts with the groove between paired alpha helices in a manner similar to that of the GroES mobile loop. Our structural analysis, combined with other results, suggests that various modes of molecular plasticity are responsible for tight promiscuous binding of nonnative substrates and their release into the shielded cis assembly.
Collapse
Affiliation(s)
- L Chen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
69
|
Makio T, Arai M, Kuwajima K. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES. J Mol Biol 1999; 293:125-37. [PMID: 10512721 DOI: 10.1006/jmbi.1999.3142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied how nucleotides (ADP, AMP-PNP, and ATP) and the co-chaperonin GroES influence the GroEL-affected refolding of apo-alpha-lactalbumin. The refolding reactions induced by stopped-flow pH jumps were monitored by alpha-lactalbumin tryptophan fluorescence. The simple single-exponential character of the free-refolding kinetics of the protein allowed us to quantitatively analyze the kinetic traces of the GroEL-affected refolding with the aid of computer simulations, and to obtain the best-fit parameters for binding between GroEL and the refolding intermediate of alpha-lactalbumin by the non-linear least-squares method. When GroES was absent, the interaction between GroEL and alpha-lactalbumin could be well represented by a "cooperative-binding" model in which GroEL has two binding sites for alpha-lactalbumin with the affinity of the second site being tenfold weaker than that of the first, so that there is negative cooperativity between the two sites. The affinity between GroEL and alpha-lactalbumin was significantly reduced when ATP was present, while ADP and AMP-PNP did not alter the affinity. A comparison of this result with those reported previously for other target proteins suggests a remarkable adjustability of the GroEL 14-mer with respect to the nucleotide-induced reduction of affinity. When GroES was present, ATP as well as ADP and AMP-PNP were effective in reducing the affinity between GroEL and the refolding intermediate of alpha-lactalbumin. The affinity at a saturating concentration of ADP or AMP-PNP was about ten times lower than with GroEL alone. The ADP concentration at which the acceleration of the GroEL/ES-affected refolding of alphaLA was observed, was higher than the concentration at which the nucleotide-induced formation of the GroEL/ES complex took place. These results indicate that GroEL/ES complex formation itself is not enough to reduce the affinity for alpha-lactalbumin, and that further binding of the nucleotide to the GroEL/ES complex is required to reduce the affinity.
Collapse
Affiliation(s)
- T Makio
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | |
Collapse
|
70
|
Terada TP, Kuwajima K. Thermodynamics of nucleotide binding to the chaperonin GroEL studied by isothermal titration calorimetry: evidence for noncooperative nucleotide binding. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1431:269-81. [PMID: 10350604 DOI: 10.1016/s0167-4838(99)00049-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We characterized the thermodynamics of binding reactions of nucleotides ADP and ATPgammaS (a nonhydrolyzable analog of ATP) to GroEL in a temperature range of 5 degrees C to 35 degrees C by isothermal titration calorimetry. Analysis with a noncooperative binding model has shown that the bindings of nucleotides are driven enthalpically with binding constants of 7x103 M-1 and 4x104 M-1 for ADP and ATPgammaS, respectively, at 26 degrees C and that the heat capacity change DeltaCp is about 100 cal/mol.K for both the nucleotides. The stoichiometries of binding were about 8 and 9 molecules for ADP and ATPgammaS, respectively, per GroEL tetradecamer at 5 degrees C, and both increased with temperature to reach about 14 (ADP) and 12 (ATPgammaS) for both nucleotides at 35 degrees C. The absence of initial increase of binding heat as well as Hill coefficient less than 1.2, which were obtained from the fitting to the model curve by assuming positive cooperativity, showed that there was virtually no positive cooperativity in the nucleotide bindings. Incorporating a difference in affinity for the nucleotide (ADP and ATPgammaS) between the two rings of GroEL into the noncooperative binding model improved the goodness of fitting and the difference in the affinity increased with decreasing temperature.
Collapse
Affiliation(s)
- T P Terada
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
71
|
Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 1999; 97:325-38. [PMID: 10319813 DOI: 10.1016/s0092-8674(00)80742-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.
Collapse
Affiliation(s)
- H S Rye
- Howard Hughes Medical Institute, and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Li J, Wang CC. "Half of the sites" binding of D-glyceraldehyde-3-phosphate dehydrogenase folding intermediate with GroEL. J Biol Chem 1999; 274:10790-4. [PMID: 10196153 DOI: 10.1074/jbc.274.16.10790] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) folding intermediate subunits bind with chaperonin 60 (GroEL) to form a stable complex, which can no longer bind with additional GAPDH intermediate subunits, but does bind with one more lysozyme folding intermediate or one chaperonin 10 (GroES) molecule, suggesting that the two GAPDH subunits bind at one end of the GroEL molecule displaying a "half of the sites" binding profile. For lysozyme, GroEL binds with either one or two folding intermediates to form a stable 1:1 or 1:2 complex with one substrate on each end of the GroEL double ring for the latter. The 1:1 complex of GroEL.GroES binds with one lysozyme or one dimeric GAPDH folding intermediate to form a stable ternary complex. Both complexes of GroEL.lysozyme1 and GroEL.GAPDH2 bind with one GroES molecule only at the other end of the GroEL molecule forming a trans ternary complex. According to the stoichiometry of GroEL binding with the GAPDH folding intermediate and the formation of ternary complexes containing GroEL.GAPDH2, it is suggested that the folding intermediate of GAPDH binds, very likely in the dimeric form, with GroEL at one end only.
Collapse
Affiliation(s)
- J Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | | |
Collapse
|
73
|
Betancourt MR, Thirumalai D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J Mol Biol 1999; 287:627-44. [PMID: 10092464 DOI: 10.1006/jmbi.1999.2591] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonin system, GroEL and GroES of Escherichia coli enable certain proteins to fold under conditions when spontaneous folding is prohibitively slow as to compete with other non-productive channels such as aggregation. We investigated the plausible mechanisms of GroEL-mediated folding using simple lattice models. In particular, we have investigated protein folding in a confined environment, such as those offered by the GroEL, to decipher whether rate and yield enhancement can occur when the substrate protein is allowed to fold within the cavity of the chaperonins. The GroEL cavity is modeled as a cubic box and a simple bead model is used to represent the substrate chain. We consider three distinct characteristic of the confining environment. First, the cavity is taken to be a passive Anfinsen cage in which the walls merely reduce the available conformation space. We find that at temperatures when the native conformation is stable, the folding rate is retarded in the Anfinsen cage. We then assumed that the interior of the wall is hydrophobic. In this case the folding times exhibit a complex behavior. When the strength of the interaction between the polypeptide chain and the cavity is too strong or too weak we find that the rates of folding are retarded compared to spontaneous folding. There is an optimum range of the interaction strength that enhances the rates. Thus, above this value there is an inverse correlation between the folding rates and the strength of the substrate-cavity interactions. The optimal hydrophobic walls essentially pull the kinetically trapped states which leads to a smoother the energy landscape. It is known that upon addition of ATP and GroES the interior cavity of GroEL offers a hydrophilic-like environment to the substrate protein. In order to mimic this within the context of the dynamic Anfinsen cage model, we allow for changes in the hydrophobicity of the walls of the cavity. The duration for which the walls remain hydrophobic during one cycle of ATP hydrolysis is allowed to vary. These calculations show that frequent cycling of the wall hydrophobicity can dramatically reduce the folding times and increase the yield as well under non-permissive conditions. Examination of the structures of the substrate proteins before and after the change in hydrophobicity indicates that there is global unfolding involved. In addition, it is found that a fraction of the molecules kinetically partition to the native state in accordabce with the iterative annealing mechanism. Thus, frequent "unfoldase" activity of chaperonins leading to global unfolding of the polypeptide chain results in enhancement of the folding rates and yield of the folded protein. We suggest that chaperonin efficiency can be greatly enhanced if the cycling time is reduced. The calculations are used to interpret a few experiments on chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- M R Betancourt
- University of Maryland at College Park, College Park, MD 20742, USA
| | | |
Collapse
|
74
|
Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel JF. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 1999; 256:75-84. [PMID: 10087228 DOI: 10.1006/viro.1999.9631] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Evidence for the involvement of a Bemisia tabaci GroEL homologue in the transmission of tomato yellow leaf curl geminivirus (TYLCV) is presented. A approximately 63-kDa protein was identified in B. tabaci whole-body extracts using an antiserum raised against aphid Buchnera GroEL. The GroEL homologue was immunolocalized to a coccoid-shaped whitefly endosymbiont. The 30 N-terminal amino acids of the whitefly GroEL homologue showed 80% homology with that from different aphid species and GroEL from Escherichia coli. Purified GroEL from B. tabaci exhibited ultrastructural similarities to that of the endosymbiont from aphids and E. coli. In vitro ligand assays showed that tomato yellow leaf curl virus (TYLCV) particles displayed a specific affinity for the B. tabaci 63-kDa GroEL homologue. Feeding whiteflies anti-Buchnera GroEL antiserum before the acquisition of virions reduced TYLCV transmission to tomato test plants by >80%. In the haemolymph of these whiteflies, TYLCV DNA was reduced to amounts below the threshold of detection by Southern blot hybridization. Active antibodies were recovered from the insect haemolymph suggesting that by complexing the GoEL homologue, the antibody disturbed interaction with TYLCV, leading to degradation of the virus. We propose that GroEL of B. tabaci protects the virus from destruction during its passage through the haemolymph.
Collapse
Affiliation(s)
- S Morin
- Otto Warburg Centre for Biotechnology in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
75
|
Clark AC, Frieden C. The chaperonin GroEL binds to late-folding non-native conformations present in native Escherichia coli and murine dihydrofolate reductases. J Mol Biol 1999; 285:1777-88. [PMID: 9917411 DOI: 10.1006/jmbi.1998.2403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dihydrofolate reductases from mouse (MuDHFR) or Escherichia coli (EcDHFR) are shown to refold via several intermediate forms, each of which can bind to the chaperonin GroEL. When stable complexes with GroEL are formed, they consist of late-folding intermediates. In addition, we find that late-folding intermediates that are present in the native enzyme bind to GroEL. For the E. coli and murine proteins, the extent of protein bound increases as the temperature is increased from 8 degreesC to 42 degreesC, at which temperature either protein is completely bound as the last (EcDHFR) or the last two (MuDHFR) folding intermediate(s). Thus for EcDHFR, the binding is transient at low temperature (<30 degreesC) and stable at high temperature (>35 degreesC). For MuDHFR, complex formation appears less temperature dependent. In general, the data demonstrate that the overall binding free energy for the interaction of GroEL with native DHFR is the sum of the free energy for the first step in DHFR unfolding, which is unfavorable, and the free energy of binding the non-native conformation, which is favorable. For EcDHFR, this results in an overall binding free energy that is unfavorable below 30 degreesC. Over the temperature range of 8 degreesC to 42 degreesC, GroEL binds MuDHFR more tightly than EcDHFR, due partially to a small free energy difference between two pre-existing non-native conformations of MuDHFR, resulting in binding to more than one folding intermediate.
Collapse
Affiliation(s)
- A C Clark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
76
|
Abstract
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states.
Collapse
Affiliation(s)
- Z Xu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue, New Haven, Connecticut, 06520-8114, USA
| | | |
Collapse
|
77
|
Kumarevel TS, Gromiha MM, Ponnuswamy MN. Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones. Biophys Chem 1998; 75:105-13. [PMID: 9857480 DOI: 10.1016/s0301-4622(98)00198-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The amino acid composition of the aromatic residues Phe, Tyr and Trp are much less significant in chaperones and the residues Cys, Glu, His, Met and Pro vary significantly in chaperones compared to normal globular proteins. In the present work, we have analysed the hydrophobic and charged patches in molecular chaperones which provide more insight for a better understanding of chaperone folding. Also, we have investigated the role of medium- and long-range contacts in chaperones and the preference of amino acid residues influenced by these interactions. Furthermore, the role of hydrophobic and helix-forming residues and disulfide bonding in these interactions have been discussed.
Collapse
Affiliation(s)
- T S Kumarevel
- Department of Crystallography and Biophysics, University of Madras, Tamil Nadu, India
| | | | | |
Collapse
|
78
|
Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL. Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 1998; 67:581-608. [PMID: 9759498 DOI: 10.1146/annurev.biochem.67.1.581] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent structural and biochemical investigations have come together to allow a better understanding of the mechanism of chaperonin (GroEL, Hsp60)-mediated protein folding, the final step in the accurate expression of genetic information. Major, asymmetric conformational changes in the GroEL double toroid accompany binding of ATP and the cochaperonin GroES. When a nonnative polypeptide, bound to one of the GroEL rings, is encapsulated by GroES to form a cis ternary complex, these changes drive the polypeptide into the sequestered cavity and initiate its folding. ATP hydrolysis in the cis ring primes release of the products, and ATP binding in the trans ring then disrupts the cis complex. This process allows the polypeptide to achieve its final native state, if folding was completed, or to recycle to another chaperonin molecule, if the folding process did not result in a form committed to the native state.
Collapse
Affiliation(s)
- P B Sigler
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Voziyan PA, Tieman BC, Low CM, Fisher MT. Changing the nature of the initial chaperonin capture complex influences the substrate folding efficiency. J Biol Chem 1998; 273:25073-8. [PMID: 9737964 DOI: 10.1074/jbc.273.39.25073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For the chaperonin substrates, rhodanese, malate dehydrogenase (MDH), and glutamine synthetase (GS), the folding efficiencies, and the lifetimes of folding intermediates were measured with either the nucleotide-free GroEL or the activated ATP.GroEL.GroES chaperonin complex. With both nucleotide-free and activated complex, the folding efficiency of rhodanese and MDH remained high over a large range of GroEL to substrate concentration ratios (up to 1:1). In contrast, the folding efficiency of GS began to decline at ratios lower than 8:1. At ratios where the refolding yields were initially the same, only a relatively small increase (1.6-fold) in misfolding kinetics of MDH was observed with either the nucleotide-free or activated chaperonin complex. For rhodanese, no change was detected with either chaperonin complex. In contrast, GS lost its ability to interact with the chaperonin system at an accelerated rate (8-fold increase) when the activated complex instead of the nucleotide-free complex was used to rescue the protein from misfolding. Our data demonstrate that the differences in the refolding yields are related to the intrinsic folding kinetics of the protein substrates. We suggest that the early kinetic events at the substrate level ultimately govern successful chaperonin-substrate interactions and play a crucial role in dictating polypeptide flux through the chaperonin system. Our results also indicate that an accurate assessment of the transient properties of folding intermediates that dictate the initial chaperonin-substrate interactions requires the use of the activated complex as the interacting chaperonin species.
Collapse
Affiliation(s)
- P A Voziyan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | |
Collapse
|
80
|
Doñate F, Artigues A, Iriarte A, Martinez-Carrion M. Opposite behavior of two isozymes when refolding in the presence of non-ionic detergents. Protein Sci 1998; 7:1811-20. [PMID: 10082379 PMCID: PMC2144090 DOI: 10.1002/pro.5560070817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GroEL has a greater affinity for the mitochondrial isozyme (mAAT) of aspartate aminotransferase than for its cytosolic counterpart (cAAT) (Mattingly JR Jr, Iriarte A, Martinez-Carrion M, 1995, J Biol Chem 270:1138-1148), two proteins that share a high degree of sequence similarity and an almost identical spatial structure. The effect of detergents on the refolding of these large, dimeric isozymes parallels this difference in behavior. The presence of non-ionic detergents such as Triton X-100 or lubrol at concentrations above their critical micelle concentration (CMC) interferes with reactivation of mAAT unfolded in guanidinium chloride but increases the yield of cAAT refolding at low temperatures. The inhibitory effect of detergents on the reactivation of mAAT decreases progressively as the addition of detergents is delayed after starting the refolding reaction. The rate of disappearance of the species with affinity for binding detergents coincides with the slowest of the two rate-limiting steps detected in the refolding pathway of mAAT. Limited proteolysis studies indicate that the overall structure of the detergent-bound mAAT resembles that of the protein in a complex with GroEL. The mAAT folding intermediates trapped in the presence of detergents can resume reactivation either upon dilution of the detergent below its CMC or by adding beta-cyclodextrin. Thus, isolation of otherwise transient productive folding intermediates for further characterization is possible through the use of detergents.
Collapse
Affiliation(s)
- F Doñate
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | | | |
Collapse
|
81
|
Vandenbroeck K, Billiau A. Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE. Biochimie 1998; 80:729-37. [PMID: 9865495 DOI: 10.1016/s0300-9084(99)80026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
IFN-gamma can be physicochemically distinguished from interferons-alpha, -beta or -omega through the loss of its tertiary structure and biological activity upon exposure to acid or heat. This loss is due to the irreversible aggregation of an unfolded or partially folded state. The conformational instability of IFN-gamma is reflected by its impairment to fold properly when overexpressed in Escherichia coli, resulting in its accumulation in cytoplasmic inclusion bodies. Chaperones were originally identified as a heterogeneous group of proteins that mediate the folding and correct assembly of various polypeptide substrates, and protect thermolabile proteins against inactivation. In either of both cases, chaperones prevent irreversible misfolding by assisting the substrate protein along its pathway to a stable tertiary conformation. Among the best characterized chaperones are the Escherichia coli Hsp60 and Hsp70 heat shock protein complexes, i.e., GroEL/GroES and DnaK/DnaJ/GrpE. They exhibit entirely different reaction mechanisms, which, however, both depend on hydrolysis of ATP. The unfolding of recombinant IFN-gamma by acid or heat can be used as a tool to assess its in vitro interaction with each of both chaperone systems at physiological temperature (35 degrees C). Using such an experimental set-up, both the DnaK and GroEL chaperone systems appeared to form complexes with IFN-gamma from which correctly folded protein was released in an ATP-dependent manner. In addition to the biotechnological implication of these observations, the relevance to de novo folding of IFN-gamma is discussed.
Collapse
Affiliation(s)
- K Vandenbroeck
- Laboratory of Immunobiology, Rega Institute for Medical Research, Leuven, Belgium
| | | |
Collapse
|
82
|
Vinckier A, Gervasoni P, Zaugg F, Ziegler U, Lindner P, Groscurth P, Plückthun A, Semenza G. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. Biophys J 1998; 74:3256-63. [PMID: 9635779 PMCID: PMC1299666 DOI: 10.1016/s0006-3495(98)78032-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.
Collapse
Affiliation(s)
- A Vinckier
- Department of Biochemistry, Swiss Federal Institute of Technology, ETH Zentrum, Zürich.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Seale JW, Brazil BT, Horowitz PM. Photoincorporation of fluorescent probe into GroEL: defining site of interaction. Methods Enzymol 1998; 290:318-23. [PMID: 9534172 DOI: 10.1016/s0076-6879(98)90028-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have elucidated conditions for the covalent incorporation of a nonspecific hydrophobic probe, bisANS, into various proteins. Using this method, we are able to map hydrophobic surfaces in proteins. In addition, we have shown that for GroEL, we are able to use the fluorescence of the incorporated bisANS to monitor conformational changes in a defined region of the protein in response to various effectors. This method should be useful for studying both protein structure and dynamics.
Collapse
Affiliation(s)
- J W Seale
- Department of Biochemistry, University of Texas Health Science Center at San Antonio 78284-7760, USA
| | | | | |
Collapse
|
84
|
Tsurupa GP, Ikura T, Makio T, Kuwajima K. Refolding kinetics of staphylococcal nuclease and its mutants in the presence of the chaperonin GroEL. J Mol Biol 1998; 277:733-45. [PMID: 9533891 DOI: 10.1006/jmbi.1998.1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the effect of the chaperonin GroEL on the refolding kinetics of staphylococcal nuclease and its three mutants by stopped-flow fluorescence measurements. It was found that a transient folding intermediate of staphylococcal nuclease was tightly bound to GroEL and refolded in the GroEL-bound state without releasing the non-native protein in solution, and the refolding rate in the GroEL-bound state was 0.01 s-1. The GroEL-affected refolding of the nuclease appears to be in decided contrast to that of apo-alpha-lactalbumin reported in our previous study, wherein alpha-lactalbumin was shown to be more weakly bound by GroEL and to refold in the free state in solution. In spite of the apparent difference between the proteins, the GroEL-affected refolding reactions of both the proteins can be represented by a common unified reaction scheme. On the basis of this scheme, the binding constant between the nuclease intermediate and GroEL was estimated to be larger than 10(9) M-1. The stoichiometry of binding of the nuclease and its mutants to GroEL was found to be two (nuclease/GroEL 14-mer). The increase in ionic strength resulted in a weakening of the interaction between the nuclease and GroEL, which was attributed to a weakening of the electrostatic attraction between the two proteins as a result of electrostatic screening by ions. Although ATP was found to accelerate the GroEL-affected refolding of the nuclease, the refolding rate was still far from the rate of the free refolding. The free refolding behavior of the nuclease and its mutants was restored in the presence of the cochaperonin GroES and ATP.
Collapse
Affiliation(s)
- G P Tsurupa
- School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
85
|
Affiliation(s)
- B Bukau
- Institut für Biochemie and Molekularbiologie, Universität Freiburg, Germany
| | | |
Collapse
|
86
|
Brazil BT, Ybarra J, Horowitz PM. Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions. J Biol Chem 1998; 273:3257-63. [PMID: 9452440 DOI: 10.1074/jbc.273.6.3257] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fluorescent and non-fluorescent probes have been used to show that divalent cations (Ca2+, Mg2+, Mn2+, and Zn2+) significantly increase hydrophobic exposure on GroEL, whereas monovalent cations (K+ and Na+) have little effect. Zn2+ always induced the largest amount of hydrophobic exposure on GroEL. By using a new method based on interactions of GroEL with octyl-Sepharose, it was demonstrated that Zn2+ binding strengthens GroEL hydrophobic binding interactions and increases the efficiency of substrate release upon the addition of MgATP and GroES. The binding of 4, 4'-bis(1-anilino-8-naphthalenesulfonic acid) to GroEL in the presence of Zn2+ has a Kd congruent with 1 microM, which is similar to that observed previously for the GroEL 4, 4'-bis(1-anilino-8-naphthalenesulfonic acid) complex. Urea denaturation, sedimentation velocity ultracentrifugation, and electron microscopy revealed that the quaternary structure of GroEL in the presence of Zn2+ had a stability and morphology equivalent to unliganded GroEL. In contrast, circular dichroism suggested some loss in both alpha-helical and beta-sheet secondary structure in the presence of Zn2+. These data suggest that divalent cations can modulate the amount of hydrophobic surface presented by GroEL. Furthermore, the influence of Zn2+ on GroEL hydrophobic surface exposure as well as substrate binding and release appears to be distinct from the stabilizing effects of Mg2+ on GroEL quaternary structure.
Collapse
Affiliation(s)
- B T Brazil
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | | | |
Collapse
|
87
|
Abstract
The chaperonin GroEL and its cofactor GroES facilitate protein folding in an ATP-regulated manner. The recently solved crystal structure of the GroEL.GroES.(ADP)7 complex shows that the lining of the cavity in the polypeptide acceptor state is hydrophobic, whereas in the protein-release state it becomes hydrophilic. Other highlights of the past year include the visualization of the allosteric states of GroEL with respect to ATP using cryo-electron microscopy, and an X-ray crystallographic analysis of the interaction between the apical domain of GroEL and a peptide.
Collapse
Affiliation(s)
- A Horovitz
- Department of Structural Biology, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
88
|
Coyle JE, Jaeger J, Gross M, Robinson CV, Radford SE. Structural and mechanistic consequences of polypeptide binding by GroEL. FOLDING & DESIGN 1998; 2:R93-104. [PMID: 9427006 DOI: 10.1016/s1359-0278(97)00046-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The remarkable ability of the chaperonin GroEL to recognise a diverse range of non-native states of proteins constitutes one of the most fascinating molecular recognition events in protein chemistry. Recent structural studies have revealed a possible model for substrate binding by GroEL and a high-resolution image of the GroEL-GroES folding machinery has provided important new insights into our understanding of the mechanism of action of this chaperonin. Studies with a variety of model substrates reveal that the binding of substrate proteins to GroEL is not just a passive event, but can result in significant changes in the structure and stability of the bound polypeptide. The potential impact of this on the mechanism of chaperonin-assisted folding is not fully understood, but provides exciting scope for further experiment.
Collapse
Affiliation(s)
- J E Coyle
- School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | | | | | |
Collapse
|
89
|
Aoki K, Taguchi H, Shindo Y, Yoshida M, Ogasahara K, Yutani K, Tanaka N. Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction. J Biol Chem 1997; 272:32158-62. [PMID: 9405415 DOI: 10.1074/jbc.272.51.32158] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Binding of Escherichia coli chaperonin, GroEL, to substrate proteins with non-native structure, reduced alpha-lactalbumin (rLA) and denatured pepsin, were analyzed by isothermal titration calorimetry at various temperatures in the presence of salt (0.2 M KCl). Both proteins bound to GroEL with 1:1 stoichiometry and micromolar affinity at all temperatures tested. However, thermodynamic properties of their binding to GroEL are remarkably different from each other. While heat capacity changes (DeltaCp) of rLA-GroEL binding showed large negative values, -4.19 kJ mol-1 K-1, that of denatured pepsin-GroEL binding was only -0.2 kJ mol-1 K-1. These values strongly indicate that the hydrophobic interaction is a major force of rLA-GroEL binding but not so for denatured pepsin-GroEL binding. When salt was omitted from the solution, the affinity and DeltaCp of the rLA-GroEL binding reaction were not significantly changed whereas denatured pepsin lost affinity to GroEL. Thus, in the non-native protein-GroEL binding reaction, thermodynamic properties, as well as the effect of salt, differ from protein to protein and hydrophobic interaction may not always be a major driving force.
Collapse
Affiliation(s)
- K Aoki
- Tokyo Institute of Technology, Research Laboratory of Resources Utilization, R-1, 4259 Nagatsuta, Yokohama 226, Japan
| | | | | | | | | | | | | |
Collapse
|
90
|
van den Heuvel JF, Bruyère A, Hogenhout SA, Ziegler-Graff V, Brault V, Verbeek M, van der Wilk F, Richards K. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J Virol 1997; 71:7258-65. [PMID: 9311800 PMCID: PMC192067 DOI: 10.1128/jvi.71.10.7258-7265.1997] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Luteoviruses and the luteovirus-like pea enation mosaic virus (PEMV; genus Enamovirus) are transmitted by aphids in a circulative, nonreplicative manner. Acquired virus particles persist for several weeks in the aphid hemolymph, in which a GroEL homolog, produced by the primary endosymbiont of the aphid, is abundantly present. Six subgroup II luteoviruses and PEMV displayed a specific but differential affinity for Escherichia coli GroEL and GroEL homologs isolated from the endosymbiotic bacteria of both vector and nonvector aphid species. These observations suggest that the basic virus-binding capacity resides in a conserved region of the GroEL molecule, although other GroEL domains may influence the efficiency of binding. Purified luteovirus and enamovirus particles contain a major 22-kDa coat protein (CP) and lesser amounts of an approximately 54-kDa readthrough protein, expressed by translational readthrough of the CP into the adjacent open reading frame. Beet western yellows luteovirus (BWYV) mutants devoid of the readthrough domain (RTD) did not bind to Buchnera GroEL, demonstrating that the RTD (and not the highly conserved CP) contains the determinants for GroEL binding. In vivo studies showed that virions of these BWYV mutants were significantly less persistent in the aphid hemolymph than were virions containing the readthrough protein. These data suggest that the Buchnera GroEL-RTD interaction protects the virus from rapid degradation in the aphid. Sequence comparison analysis of the RTDs of different luteoviruses and PEMV identified conserved residues potentially important in the interaction with Buchnera GroEL.
Collapse
Affiliation(s)
- J F van den Heuvel
- Department of Virology, DLO Research Institute for Plant Protection (IPO-DLO), Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Nieba-Axmann SE, Ottiger M, Wüthrich K, Plückthun A. Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR. J Mol Biol 1997; 271:803-18. [PMID: 9299328 DOI: 10.1006/jmbi.1997.1192] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
GroE, the chaperonin system of Escherichia coli, prevents the aggregation of partially folded or misfolded proteins by complexing them in a form competent for subsequent folding to the native state. We examined the exchange of amide protons of cyclophilin A (CypA) interacting with GroEL, using NMR spectroscopy. We have applied labeling pulses in H2O to the deuterated GroEL-CypA-complex. When ATP and GroES were added after the labeling pulse, refolding of CypA could be accelerated to rates comparable to the amide proton exchange. This allowed the calculation of protection factors (PF) for the backbone amide protons in the GroEL-bound substrate protein. A set of highly protected protons in the native state (PF 10(5) to 10(7)) was observed to be much less protected (PF 10(2) to 10(4)) in complex with GroEL and, in contrast to the native structure, the protection factors were found to be quite uniform along the sequence suggesting that CypA with native-like structure undergoes multiple cycles of unfolding while bound to GroEL, which are faster than unfolding in free solution. Because of the small sequence dependence of the protection factors, unfolding must be global, and in this way the chaperone appears to resolve off-pathway intermediates and to support protein folding by annealing. Although in the complex with GroEL native-like states still predominate over globally unfolded states, this equilibrium is shifted 10(2) to 10(4)-fold toward the unfolded state when compared to CypA in free solution. Repeated global unfolding may be a key step in achieving a high yield of correctly folded proteins.
Collapse
Affiliation(s)
- S E Nieba-Axmann
- Biochemisches Institut der Universität Zürich, Winterthurerstr., Zürich, 190 8057, Switzerland
| | | | | | | |
Collapse
|
92
|
Xu Z, Horwich AL, Sigler PB. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 1997; 388:741-50. [PMID: 9285585 DOI: 10.1038/41944] [Citation(s) in RCA: 918] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL-GroES-(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.
Collapse
Affiliation(s)
- Z Xu
- The Howard Hughes Medical Institute, The Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
93
|
Stites WE. Proteinminus signProtein Interactions: Interface Structure, Binding Thermodynamics, and Mutational Analysis. Chem Rev 1997; 97:1233-1250. [PMID: 11851449 DOI: 10.1021/cr960387h] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wesley E. Stites
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701-1201
| |
Collapse
|
94
|
Perrett S, Zahn R, Stenberg G, Fersht AR. Importance of electrostatic interactions in the rapid binding of polypeptides to GroEL. J Mol Biol 1997; 269:892-901. [PMID: 9223649 DOI: 10.1006/jmbi.1997.1081] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The question of how chaperones rapidly bind non-native proteins of very different sequence and function has been examined by determining the effect of ionic strength on the refolding of barnase on GroEL, and on the thermal denaturation of barnase in the presence of GroEL and SecB. Both chaperones bind the denatured state of barnase, so lowering the T(m) value. The refolding of barnase in the presence of GroEL is multiphasic, the slowest phase corresponding to the refolding of a singly bound molecule of barnase in the complex with GroEL. The fastest phase is related to the association of barnase and GroEL. At high ratios of GroEL to barnase and low ionic strength (less than 200 mM) this fast phase corresponds to the observed rate of binding. The rate of association of barnase and GroEL was found to be highly dependent on ionic strength, and at high ionic strength (greater than 600 mM) the majority of barnase molecules escaped binding and refolded free in solution. The data are consistent with an initial, transient, ionic interaction between barnase and GroEL, before hydrophobic binding occurs, allowing diffusion-controlled association and slow dissociation of unfolded polypeptide.
Collapse
Affiliation(s)
- S Perrett
- MRC Unit for Protein Function and Design, University Chemical Laboratory, Cambridge, UK
| | | | | | | |
Collapse
|
95
|
Abstract
At present, it is still enigmatic how the reaction cycle by which the Escherichia coli GroE chaperones mediate protein folding in the cell is coordinated with respect to the sequential order of binding and release of GroES, nucleotide, and nonnative protein. It is generally assumed that the asymmetric GroEL.GroES complex is the acceptor state for substrate protein. Nevertheless, this species is poorly understood in its binding characteristics for nucleotide and nonnative protein. We show here that this species has a high affinity binding site for nonnative protein. In addition to this, binding of nucleotide to one GroEL ring is strongly favored by GroES binding to the other ring. However, the slow rate of release of substrate protein from the unproductive trans-position kinetically favors the binding of a second GroES, thereby forming a symmetric GroEL14.(GroES7)2 complex and simultaneously ensuring that substrate protein is sequestered in a position underneath GroES. Our results demonstrate that the intrinsic binding characteristics of the trans-bullet complex determine the sequence of events during the reaction cycle.
Collapse
Affiliation(s)
- H Sparrer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
96
|
Frieden C, Clark AC. Protein folding: how the mechanism of GroEL action is defined by kinetics. Proc Natl Acad Sci U S A 1997; 94:5535-8. [PMID: 9159107 PMCID: PMC20813 DOI: 10.1073/pnas.94.11.5535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/1997] [Indexed: 02/04/2023] Open
Abstract
We propose a mechanism for the role of the bacterial chaperonin GroEL in folding proteins. The principal assumptions of the mechanism are (i) that many unfolded proteins bind to GroEL because GroEL preferentially binds small unstructured regions of the substrate protein, (ii) that substrate protein within the cavity of GroEL folds by the same kinetic mechanism and rate processes as in bulk solution, (iii) that stable or transient complexes with GroEL during the folding process are defined by a kinetic partitioning between formation and dissociation of the complex and the rate of folding and unfolding of the protein, and (iv) that dissociation from the complex in early stages of folding may lead to aggregation but dissociation at a late stage leads to correct folding. The experimental conditions for refolding may play a role in defining the function of GroEL in the folding pathway. We propose that the role of GroES and MgATP, either binding or hydrolysis, is to regulate the association and dissociation processes rather than affecting the rate of folding.
Collapse
Affiliation(s)
- C Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
97
|
Bruce BD, Churchich J. Characterization of the molecular-chaperone function of the heat-shock-cognate-70-interacting protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:738-44. [PMID: 9183013 DOI: 10.1111/j.1432-1033.1997.00738.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A histidine-tagged form of the recently discovered molecular chaperone, 70-kDa heat-shock cognate (Hsc70)-interacting protein (Hip), has been expressed in Escherichia coli and purified to near homogeneity. This protein remains soluble when expressed in E. coli. Several important properties of this chaperone have been investigated. HPLC size-exclusion chromatography indicates that the chaperone forms a tetramer similar to what has been reported for the native protein from rat liver cytosol. The recombinant form of Hip did not catalyze the hydrolysis of ATP and ATP analogs, although fluorescence measurements indicated that the chaperone recognizes anthraniloyl-dATP, anthraniloyl-ADP, and 2'-O-trinitrophenyl-ATP. The role of Hip as a molecular chaperone has been confirmed by its ability to strongly bind to the reduced, carboxymethylated form of alpha-lactalbumin. This interaction is specific for non-native domains since native alpha-lactalbumin fails to interact with Hip. Fluorescence-anisotropy measurements indicate that reduced, carboxymethylated lactalbumin binds Hip with a Kd of 5 microM. Although Hip appears to be able to bind nucleotides and non-native proteins, it is unable to facilitate the refolding of two denatured proteins, E. coli alkaline phosphatase and mitochondrial malate dehydrogenase. Hip inhibited the refolding of alkaline phosphatase and malic dehydrogenase. Inhibition occurred at near stoichiometric levels of Hip and could not be reversed by the addition of ATP. These results suggest that Hip may regulate the function of the Hsp70 molecular chaperone complex in vivo and play a critical role in protein folding in the eukaryotic cytoplasm.
Collapse
Affiliation(s)
- B D Bruce
- Biochemistry, Cellular and Molecular Biology Department, University of Tennessee at Knoxville, 37996-0840, USA.
| | | |
Collapse
|
98
|
Abstract
I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.
Collapse
Affiliation(s)
- W A Fenton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
99
|
Gorovits BM, Ybarra J, Horowitz PM. ATP hydrolysis is critical for induction of conformational changes in GroEL that expose hydrophobic surfaces. J Biol Chem 1997; 272:6842-5. [PMID: 9054367 DOI: 10.1074/jbc.272.11.6842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The degree of hydrophobic exposure in the molecular chaperone GroEL during its cycle of ATP hydrolysis was analyzed using 1,1'-bis(4-anilino)naphthalene-5,5'disulfonic acid (bisANS), a hydrophobic probe, whose fluorescence is highly sensitive to the environment. In the presence of 10 mM MgCl2 and 10 mM KCl the addition of ATP, but not ADP or AMP-PNP, resulted in a time-dependent, linear increase in the bisANS fluorescence. The rate of the increase in the bisANS fluorescence depended on the concentrations of both GroEL and the probe. The effect could be substantially inhibited by addition of excess ADP or by converting ATP to ADP using hexokinase, showing that the increase in the bisANS fluorescence was correlated with ATP hydrolysis. The rate of ATP hydrolysis catalyzed by GroEL was uncompetitively inhibited in the presence of bisANS. This uncompetitive inhibition suggests that the probe can interact with the GroEL-ATP complex. The inability of the nonhydrolyzable ATP analog, AMP-PNP, to cause a similar effect is explained by the interaction of bisANS with a transient conformational state of GroEL formed consequent to ATP hydrolysis. It is suggested that this short lived hydrophobic exposure reflects a conformational shift in GroEL that results from electrostatic repulsion between the bound products of ATP hydrolysis, and it plays an important role in the mechanism of the chaperonin cycle.
Collapse
Affiliation(s)
- B M Gorovits
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284, USA
| | | | | |
Collapse
|
100
|
Doyle ML. Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol 1997; 8:31-5. [PMID: 9013658 DOI: 10.1016/s0958-1669(97)80154-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isothermal titration calorimetry is a high-accuracy method for measuring binding affinities. Titration calorimetry is a universal method that has broad impact throughout biotechnology. In recent years, microcalorimeters that are capable of characterizing binding interactions of biological macromolecules have become commercially available. Results from these studies are providing new insight into the molecular nature of macromolecular interactions.
Collapse
Affiliation(s)
- ML Doyle
- Macromolecular Sciences Department, UE-0447-B SmithKline Beecham Pharmaceuticals 709 Swedeland Road King of Prussia PA 19406-0939 USA
| |
Collapse
|