51
|
The functional expression of toxic genes: lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel. Anal Biochem 2009; 393:234-41. [PMID: 19580778 DOI: 10.1016/j.ab.2009.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/28/2009] [Accepted: 06/30/2009] [Indexed: 11/22/2022]
Abstract
Some genes cannot be cloned by conventional methods because in most cases the genes or gene products are toxic to Escherichia coli. CCH1 is a high-affinity Ca(2+) channel present in the plasma membrane of Cryptococcus neoformans and other fungi. Like many toxic genes, the molecular cloning of CCH1 has been a major challenge; consequently, direct studies of CCH1 channel activity in heterologous expression systems have been impossible. We have devised a straightforward approach that resulted in the molecular cloning and functional expression of CCH1 by exploiting homologous recombination both in vitro and in vivo. This approach precluded the standard enzyme digestion-mediated ligation reactions and the subsequent isolation of plasmids from E. coli. The shuttle plasmid carrying CCH1-GFP, which was prepared in vitro and propagated in yeast, was successfully expressed in the mammalian cell line HEK293 (human embryonic kidney 293). CCH1 transcripts were detected only in HEK293 cells transfected with the plasmid DNA. Fluorescence microscopy studies revealed the expression of CCH1-GFP fusion protein on the cell surface of HEK293 cells, similar to the localization pattern of a well-characterized plasma membrane-associated K(+) channel. This approach will be particularly useful for genes that encode ion channels and transporters that cannot be cloned by conventional techniques requiring E. coli.
Collapse
|
52
|
Paytubi S, Wang X, Lam YW, Izquierdo L, Hunter MJ, Jan E, Hundal HS, Proud CG. ABC50 promotes translation initiation in mammalian cells. J Biol Chem 2009; 284:24061-73. [PMID: 19570978 DOI: 10.1074/jbc.m109.031625] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABC50 is an ATP-binding cassette (ABC) protein, which, unlike most ABC proteins, does not possess membrane-spanning domains. ABC50 interacts with eukaryotic initiation factor 2 (eIF2), which plays a key role in translation initiation and its control. ABC50 binds to ribosomes, and this interaction requires both the N-terminal domain and at least one ABC domain. Knockdown of ABC50 by RNA interference impaired translation of both cap-dependent and -independent reporters, consistent with a positive role for ABC50 in the function of eIF2, which is required for both types of translation initiation. Mutation of the Walker box A or B motifs in both ABC regions of ABC50 yielded a mutant protein that exerted a dominant-interfering phenotype with respect to protein synthesis and translation initiation. Importantly, although dominant-interfering mutants of ABC50 impaired cap-dependent translation, translation driven by certain internal ribosome entry segments was not inhibited. ABC50 is located in the cytoplasm and nucleoplasm but not in the nucleolus. Thus, ABC50 is not likely to be directly involved in early ribosomal biogenesis, unlike some other ABC proteins. Taken together, the present data show that ABC50 plays a key role in translation initiation and has functions that are distinct from those of other non-membrane ABC proteins.
Collapse
Affiliation(s)
- Sonia Paytubi
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Shine-Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proc Natl Acad Sci U S A 2008; 105:10715-20. [PMID: 18667704 DOI: 10.1073/pnas.0801974105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During translation, usually only one in approximately 400 misincorporations affects the function of a nascent protein, because only chemically similar near-cognate amino acids are misincorporated in place of the cognate one. The deleterious misincorporation of a chemically dissimilar noncognate amino acid during the selection process is precluded by the presence of a tRNA at the ribosomal E-site. However, the selection of first aminoacyl-tRNA, directly after initiation, occurs without an occupied E-site, i.e., when only the P-site is filled with the initiator tRNA and thus should be highly error-prone. Here, we show how bacterial ribosomes have solved this accuracy problem: In the absence of a Shine-Dalgarno (SD) sequence, the first decoding step at the A-site after initiation is extremely error-prone, even resulting in the significant incorporation of noncognate amino acids. In contrast, when a SD sequence is present, the incorporation of noncognate amino acids is not observed. This is precisely the effect that the presence of a cognate tRNA at the E-site has during the elongation phase. These findings suggest that during the initiation phase, the SD interaction functionally compensates for the lack of codon-anticodon interaction at the E-site by reducing the misincorporation of near-cognate amino acids and prevents noncognate misincorporation.
Collapse
|
54
|
Budkevich TV, El'skaya AV, Nierhaus KH. Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res 2008; 36:4736-44. [PMID: 18632761 PMCID: PMC2504317 DOI: 10.1093/nar/gkn424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (Pi), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (Kd 30 μM and 1–2 μM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic.
Collapse
Affiliation(s)
- Tatyana V Budkevich
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | |
Collapse
|
55
|
Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans. EUKARYOTIC CELL 2008; 7:1118-26. [PMID: 18503003 DOI: 10.1128/ec.00116-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ca2+-mediated signaling events in eukaryotic cells are initiated by Ca2+ channels located in the plasma membranes and endomembranes. Cch1, a high-affinity Ca2+ channel in the plasma membranes of Cryptococcus neoformans and other fungi, plays a role in many different cellular processes, but the mechanisms that regulate Cch1 are not well understood. A Ras recruitment two-hybrid screen was used to identify protein partners of Cch1 as a means of identifying possible mechanisms of channel regulation. Here, we show that Cch1 specifically associates with a cytoplasmic protein known as elongation factor 3 (EF3). The robust interaction between the cytosolic C terminus of the Cch1 protein and EF3 shown here was confirmed by demonstrating that Cch1 could coimmunoprecipitate with EF3 in yeast lysates. To examine the effects of EF3 on Cch1 behavior, we altered the EF3 gene function by constructing a C. neoformans antisense EF3 repression strain. Our results show that the repression of EF3 led to the mislocalization of Cch1, suggesting a role for EF3 in targeting Cch1 to the plasma membrane of C. neoformans. Consistent with this notion, the antisense EF3 repression strain displayed a growth defect under conditions of limited extracellular Ca2+. Collectively, these results suggest that EF3 and Cch1 are functionally coupled and that EF3 has a function apart from its role in the protein translation cycle.
Collapse
|
56
|
Szaflarski W, Vesper O, Teraoka Y, Plitta B, Wilson DN, Nierhaus KH. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J Mol Biol 2008; 380:193-205. [PMID: 18508080 DOI: 10.1016/j.jmb.2008.04.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
We describe the optimization of a poly(Phe) synthesis system, the conditions of which have been applied for efficient translation of heteropolymeric mRNAs. Here we identify two parameters that are essential to obtain translation at efficiency and accuracy levels equivalent to those in vivo, viz., the fine-tuning of the energy-rich components with an acetyl-phosphate substrate for energy regeneration, as well as the ionic conditions. Applying this system revealed a number of new features: (i) 70S ribosomes are able to recycle within 300 s in a non-enzymatic fashion in the absence of tmRNA. This observation might explain the fact that a knockout of the tmRNA gene ssrA is not lethal for Escherichia coli cells in contrast to other bacterial strains, such as Bacillus subtilis. (ii) The high efficiency of the system was exploited to analyze the misincorporation of various amino acids (resolution limit=1:15,000). No misreading was observed at the middle codon position and only marginal effects were observed at the first one (even when misreading was artificially stimulated 20- to 30-fold), yielding an improved definition of the near-cognate and non-cognate aminoacyl-tRNAs. (iii) Aminoglycosides increase Phe and Lys incorporation about 2-fold in the presence of poly(U) or poly(UUC) and poly(A), respectively, and induce a back-translocation (except hygromycin B) exclusively in the absence of EF-G*GTP, as do the non-related drugs viomycin and edeine.
Collapse
Affiliation(s)
- Witold Szaflarski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Sanders CL, Curran JF. Genetic analysis of the E site during RF2 programmed frameshifting. RNA (NEW YORK, N.Y.) 2007; 13:1483-91. [PMID: 17660276 PMCID: PMC1950767 DOI: 10.1261/rna.638707] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The roles of the ribosomal E site are not fully understood. Prior evidence suggests that deacyl-tRNA in the E site can prevent frameshifting. We hypothesized that if the E-site codon must dissociate from its tRNA to allow for frameshifting, then weak codon:anticodon duplexes should allow for greater frameshifting than stronger duplexes. Using the well-characterized Escherichia coli RF2 (prfB) programmed frameshift to study frameshifting, we mutagenized the E-site triplet to all Unn and Cnn codons. Those variants should represent a very wide range of duplex stability. Duplex stability was estimated using two different methods. Frameshifting is inversely correlated with stability, as estimated by either method. These findings indicate that pairing between the deacyl-tRNA and the E-site codon opposes frameshifting. We discuss the implications of these findings on frame maintenance and on the RF2 programmed frameshift mechanism.
Collapse
|
58
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
59
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
60
|
Plant EP, Nguyen P, Russ JR, Pittman YR, Nguyen T, Quesinberry JT, Kinzy TG, Dinman JD. Differentiating between near- and non-cognate codons in Saccharomyces cerevisiae. PLoS One 2007; 2:e517. [PMID: 17565370 PMCID: PMC1885216 DOI: 10.1371/journal.pone.0000517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
Background Decoding of mRNAs is performed by aminoacyl tRNAs (aa-tRNAs). This process is highly accurate, however, at low frequencies (10−3 – 10−4) the wrong aa-tRNA can be selected, leading to incorporation of aberrant amino acids. Although our understanding of what constitutes the correct or cognate aa-tRNA:mRNA interaction is well defined, a functional distinction between near-cognate or single mismatched, and unpaired or non-cognate interactions is lacking. Methodology/Principal Findings Misreading of several synonymous codon substitutions at the catalytic site of firefly luciferase was assayed in Saccharomyces cerevisiae. Analysis of the results in the context of current kinetic and biophysical models of aa-tRNA selection suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons, enabling stimulation of GTPase activity of eukaryotic Elongation Factor 1A (eEF1A). Paromomycin specifically stimulated misreading of near-cognate but not of non-cognate aa-tRNAs, providing a functional probe to distinguish between these two classes. Deletion of the accessory elongation factor eEF1Bγ promoted increased misreading of near-cognate, but hyperaccurate reading of non-cognate codons, suggesting that this factor also has a role in tRNA discrimination. A mutant of eEF1Bα, the nucleotide exchange factor for eEF1A, promoted a general increase in fidelity, suggesting that the decreased rates of elongation may provide more time for discrimination between aa-tRNAs. A mutant form of ribosomal protein L5 promoted hyperaccurate decoding of both types of codons, even though it is topologically distant from the decoding center. Conclusions/Signficance It is important to distinguish between near-cognate and non-cognate mRNA:tRNA interactions, because such a definition may be important for informing therapeutic strategies for suppressing these two different categories of mutations underlying many human diseases. This study suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons in the ribosomal decoding center. An aminoglycoside and a ribosomal factor can be used to distinguish between near-cognate and non-cognate interactions.
Collapse
Affiliation(s)
- Ewan P. Plant
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Phuc Nguyen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan R. Russ
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Yvette R. Pittman
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Thai Nguyen
- The Science and Technology Center at Eleanor Roosevelt High School, Greenbelt, Maryland, United States of America
| | | | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
61
|
Abstract
During translation, mRNA is threaded through the ribosome in precise and directional three-nucleotide steps. A recent paper identifies a new GTPase, LepA, which catalyzes unexpected one-codon backward movement on the ribosome.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
62
|
Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, Nierhaus KH. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 2006; 127:721-33. [PMID: 17110332 DOI: 10.1016/j.cell.2006.09.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/09/2006] [Accepted: 09/14/2006] [Indexed: 11/22/2022]
Abstract
The ribosomal elongation cycle describes a series of reactions prolonging the nascent polypeptide chain by one amino acid and driven by two universal elongation factors termed EF-Tu and EF-G in bacteria. Here we demonstrate that the extremely conserved LepA protein, present in all bacteria and mitochondria, is a third elongation factor required for accurate and efficient protein synthesis. LepA has the unique function of back-translocating posttranslocational ribosomes, and the results suggest that it recognizes ribosomes after a defective translocation reaction and induces a back-translocation, thus giving EF-G a second chance to translocate the tRNAs correctly. We suggest renaming LepA as elongation factor 4 (EF4).
Collapse
Affiliation(s)
- Yan Qin
- Max-Planck-Institut für molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Søe R, Mosley RT, Justice M, Nielsen-Kahn J, Shastry M, Merrill AR, Andersen GR. Sordarin derivatives induce a novel conformation of the yeast ribosome translocation factor eEF2. J Biol Chem 2006; 282:657-66. [PMID: 17082187 DOI: 10.1074/jbc.m607830200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sordarins are fungal specific inhibitors of the translation factor eEF2, which catalyzes the translocation of tRNA and mRNA after peptide bond formation. We have determined the crystal structures of eEF2 in complex with two novel sordarin derivatives. In both structures, the three domains of eEF2 that form the ligand-binding pocket are oriented in a different manner relative to the rest of eEF2 compared with our previous structure of eEF2 in complex with the parent natural product sordarin. Yeast eEF2 is also shown to bind adenylic nucleotides, which can be displaced by sordarin, suggesting that ADP or ATP also bind to the three C-terminal domains of eEF2. Fusidic acid is a universal inhibitor of translation that targets EF-G or eEF2 and is widely used as an antibiotic against Gram-positive bacteria. Based on mutations conferring resistance to fusidic acid, cryo-EM reconstructions, and x-ray structures of eEF2, EF-G, and an EF-G homolog, we suggest that the conformation of EF-G stalled on the 70 S ribosome by fusidic acid is similar to that of eEF2 trapped on the 80 S ribosome by sordarin.
Collapse
Affiliation(s)
- Rikke Søe
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
64
|
Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem 2006; 281:32318-26. [PMID: 16954224 DOI: 10.1074/jbc.m601899200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
65
|
Andersen CBF, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CMT, Kinzy TG, Andersen GR, Beckmann R. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 2006; 443:663-8. [PMID: 16929303 DOI: 10.1038/nature05126] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 08/03/2006] [Indexed: 11/08/2022]
Abstract
Elongation factor eEF3 is an ATPase that, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aminoacyl-tRNA-eEF1A-GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here we present the crystal structure of Saccharomyces cerevisiae eEF3, showing that it consists of an amino-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains, with a chromodomain inserted in ABC2. Moreover, we present the cryo-electron microscopy structure of the ATP-bound form of eEF3 in complex with the post-translocational-state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain likely to stabilize the ribosomal L1 stalk in an open conformation, thus allowing tRNA release.
Collapse
Affiliation(s)
- Christian B F Andersen
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Pittman YR, Valente L, Jeppesen MG, Andersen GR, Patel S, Kinzy TG. Mg2+ and a key lysine modulate exchange activity of eukaryotic translation elongation factor 1B alpha. J Biol Chem 2006; 281:19457-68. [PMID: 16675455 DOI: 10.1074/jbc.m601076200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To sustain efficient translation, eukaryotic elongation factor B alpha (eEF1B alpha) functions as the guanine nucleotide exchange factor for eEF1A. Stopped-flow kinetics using 2'-(or 3')-O-N-methylanthraniloyl (mant)-GDP showed spontaneous release of nucleotide from eEF1A is extremely slow and accelerated 700-fold by eEF1B alpha. The eEF1B alpha-stimulated reaction was inhibited by Mg2+ with a K(1/2) of 3.8 mM. Previous structural studies predicted the Lys-205 residue of eEF1B alpha plays an important role in promoting nucleotide exchange by disrupting the Mg2+ binding site. Co-crystal structures of the lethal K205A mutant in the catalytic C terminus of eEF1B alpha with eEF1A and eEF1A.GDP established that the lethality was not due to a structural defect. Instead, the K205A mutant drastically reduced the nucleotide exchange activity even at very low concentrations of Mg2+. A K205R eEF1B alpha mutant on the other hand was functional in vivo and showed nearly wild-type nucleotide dissociation rates but almost no sensitivity to Mg2+. These results indicate the significant role of Mg2+ in the nucleotide exchange reaction by eEF1B alpha and establish the catalytic function of Lys-205 in displacing Mg2+ from its binding site.
Collapse
Affiliation(s)
- Yvette R Pittman
- Department of Molecular Genetics, Microbiology & Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | | | |
Collapse
|
67
|
Xu J, Kiel MC, Golshani A, Chosay JG, Aoki H, Ganoza MC. Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes. Nucleic Acids Res 2006; 34:1158-65. [PMID: 16495476 PMCID: PMC1383619 DOI: 10.1093/nar/gkj508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously isolated and described an Escherichia coli ribosome-bound ATPase, RbbA, that is required for protein synthesis in the presence of ATP, GTP and the elongation factors, EF-Tu and EF-G. The gene encoding RbbA, yhih, has been cloned and the deduced protein sequence harbors two ATP-motifs and one RNA-binding motif and is homologous to the fungal EF-3. Here, we describe the isolation and assay of a truncated form of the RbbA protein that is stable to overproduction and purification. Chemical protection results show that the truncated RbbA specifically protects nucleotide A937 on the 30S subunit of ribosomes, and the protected site occurs at the E-site where the tRNA is ejected upon A-site occupation. Other weakly protected bases in the region occur at or near the mRNA binding site. Using radiolabeled tRNAs, we study the stimulating effect of this truncated RbbA on the binding and release of different tRNAs bound to the (aminoacyl) A-, (peptidyl) P- and (exit) E-sites of 70S ribosomes. The combined data suggest plausible mechanisms for the function of RbbA in translation.
Collapse
Affiliation(s)
| | - M. C. Kiel
- Science Department, Marywood University2300 Adams Avenue, Scranton, PA 18509, USA
| | - A. Golshani
- Department of Science, Carleton University1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - J. G. Chosay
- Pfizer Pharmaceuticals5/MS-1, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | | - M. C. Ganoza
- To whom correspondence should be addressed. Tel: +1 416 978 8918; Fax: +1 416 978 8528;
| |
Collapse
|
68
|
Shenvi CL, Dong KC, Friedman EM, Hanson JA, Cate JHD. Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics. RNA (NEW YORK, N.Y.) 2005; 11:1898-908. [PMID: 16314459 PMCID: PMC1370877 DOI: 10.1261/rna.2192805] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 05/05/2023]
Abstract
Protein biosynthesis requires numerous conformational rearrangements within the ribosome. The structural core of the ribosome is composed of RNA and is therefore dependent on counterions such as magnesium ions for function. Many steps of translation can be compromised or inhibited if the concentration of Mg(2+) is too low or too high. Conditions previously used to probe the conformation of the mammalian ribosome in vitro used high Mg(2+) concentrations that we find completely inhibit translation in vitro. We have therefore probed the conformation of the small ribosomal subunit in low concentrations of Mg(2+) that support translation in vitro and compared it with the conformation of the 40S subunit at high Mg(2+) concentrations. In low Mg(2+) concentrations, we find significantly more changes in chemical probe accessibility in the 40S subunit due to subunit association or binding of the hepatitis C internal ribosomal entry site (HCV IRES) than had been observed before. These results suggest that the ribosome is more dynamic in its functional state than previously appreciated.
Collapse
Affiliation(s)
- Christina L Shenvi
- Department of Chemistry, University of California, 202 Melvin Calvin Lab, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
69
|
Dong J, Lai R, Jennings JL, Link AJ, Hinnebusch AG. The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis. Mol Cell Biol 2005; 25:9859-73. [PMID: 16260602 PMCID: PMC1280274 DOI: 10.1128/mcb.25.22.9859-9873.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/05/2005] [Accepted: 08/15/2005] [Indexed: 01/01/2023] Open
Abstract
ARB1 is an essential yeast protein closely related to members of a subclass of the ATP-binding cassette (ABC) superfamily of proteins that are known to interact with ribosomes and function in protein synthesis or ribosome biogenesis. We show that depletion of ARB1 from Saccharomyces cerevisiae cells leads to a deficit in 18S rRNA and 40S subunits that can be attributed to slower cleavage at the A0, A1, and A2 processing sites in 35S pre-rRNA, delayed processing of 20S rRNA to mature 18S rRNA, and a possible defect in nuclear export of pre-40S subunits. Depletion of ARB1 also delays rRNA processing events in the 60S biogenesis pathway. We further demonstrate that ARB1 shuttles from nucleus to cytoplasm, cosediments with 40S, 60S, and 80S/90S ribosomal species, and is physically associated in vivo with TIF6, LSG1, and other proteins implicated previously in different aspects of 60S or 40S biogenesis. Mutations of conserved ARB1 residues expected to function in ATP hydrolysis were lethal. We propose that ARB1 functions as a mechanochemical ATPase to stimulate multiple steps in the 40S and 60S ribosomal biogenesis pathways.
Collapse
Affiliation(s)
- Jinsheng Dong
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
70
|
Sergiev PV, Lesnyak DV, Kiparisov SV, Burakovsky DE, Leonov AA, Bogdanov AA, Brimacombe R, Dontsova OA. Function of the ribosomal E-site: a mutagenesis study. Nucleic Acids Res 2005; 33:6048-56. [PMID: 16243787 PMCID: PMC1266066 DOI: 10.1093/nar/gki910] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosomes synthesize proteins according to the information encoded in mRNA. During this process, both the incoming amino acid and the nascent peptide are bound to tRNA molecules. Three binding sites for tRNA in the ribosome are known: the A-site for aminoacyl-tRNA, the P-site for peptidyl-tRNA and the E-site for the deacylated tRNA leaving the ribosome. Here, we present a study of Escherichia coli ribosomes with the E-site binding destabilized by mutation C2394G of the 23S rRNA. Expression of the mutant 23S rRNA in vivo caused increased frameshifting and stop codon readthrough. The progression of these ribosomes through the ribosomal elongation cycle in vitro reveals ejection of deacylated tRNA during the translocation step or shortly after. E-site compromised ribosomes can undergo translocation, although in some cases it is less efficient and results in a frameshift. The mutation affects formation of the P/E hybrid site and leads to a loss of stimulation of the multiple turnover GTPase activity of EF-G by deacylated tRNA bound to the ribosome.
Collapse
Affiliation(s)
| | - Dmitry V. Lesnyak
- Department of Bioinformatics and Bioengineering, Moscow State UniversityMoscow, 119899, Russia
| | | | | | | | | | | | - Olga A. Dontsova
- To whom correspondence should be addressed. Tel: +7 095 9328824; Fax: +7 095 9393181;
| |
Collapse
|
71
|
Ebstrup T, Saalbach G, Egsgaard H. A proteomics study ofin vitro cyst germination and appressoria formation inPhytophthora infestans. Proteomics 2005; 5:2839-48. [PMID: 15996011 DOI: 10.1002/pmic.200401173] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A proteomics study using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed on Phytophthora infestans. Proteins from cysts, germinated cysts and appressoria grown in vitro were isolated and separated by 2-DE. Statistical quantitative analysis of the protein spots from five independent experiments of each developmental stage revealed significant up-regulation of ten spots on gels from germinated cysts compared to cysts. Five spots were significantly up-regulated on gels from appressoria compared to germinated cysts and one of these up-regulated spots was not detectable on gels from cysts. In addition, one spot was significantly down-regulated and another spot not detectable on the gels from appressoria. The corresponding proteins to 13 of these spots were identified with high confidence using tandem mass spectrometry and database searches. The functions of the proteins that were up-regulated in germinated cysts and appressoria can be grouped into the following categories: protein synthesis (e.g. a DEAD box RNA helicase), amino acid metabolism, energy metabolism and reactive oxygen species scavenging. The spot not detected in appressoria was identified as the P. infestans crinkling- and necrosis-inducing protein CRN2. The identified proteins are most likely involved in the establishment of the infection of the host plant.
Collapse
Affiliation(s)
- Tine Ebstrup
- Biosystems Department, Risoe National Laboratory, Roskilde, Denmark.
| | | | | |
Collapse
|
72
|
Sattlegger E, Hinnebusch AG. Polyribosome Binding by GCN1 Is Required for Full Activation of Eukaryotic Translation Initiation Factor 2α Kinase GCN2 during Amino Acid Starvation. J Biol Chem 2005; 280:16514-21. [PMID: 15722345 DOI: 10.1074/jbc.m414566200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase GCN2 mediates translational control of gene expression in amino acid-starved cells by phosphorylating eukaryotic translation initiation factor 2alpha. In Saccharomyces cerevisiae, activation of GCN2 by uncharged tRNAs in starved cells requires its direct interaction with both the GCN1.GCN20 regulatory complex and ribosomes. GCN1 also interacts with ribosomes in cell extracts, but it was unknown whether this activity is crucial for its ability to stimulate GCN2 function in starved cells. We describe point mutations in two conserved, noncontiguous segments of GCN1 that lead to reduced polyribosome association by GCN1.GCN20 in living cells without reducing GCN1 expression or its interaction with GCN20. Mutating both segments simultaneously produced a greater reduction in polyribosome binding by GCN1.GCN20 and a stronger decrease in eukaryotic translation initiation factor 2alpha phosphorylation than did mutating in one segment alone. These findings provide strong evidence that ribosome binding by GCN1 is required for its role as a positive regulator of GCN2. A particular mutation in the GCN1 domain, related in sequence to translation elongation factor 3 (eEF3), decreased GCN2 activation much more than it reduced ribosome binding by GCN1. Hence, the eEF3-like domain appears to have an effector function in GCN2 activation. This conclusion supports the model that an eEF3-related activity of GCN1 influences occupancy of the ribosomal decoding site by uncharged tRNA in starved cells.
Collapse
Affiliation(s)
- Evelyn Sattlegger
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
73
|
Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG. The Essential ATP-binding Cassette Protein RLI1 Functions in Translation by Promoting Preinitiation Complex Assembly. J Biol Chem 2004; 279:42157-68. [PMID: 15277527 DOI: 10.1074/jbc.m404502200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RLI1 is an essential yeast protein closely related in sequence to two soluble members of the ATP-binding cassette family of proteins that interact with ribosomes and function in translation elongation (YEF3) or translational control (GCN20). We show that affinity-tagged RLI1 co-purifies with eukaryotic translation initiation factor 3 (eIF3), eIF5, and eIF2, but not with other translation initiation factors or with translation elongation or termination factors. RLI1 is associated with 40 S ribosomal subunits in vivo, but it can interact with eIF3 and -5 independently of ribosomes. Depletion of RLI1 in vivo leads to cessation of growth, a lower polysome content, and decreased average polysome size. There was also a marked reduction in 40 S-bound eIF2 and eIF1, consistent with an important role for RLI1 in assembly of 43 S preinitiation complexes in vivo. Mutations of conserved residues in RLI1 expected to function in ATP hydrolysis were lethal. A mutation in the second ATP-binding cassette domain of RLI1 had a dominant negative phenotype, decreasing the rate of translation initiation in vivo, and the mutant protein inhibited translation of a luciferase mRNA reporter in wild-type cell extracts. These findings are consistent with a direct role for the ATP-binding cassettes of RLI1 in translation initiation. RLI1-depleted cells exhibit a deficit in free 60 S ribosomal subunits, and RLI1-green fluorescent protein was found in both the nucleus and cytoplasm of living cells. Thus, RLI1 may have dual functions in translation initiation and ribosome biogenesis.
Collapse
Affiliation(s)
- Jinsheng Dong
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
74
|
Kerr ID. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem Biophys Res Commun 2004; 315:166-73. [PMID: 15013441 DOI: 10.1016/j.bbrc.2004.01.044] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 11/16/2022]
Abstract
Genome sequencing has identified open reading frames which belong to the ATP binding cassette (ABC) transporter family, but which are unlikely to be involved in transport phenomena. These frequently contain a pair of nucleotide binding domains (NBD) with no associated transmembrane domains. The functions of many of these twin-NBD proteins remain unknown. In this manuscript, sequence analysis has been employed to analyse two families of twin-NBD proteins, ABCE and ABCF. The ABCE proteins, postulated to be inhibitors of RNase L, are identified by two potential Fe-S metal-binding domains in addition to two NBDs. Surprisingly, ABCE homologues are identified in numerous species which apparently lack an RNase L, questioning the proposed function of these proteins. The ABCF proteins can be sub-divided into more than a dozen sub-classes. Intriguingly, sequence similarity is shown between eukaryotic ABCF proteins, which are involved in translation initiation and elongation, and prokaryotic ABCF proteins which are implicated in resistance to macrolide inhibitors of protein synthesis.
Collapse
Affiliation(s)
- Ian D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
75
|
Anand M, Chakraburtty K, Marton MJ, Hinnebusch AG, Kinzy TG. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem 2003; 278:6985-91. [PMID: 12493761 DOI: 10.1074/jbc.m209224200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation elongation machinery in fungi differs from other eukaryotes in its dependence upon eukaryotic elongation factor 3 (eEF3). eEF3 is essential in vivo and required for each cycle of the translation elongation process in vitro. Models predict eEF3 affects the delivery of cognate aminoacyl-tRNA, a function performed by eEF1A, by removing deacylated tRNA from the ribosomal Exit site. To dissect eEF3 function and its link to the A-site activities of eEF1A, we have identified a temperature-sensitive allele of the YEF3 gene. The F650S substitution, located between the two ATP binding cassettes, reduces both ribosome-dependent and intrinsic ATPase activities. In vivo this mutation increases sensitivity to aminoglycosidic drugs, causes a 50% reduction of total protein synthesis at permissive temperatures, slows run-off of polyribosomes, and reduces binding to eEF1A. Reciprocally, excess eEF3 confers synthetic slow growth, increased drug sensitivity, and reduced translation in an allele specific fashion with an E122K mutation in the GTP binding domain of eEF1A. In addition, this mutant form of eEF1A shows reduced binding of eEF3. Thus, optimal in vivo interactions between eEF3 and eEF1A are critical for protein synthesis.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology & Immunology, University of Medicine and Dentistry of New Jersey Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
76
|
Morgan DG, Ménétret JF, Neuhof A, Rapoport TA, Akey CW. Structure of the mammalian ribosome-channel complex at 17A resolution. J Mol Biol 2002; 324:871-86. [PMID: 12460584 DOI: 10.1016/s0022-2836(02)01111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The co-translational translocation of proteins into the endoplasmic reticulum (ER) lumen and the biogenesis of membrane proteins require ribosome binding to a membrane channel formed by the Sec61p complex. We now report the 17A structure of a mammalian ribosome-channel complex derived from ER membranes. Atomic models of the ribosomal subunits were aligned to the programmed ribosome from Thermus thermophilus, to provide a common reference frame. The T.thermophilus ribosome, and by extension all known high resolution subunit models, were then docked within our map of the ribosome-channel complex. The structure shows that the ribosome contains a putative tRNA in the exit site, and a comparison with a non-programmed, yeast ribosome suggests that the L1 stalk may function as a gate in the tRNA exit path. We have localized six major expansion segments in the large subunit of the vertebrate ribosome including ES27, and suggest a function for ES30. The large ribosomal subunit is linked to the channel by four connections. We identified regions in the large subunit rRNA and four proteins that may help form the connections. These regions of the ribosome probably serve as a template to guide the assembly of the asymmetric translocation channel. Three of the connections form a picket fence that separates the putative translocation pore from the attachment site of an additional membrane component. The ribosome-channel connections also create an open junction that would allow egress of a nascent chain into the cytosol. At a threshold that is appropriate for the entire complex, the channel is rather solid and the lumenal half of the putative translocation pore is closed. These data suggest that the flow of small molecules across the membrane may be impeded by the channel itself, rather than the ribosome-channel junction.
Collapse
Affiliation(s)
- David Gene Morgan
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | |
Collapse
|
77
|
Sturtevant J. Translation elongation-3-like factors: are they rational antifungal targets? Expert Opin Ther Targets 2002; 6:545-53. [PMID: 12387678 DOI: 10.1517/14728222.6.5.545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The occurrence of fungal infection has escalated significantly in recent years and is expected to continue to increase for the foreseeable future. Unfortunately, only a limited number of antifungal drugs are currently available partially due to a lack of suitable targets. The most commonly used antifungals target the same molecule in the cell membrane and, while efficacious, are either extremely toxic or susceptible to resistance. This article examines elongation factor-3, which is unique to fungi and essential for fungal cell survival and, thus, an attractive antifungal target. A search for inhibitors of this 'perfect target' led to identification of compounds (sordarins) which inhibited elongation factor-2, a protein with a mammalian homologue. Molecular analysis demonstrated why sordarins can specifically act against fungal elongation factor-2. This data questions the validity of pursuing genes as targets only if they are unique to fungi. Proteins that are homologous to elongation factor-3 are also discussed. The advances in molecular techniques and bioinformatics will allow the re-evaluation of targets previously thought to be unattractive. In addition, molecular genetics provides new and novel information on cellular processes that can potentially introduce new targets.
Collapse
Affiliation(s)
- Joy Sturtevant
- Dept of Microbiology, Immunology and Parasitology, Center of Excellence in Oral and Craniofacial Biology, LSU Health Sciences Center - School of Dentistry, 1100 Florida Ave, Box F8-130, New Orleans, LA 70119, USA.
| |
Collapse
|
78
|
Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. Dissection of the mechanism for the stringent factor RelA. Mol Cell 2002; 10:779-88. [PMID: 12419222 DOI: 10.1016/s1097-2765(02)00656-1] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During conditions of nutrient deprivation, ribosomes are blocked by uncharged tRNA at the A site. The stringent factor RelA binds to blocked ribosomes and catalyzes synthesis of (p)ppGpp, a secondary messenger that induces the stringent response. We demonstrate that binding of RelA and (p)ppGpp synthesis are inversely coupled, i.e., (p)ppGpp synthesis decreases the affinity of RelA for the ribosome. RelA binding to ribosomes is governed primarily by mRNA, but independently of ribosomal protein L11, while (p)ppGpp synthesis strictly requires uncharged tRNA at the A site and the presence of L11. A model is proposed whereby RelA hops between blocked ribosomes, providing an explanation for how low intracellular concentrations of RelA (1/200 ribosomes) can synthesize (p)ppGpp at levels that accurately reflect the starved ribosome population.
Collapse
Affiliation(s)
- Thomas M Wendrich
- Fachbereich Chemie-Biochemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany
| | | | | | | | | |
Collapse
|
79
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
80
|
Kimball SR. Regulation of translation initiation by amino acids in eukaryotic cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:155-84. [PMID: 11575165 DOI: 10.1007/978-3-642-56688-2_6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translation of mRNA in eukaryotic cells is regulated by amino acids through multiple mechanisms. One such mechanism involves activation of mTOR (Fig. 1). mTOR controls a myriad of downstream effectors, including RNA polymerase I, S6K1, 4E-BP1, and eEF2 kinase. In yeast, and probably in higher eukaryotes, mTOR signals through Tap42p/alpha 4 to regulate protein phosphatases. Through phosphorylation of Tap42p/alpha 4, mTOR abrogates dephosphorylation of the downstream effectors by PP2 A and/or PP6, resulting in their increased phosphorylation. Although at this time still speculative, in vitro results using mTOR immunoprecipitates suggest that mTOR, or an associated kinase, may also be directly involved in phosphorylating some effectors. Enhanced RNA polymerase I activity results in increased transcription of rDNA genes, whereas increased S6K1 activity promotes preferential translation of TOP mRNAs, such as those encoding ribosomal proteins. Together, stimulated RNA polymerase I and S6K1 activities enhance ribosome biogenesis, increasing the translational capacity of the cell. Phosphorylation of 4E-BP1 prohibits its association with eIF4E, allowing eIF4E to bind to eIF4G and form the active eIF4F complex. Increased eIF4F formation preferentially stimulates translation of mRNAs containing long, highly-structured 5' UTRs. Finally, amino acids cause inhibition of the eEF2 kinase, resulting in an increase in the proportion of eEF2 in the active, dephosphorylated form. By inhibiting eEF2 phosphorylation, amino acids may not only stimulate translation elongation, but may also prevent activation of GCN2 by enhancing the rate of removal of deacylated tRNA from the P-site on the ribosome; a potential activator of GCN2. GCN2 may also be regulated directly by the accumulation of deacylated-tRNA caused by treatment with inhibitors of tRNA synthetases or in cells incubated in the absence of essential amino acids. However, because the Km of the tRNA synthetases for amino acids is well above the amino acid concentrations found in plasma of fasted animals, such a mechanism may not be operative in mammals in vivo. Activation of GCN2 results in increased phosphorylation of the alpha-subunit of eIF2, which in turn causes inhibition of eIF2B. Thus, by preventing activation of GCN2, amino acids preserve eIF2B activity, which promotes translation of all mRNAs, i.e., global protein synthesis is enhanced.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acids, Essential/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- DNA-Binding Proteins
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B/metabolism
- Fungal Proteins/genetics
- Humans
- Models, Biological
- Peptide Chain Initiation, Translational/physiology
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomal Protein S6 Kinases/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Signal Transduction
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
81
|
Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell 2001; 107:373-86. [PMID: 11701127 DOI: 10.1016/s0092-8674(01)00539-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Blakely G, Hekman J, Chakraburtty K, Williamson PR. Evolutionary divergence of an elongation factor 3 from Cryptococcus neoformans. J Bacteriol 2001; 183:2241-8. [PMID: 11244063 PMCID: PMC95130 DOI: 10.1128/jb.183.7.2241-2248.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Elongation factor 3 (EF3) is considered a promising drug target for the control of fungal diseases because of its requirement for protein synthesis and survival of fungi and a lack of EF3 in the mammalian host. However, EF3 has been characterized only in ascomycete yeast. In order to understand the role of EF3 in a basidiomycete yeast, we cloned the gene encoding EF3 from Cryptococcus neoformans (CnEF3), an important fungal pathogen in immunocompromised patients, including those infected with human immunodeficiency virus. CnEF3 was found to encode a 1,055-amino-acid protein and has 44% identity with EF3 from Saccharomyces cerevisiae (YEF3). Expressed CnEF3 exhibited ATPase activity that was only modestly stimulated by ribosomes from S. cerevisiae. In contrast, CnEF3 showed tight binding to cryptococcal ribosomes, as shown by an inability to be removed under conditions which successfully remove Saccharomyces EF3 from ribosomes (0.5 M KCl or 2 M LiCl). CnEF3 also poorly complemented a YEF3 defect in a diploid null mutant and two temperature-sensitive mutants which have been shown previously to be complemented well by EF3 from other ascomycetes, such as Candida albicans. These data clearly identify the presence of a functioning EF3 in the basidiomycete yeast C. neoformans, which demonstrates an evolutionary divergence from EF3 of ascomycete yeast.
Collapse
Affiliation(s)
- G Blakely
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
83
|
Abstract
Elongation factor 3 is a cytosolic protein required by the fungal ribosomes for in vitro protein synthesis and for in vivo growth. EF-3 stimulates binding of EF-1:GTP:aa-tRNA ternary complex to the ribosomal A site by facilitated release of the deacylated tRNA from the E site. The reaction requires ATP hydrolysis. EF-3 contains two ATP binding sequence (NBS) motifs. NBSI is sufficient for the intrinsic ATPase activity. NBSII is essential for the ribosome-stimulated functions.
Collapse
Affiliation(s)
- K Chakraburtty
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
84
|
Kiel MC, Ganoza MC. Functional interactions of an Escherichia coli ribosomal ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:278-86. [PMID: 11168361 DOI: 10.1046/j.1432-1033.2001.01873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding ribosome-bound ATPase (RbbA), which occurs bound to 70S ribosomes and 30S subunits, has been identified. The amino-acid sequence of RbbA reveals the presence of two ATP-binding domains in the N-terminal half of the protein. RbbA harbors an intrinsic ATPase activity that is stimulated by both 70S ribosomes and 30S subunits. Here we show that purified recombinant RbbA markedly stimulates polyphenylalanine synthesis in the presence of the elongation factors Tu and G (EF-Tu and EF-G) and that the hydrolysis of ATP by RbbA is required to stimulate synthesis. RbbA is reported to have affinity for EF-Tu but not for EF-G. Additionally, RbbA copurifies with 30S ribosomal subunits and can be crosslinked to the ribosomal protein S1. Studies using a spectrum of antibiotics, including some of similar function, revealed that hygromycin, which binds to the 30S subunit, has a significant effect on the ATPase activity and on the affinity of RbbA for ribosomes. A possible role for RbbA in protein-chain elongation is proposed.
Collapse
Affiliation(s)
- M C Kiel
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, ON, Canada M5G 1L6
| | | |
Collapse
|
85
|
Kambampati R, Pellegrino C, Paiva A, Huang L, Mende-Mueller L, Chakraburtty K. Limited proteolysis of yeast elongation factor 3. Sequence and location of the subdomains. J Biol Chem 2000; 275:16963-8. [PMID: 10747994 DOI: 10.1074/jbc.m001157200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor 3 (EF-3) is an ATPase essential for polypeptide chain synthesis in a variety of yeasts and fungi. We used limited proteolysis to study the organization of the subdomains of EF-3. Trypsinolysis of EF-3 at 30 degrees C resulted in the formation of three fragments with estimated molecular masses of 90, 70, and 50 kDa. Yeast ribosomes protected EF-3 and the large fragments from further degradation. ATP exposed a new tryptic cleavage site and stabilized the 70- and 50-kDa fragments. The conformation of EF-3 as measured by fluorescence spectroscopy did not change upon ATP binding. Poly(G) stimulated proteolysis and quenched the intrinsic fluorescence of EF-3. Using gel mobility shift, we demonstrated a direct interaction between EF-3 and tRNA. Neither tRNA nor rRNA altered the tryptic cleavage pattern. The proteolytic products were sequenced by mass spectrometric analysis. EF-3 is blocked NH(2)-terminally by an acetylated serine. The 90-, 70-, and 50-kDa fragments are also blocked NH(2)-terminally, confirming their origin. The 50-kDa fragment (Ser(2)-Lys(443)) is the most stable domain in EF-3 with no known function. The 70-kDa fragment (Ser(2)-Lys(668)) containing the first nucleotide-binding sequence motif forms the core ATP binding subdomain within the 90-kDa domain. The primary ribosome binding site is located near the loosely structured carboxyl-terminal end.
Collapse
Affiliation(s)
- R Kambampati
- Department of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
86
|
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 2000; 19:2710-8. [PMID: 10835368 PMCID: PMC212750 DOI: 10.1093/emboj/19.11.2710] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Revised: 03/28/2000] [Accepted: 04/04/2000] [Indexed: 11/14/2022] Open
Abstract
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.
Collapse
Affiliation(s)
- M G Gomez-Lorenzo
- Health Research Inc. at Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 2000; 19:1887-99. [PMID: 10775272 PMCID: PMC302013 DOI: 10.1093/emboj/19.8.1887] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stimulation of GCN4 mRNA translation due to phosphorylation of the alpha-subunit of initiation factor 2 (eIF2) by its specific kinase, GCN2, requires binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-like domain in GCN2. GCN2 function in vivo also requires GCN1 and GCN20, but it was unknown whether these latter proteins act directly to promote the stimulation of GCN2 by uncharged tRNA. We found that the GCN1-GCN20 complex physically interacts with GCN2, binding to the N-terminus of the protein. Overexpression of N-terminal GCN2 segments had a dominant-negative phenotype that correlated with their ability to interact with GCN1-GCN20 and impede association between GCN1 and native GCN2. Consistently, this Gcn(-) phenotype was suppressed by overexpressing GCN2, GCN1-GCN20 or tRNA(His). The requirement for GCN1 was also reduced by overexpressing tRNA(His) in a gcn1Delta strain. We conclude that binding of GCN1-GCN20 to GCN2 is required for its activation by uncharged tRNA. The homologous N-terminus of Drosophila GCN2 interacted with yeast GCN1-GCN20 and had a dominant Gcn(-) phenotype, suggesting evolutionary conservation of this interaction.
Collapse
Affiliation(s)
- M Garcia-Barrio
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
88
|
Rodríguez-Gabriel MA, Remacha M, Ballesta JP. The RNA interacting domain but not the protein interacting domain is highly conserved in ribosomal protein P0. J Biol Chem 2000; 275:2130-6. [PMID: 10636918 DOI: 10.1074/jbc.275.3.2130] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein P0 interacts with proteins P1alpha, P1beta, P2alpha, and P2beta, and forms the Saccharomyces cerevisiae ribosomal stalk. The capacity of RPP0 genes from Aspergillus fumigatus, Dictyostelium discoideum, Rattus norvegicus, Homo sapiens, and Leishmania infantum to complement the absence of the homologous gene has been tested. In S. cerevisiae W303dGP0, a strain containing standard amounts of the four P1/P2 protein types, all heterologous genes were functional except the one from L. infantum, some of them inducing an osmosensitive phenotype at 37 degrees C. The polymerizing activity and the elongation factor-dependent functions but not the peptide bond formation capacity is affected in the heterologous P0 containing ribosomes. The heterologous P0 proteins bind to the yeast ribosomes but the composition of the ribosomal stalk is altered. Only proteins P1alpha and P2beta are found in ribosomes carrying the A. fumigatus, R. norvegicus, and H. sapiens proteins. When the heterologous genes are expressed in a conditional null-P0 mutant whose ribosomes are totally deprived of P1/P2 proteins, none of the heterologous P0 proteins complemented the conditional phenotype. In contrast, chimeric P0 proteins made of different amino-terminal fragments from mammalian origin and the complementary carboxyl-terminal fragments from yeast allow W303dGP0 and D67dGP0 growth at restrictive conditions. These results indicate that while the P0 protein RNA-binding domain is functionally conserved in eukaryotes, the regions involved in protein-protein interactions with either the other stalk proteins or the elongation factors have notably evolved.
Collapse
Affiliation(s)
- M A Rodríguez-Gabriel
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Cientifícas, Cantoblanco, 28049 Madrid
| | | | | |
Collapse
|
89
|
Abstract
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.
Collapse
Affiliation(s)
- K Chakraburtty
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
90
|
Dabrowski M, Spahn CM, Schäfer MA, Patzke S, Nierhaus KH. Protection patterns of tRNAs do not change during ribosomal translocation. J Biol Chem 1998; 273:32793-800. [PMID: 9830024 DOI: 10.1074/jbc.273.49.32793] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation reaction of two tRNAs on the ribosome during elongation of the nascent peptide chain is one of the most puzzling reactions of protein biosynthesis. We show here that the ribosomal contact patterns of the two tRNAs at A and P sites, although strikingly different from each other, hardly change during the translocation reaction to the P and E sites, respectively. The results imply that the ribosomal micro-environment of the tRNAs remains the same before and after translocation and thus suggest that a movable ribosomal domain exists that tightly binds two tRNAs and carries them together with the mRNA during the translocation reaction from the A-P region to the P-E region. These findings lead to a new explanation for the translocation reaction.
Collapse
Affiliation(s)
- M Dabrowski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
91
|
Ladror US, Egan DA, Snyder SW, Capobianco JO, Goldman RC, Dorwin SA, Johnson RW, Edalji R, Sarthy AV, McGonigal T, Walter KA, Holzman TF. Domain structure analysis of elongation factor-3 from Saccharomyces cerevisiae by limited proteolysis and differential scanning calorimetry. Protein Sci 1998; 7:2595-601. [PMID: 9865954 PMCID: PMC2143895 DOI: 10.1002/pro.5560071213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elongation-factor-3 (EF-3) is an essential factor of the fungal protein synthesis machinery. In this communication the structure of EF-3 from Saccharomyces cerevisiae is characterized by differential scanning calorimetry (DSC), ultracentrifugation, and limited tryptic digestion. DSC shows a major transition at a relatively low temperature of 39 degrees C, and a minor transition at 58 degrees C. Ultracentrifugation shows that EF-3 is a monomer; thus, these transitions could not reflect the unfolding or dissociation of a multimeric structure. EF-3 forms small aggregates, however, when incubated at room temperature for an extended period of time. Limited proteolysis of EF-3 with trypsin produced the first cleavage at the N-side of Gln775, generating a 90-kDa N-terminal fragment and a 33-kDa C-terminal fragment. The N-terminal fragment slowly undergoes further digestion generating two major bands, one at approximately 75 kDa and the other at approximately 55 kDa. The latter was unusually resistant to further tryptic digestion. The 33-kDa C-terminal fragment was highly sensitive to tryptic digestion. A 30-min tryptic digest showed that the N-terminal 60% of EF-3 was relatively inaccessible to trypsin, whereas the C-terminal 40% was readily digested. These results suggest a tight structure of the N-terminus, which may give rise to the 58 degrees C transition, and a loose structure of the C-terminus, giving rise to the 39 degrees C transition. Three potentially functional domains of the protein were relatively resistant to proteolysis: the supposed S5-homologous domain (Lys102-Ile368), the N-terminal ATP-binding cassette (Gly463-Lys622), and the aminoacyl-tRNA-synthase homologous domain (Glu820-Gly865). Both the basal and ribosome-stimulated ATPase activities were inactivated by trypsin, but the ribosome-stimulated activity was inactivated faster.
Collapse
Affiliation(s)
- U S Ladror
- Pharmaceutical Discovery Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|
93
|
Georgopapadakou NH. Antifungals: mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol 1998; 1:547-57. [PMID: 10066533 DOI: 10.1016/s1369-5274(98)80087-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serious fungal infections, caused mostly by opportunistic species, are increasingly common in immunocompromised and other vulnerable patients. The use of antifungal drugs, primarily azoles and polyenes, has increased in parallel. Yet, established agents do not satisfy the medical need completely: azoles are fungistatic and vulnerable to resistance, whereas polyenes cause serious host toxicity. Drugs in clinical development include echinocandins, pneumocandins, and improved azoles. Promising novel agents in preclinical development include several inhibitors of fungal protein, lipid and cell wall syntheses. Recent advances in fungal genomics, combinatorial chemistry, and high-throughput screening may accelerate the antifungal discovery process.
Collapse
Affiliation(s)
- N H Georgopapadakou
- DuPont Pharmaceuticals Research Laboratories, Experimental Station, E400/3442, Rt 141 & Henry Clay Road, PO Box 80400, Wilmington DE 19880-0400, USA.
| |
Collapse
|
94
|
Maurice TC, Mazzucco CE, Ramanathan CS, Ryan BM, Warr GA, Puziss JW. A highly conserved intraspecies homolog of the Saccharomyces cerevisiae elongation factor-3 encoded by the HEF3 gene. Yeast 1998; 14:1105-13. [PMID: 9778796 DOI: 10.1002/(sici)1097-0061(19980915)14:12<1105::aid-yea313>3.0.co;2-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A paralog (intraspecies homolog) of the Saccharomyces cerevisiae YEF3 gene, encoding elongation factor-3, has been sequenced in the course of the yeast genome project, and identified by database searching; this gene has been designated HEF3. Bioinformatic and Northern blot analysis indicate that the HEF3 gene is not expressed during vegetative growth. Deletion of the HEF3 gene reveals no growth defects, nor any defects in mating or sporulation. A high copy 2 mu clone of HEF3 was constructed, and was shown to be unable to complement a null allele of yef3. Finally, an in vitro assay for ribosome-stimulated ATPase activity was performed with isogenic HEF3 and delta hef3 strains; no difference in biochemical activity could be detected in these strains. From these results, we conclude that the HEF3 gene does not encode a functional homolog of YEF3.
Collapse
Affiliation(s)
- T C Maurice
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA
| | | | | | | | | | | |
Collapse
|
95
|
Domínguez JM, Kelly VA, Kinsman OS, Marriott MS, Gómez de las Heras F, Martín JJ. Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 1998; 42:2274-8. [PMID: 9736548 PMCID: PMC105812 DOI: 10.1128/aac.42.9.2274] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GR135402, a sordarin derivative, was isolated in an antifungal screening program. GR135402, sordarin, and derivatives of both compounds were evaluated for their ability to inhibit cell-free translational systems from five different pathogenic fungi (Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and Cryptococcus neoformans). The activity profile of GR135402 is extended to other chemical compounds derived from sordarin. Experimental results indicate that sordarin analogs exert their antifungal effects by specifically inhibiting the protein synthesis elongation cycle in yeasts but do not affect protein synthesis machinery in mammalian systems. Intrinsically resistant strains owe their resistance to differences in the molecular target of sordarins in these strains. Preliminary studies performed to elucidate the mode of action of this new class of antifungal agents have shown that the putative target of sordarins is one of the protein synthesis elongation factors.
Collapse
Affiliation(s)
- J M Domínguez
- Departamento de Investigación, Glaxo Wellcome S.A., 28760-Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
96
|
Nakayama H, Izuta M, Nagahashi S, Sihta EY, Sato Y, Yamazaki T, Arisawa M, Kitada K. A controllable gene-expression system for the pathogenic fungus Candida glabrata. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2407-2415. [PMID: 9782488 DOI: 10.1099/00221287-144-9-2407] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A system for controlling gene expression was established in the pathogenic fungus Candida glabrata to elucidate the physiological functions of genes. To control the expression of the gene of interest, the C. glabrata cells were first transformed with the plasmid carrying the tetracycline repressor-transactivator fusion tetR::GAL4, then with the DNA fragment containing the controllable cassette, the tetracycline operator chimeric promoter (tetO::ScHOP1). The peptide elongation factor 3 (CgTEF3) and DNA topoisomerase II (CgTOP2) genes from C. glabrata were cloned and their expression assessed using this system. When the promoter of CgTEF3 or CgTOP2 was replaced with tetO::ScHOP1, doxycycline almost completely repressed the expression of both mRNAs, and impaired growth. Repression of the TOP2 or TEF3 gene by doxycycline also hampered the survival of C. glabrata cells in mice; in mouse kidneys the number of C. glabrata cells, in which the TOP2 or TEF3 promoter was replaced with the tetO::ScHOP1 controllable cassette, did not increase when the mice were given doxycycline. Thus, it appears that the gene repression mediated by doxycycline occurred not only in culture media but also in animals; therefore, this system can be used to elucidate the function of the gene in fungal infections and pathogenesis.
Collapse
Affiliation(s)
- Hironobu Nakayama
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Miho Izuta
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Shigehisa Nagahashi
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Emi Y Sihta
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Yasuko Sato
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Toshikazu Yamazaki
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Mikio Arisawa
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| | - Kunio Kitada
- Department of Mycology, Nippon Roche Research Center,200 Kajiwara, Kamakura, Kanagawa 247,Japan
| |
Collapse
|
97
|
Gontarek RR, Li H, Nurse K, Prescott CD. The N terminus of eukaryotic translation elongation factor 3 interacts with 18 S rRNA and 80 S ribosomes. J Biol Chem 1998; 273:10249-52. [PMID: 9553076 DOI: 10.1074/jbc.273.17.10249] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor-3 (EF-3) is an essential fungal-specific translation factor which exhibits a strong ribosome-dependent ATPase activity and has sequence homologies that may predict domains critical for its role in protein synthesis, including a domain at the N terminus, which exhibits sequence homology with Escherichia coli ribosomal protein S5. A portion of the N terminus of Saccharomyces cerevisiae EF-3 (spanning the S5 homology region) has been cloned, expressed, and purified from E. coli. UV cross-linking experiments revealed that the N-terminal EF-3 protein (N-term EF-3) can be specifically cross-linked to 18 S rRNA. Filter-binding assays confirmed these data, and also established that the interaction has a Kd approximately 238 nM. Additional evidence shows that N-term EF-3 is able to associate with yeast ribosomes and inhibit the ribosome-dependent ATPase activity of native EF-3. These data taken together suggest that at least one of the ribosome-binding sites of EF-3 is located at the N terminus.
Collapse
Affiliation(s)
- R R Gontarek
- RNA Research Group, Department of Molecular Recognition, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | |
Collapse
|
98
|
Sarthy AV, McGonigal T, Capobianco JO, Schmidt M, Green SR, Moehle CM, Goldman RC. Identification and kinetic analysis of a functional homolog of elongation factor 3, YEF3 in Saccharomyces cerevisiae. Yeast 1998; 14:239-53. [PMID: 9544245 DOI: 10.1002/(sici)1097-0061(199802)14:3<239::aid-yea219>3.0.co;2-b] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast and other fungi contain a soluble elongation factor 3 (EF-3) which is required for growth and protein synthesis. EF-3 contains two ABC cassettes, and binds and hydrolyses ATP. We identified a homolog of the YEF3 gene in the Saccharomyces cerevisiae genome database. This gene, designated YEF3B, is 84% identical in protein sequence to YEF3, which we will now refer to as YEF3A. YEF3B is not expressed during growth under laboratory conditions, and thus cannot rescue growth of YEF3A deletion strains. However, YEF3B can take the place of YEF3A in vivo when expressed from the YEF3A or ADH1 promoters. The products of the YEF3A and YEF3B genes, EF-3A and EF-3B, respectively, were expressed from the ADH1 promoter and purified. Both factors possessed basal and ribosomal-stimulated ATPase activity, and had similar affinity for yeast ribosomes (103 to 113 nM). K(m) values for ATP were similar, but the Kcat values differed significantly. Ribosome-dependent ATPase activity of EF-3A was more efficient than EF-3B, since the Kcat and Kcat/K(m) values for EF-3A were about two-fold higher; however, the difference in Kcat/K(m) values between the two factors was small for basal ATPase activity.
Collapse
Affiliation(s)
- A V Sarthy
- Abbott Laboratories, Department 47 M, Abbott Park, IL 60064-3500, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Nierhaus KH, Stuhrmann HB, Svergun D. The ribosomal elongation cycle and the movement of tRNAs across the ribosome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:177-204. [PMID: 9427843 DOI: 10.1016/s0079-6603(08)61032-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribosome research has reached an exciting state, where two lines of experimental research have considerably improved our understanding of the ribosomal functions. On one hand, functional analysis has elucidated principles of both the decoding process and the tRNA movement on the ribosome during translocation. Experimental data leading to current competing models of the ribosomal elongation cycle can be reconciled by a new model, the alpha-epsilon model, according to which both tRNAs are tightly bound to a movable ribosomal domain. This alpha-epsilon domain carries the tRNA2.mRNA complex from the A and P sites to the P and E sites in the course of translocation maintaining the binding of both tRNAs. On the other hand, the location of tRNAs within the elongating ribosome can be directly determined for the first time by neutron scattering and electron microscopy. Both lines of evidence complement each other and define a frame for the first experimentally sound functional model of the elongating ribosome.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
100
|
Schnitzer W, von Ahsen U. Identification of specific Rp-phosphate oxygens in the tRNA anticodon loop required for ribosomal P-site binding. Proc Natl Acad Sci U S A 1997; 94:12823-8. [PMID: 9371759 PMCID: PMC24222 DOI: 10.1073/pnas.94.24.12823] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
tRNA binding to the ribosomal P site is dependent not only on correct codon-anticodon interaction but also involves identification of structural elements of tRNA by the ribosome. By using a phosphorothioate substitution-interference approach, we identified specific nonbridging Rp-phosphate oxygens in the anticodon loop of tRNA(Phe) from Escherichia coli which are required for P-site binding. Stereospecific involvement of phosphate oxygens at these positions was confirmed by using synthetic anticodon arm analogues at which single Rp- or Sp-phosphorothioates were incorporated. Identical interference results with yeast tRNA(Phe) and E. coli tRNA(fMet) indicate a common backbone conformation or common recognition elements in the anticodon loop of tRNAs. N-ethyl-N-nitrosourea modification-interference experiments with natural tRNAs point to the importance of the same phosphates in the loop. Guided by the crystal structure of tRNA(Phe), we propose that specific Rp-phosphate oxygens are required for anticodon loop ("U-turn") stabilization or are involved in interactions with the ribosome on correct tRNA-mRNA complex formation.
Collapse
Affiliation(s)
- W Schnitzer
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | |
Collapse
|