51
|
Santos C, Rodríguez-Gabriel MA, Remacha M, Ballesta JPG. Ribosomal P0 protein domain involved in selectivity of antifungal sordarin derivatives. Antimicrob Agents Chemother 2004; 48:2930-6. [PMID: 15273103 PMCID: PMC478497 DOI: 10.1128/aac.48.8.2930-2936.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ribosomal stalk protein P0 is involved in the susceptibility to the antifungal sordarin derivatives, as reported for a number of Saccharomyces cerevisiae resistant mutants. Mammals and some lower eukaryotes are naturally resistant to these compounds. It is shown here that expression in S. cerevisiae of the ribosomal protein P0 from Homo sapiens and from other sordarin-resistant organisms results in a decrease in the sensitivity of the cells to an agent of this class. To further characterize the P0 region responsible for inducing sordarin resistance, a series of protein chimeras containing complementary regions of the human and yeast P0 proteins were constructed and expressed in yeast. The chimeras complement the absence of the native yeast P0 except in chimeras containing the human P0 carboxyl-terminal domain. Resistance to sordarins was found to be associated with the presence of an HsP0 amino acid sequence comprising P118 to F138, which unexpectedly led to higher resistance than the presence of the complete human P0. A comparison of the corresponding region in P0 from yeast and sordarin-insensitive organisms, followed by site-directed mutagenesis, indicates that residues in positions 119, 124, and 126 have an important role in determining resistance to sordarins. Moreover, since sordarins block the eukaryotic elongation factor 2 (EF2) function, the P0 region affecting sordarin susceptibility must correspond to EF2-interacting domains of the ribosomal stalk protein, which affects the drug-binding site in the elongation factor.
Collapse
Affiliation(s)
- C Santos
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Canto Blanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
52
|
Guarinos E, Santos C, Sánchez A, Qiu DY, Remacha M, Ballesta JPG. Tag-mediated fractionation of yeast ribosome populations proves the monomeric organization of the eukaryotic ribosomal stalk structure. Mol Microbiol 2004; 50:703-12. [PMID: 14617190 DOI: 10.1046/j.1365-2958.2003.03733.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The analysis of the not well understood composition of the stalk, a key ribosomal structure, in eukaryotes having multiple 12 kDa P1/P2 acidic protein components has been approached using these proteins tagged with a histidine tail at the C-terminus. Tagged Saccharomyces cerevisiae ribosomes, which contain two P1 proteins (P1 alpha and P1 beta) and two P2 proteins (P2 alpha and P2 beta), were fractionated by affinity chromatography and their stalk composition was determined. Different yeast strains expressing one or two tagged proteins and containing either a complete or a defective stalk were used. No indication of protein dimers was found in the tested strains. The results are only compatible with a stalk structure containing a single copy of each one of the four 12 kDa proteins per ribosome. Ribosomes having an incomplete stalk are found in wild-type cells. When one of the four proteins is missing, the ribosomes do not carry the three remaining proteins simultaneously, containing only two of them distributed in pairs made of one P1 and one P2. Ribosomes can carry two, one or no acidic protein pairs. The P1 alpha/P2 beta and P1beta/P2 alpha pairs are preferentially found in the ribosome, but they are not essential either for stalk assembly or function.
Collapse
Affiliation(s)
- Esther Guarinos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
53
|
Aruna K, Chakraborty T, Nambeesan S, Mannan AB, Sehgal A, Bhalchandara SR, Sharma S. Identification of a hypothetical membrane protein interactor of ribosomal phosphoprotein P0. J Biosci 2004; 29:33-43. [PMID: 15286401 DOI: 10.1007/bf02702559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosomal phosphoprotein P0 of the human malarial parasite Plasmodium falciparum (PfP0) has been identified as a protective surface protein. In Drosophila, P0 protein functions in the nucleus. The ribosomal function of P0 is mediated at the stalk of the large ribosomal subunit at the GTPase centre, where the elongation factor eEF2 binds. The multiple roles of the P0 protein presumably occur through interactions with other proteins. To identify such interacting protein domains, a yeast two-hybrid screen was carried out. Out of a set of sixty clones isolated, twelve clones that interacted strongly with both PfP0 and the Saccharomyces cerevisiae P0 (ScP0) protein were analysed. These belonged to three broad classes: namely (i) ribosomal proteins; (ii) proteins involved in nucleotide binding; and (iii) hypothetical integral membrane proteins. One of the strongest interactors (clone 67B) mapped to the gene YFL034W which codes for a hypothetical integral membrane protein, and is conserved amongst several eukaryotic organisms. The insert of clone 67B was expressed as a recombinant protein, and immunoprecipitaion (IP) reaction with anti-P0 antibodies pulled down this protein along with PfP0 as well as ScP0 protein. Using deletion constructions, the domain of ScP0, which interacted with clone 67B, was mapped to 60-148 amino acids. It is envisaged that the surface localization of P0 protein may be mediated through interactions with putative YFL034W-like proteins in P. falciparum.
Collapse
Affiliation(s)
- K Aruna
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
54
|
Sehgal A, Kumar N, Carruthers VB, Sharma S. Translocation of ribosomal protein P0 onto the Toxoplasma gondii tachyzoite surface. Int J Parasitol 2003; 33:1589-94. [PMID: 14636674 DOI: 10.1016/s0020-7519(03)00267-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A ribosomal phosphoprotein P0 detected on the surface of the human malarial parasite Plasmodium falciparum (PfP0) has been shown to be recognised by invasion blocking antibodies. Using cross-reactive polyclonal antibodies against PfP0, the surface localisation has also been demonstrated on certain mammalian cells, yeast and Toxoplasma gondii. We sought to characterise the phenomenon of surface localisation in Toxoplasma using T. gondii P0 protein. Sequence analysis of a cDNA clone isolated from a T. gondii library showed marked similarity to PfP0, suggesting that T. gondii expresses an orthologous gene, TgP0. The expression of TgP0 was corroborated by Northern blot analysis revealing a transcript of 1.8 kb in size. Immunofluorescence analysis using anti-PfP0 indicated surface localisation of TgP0. To confirm surface translocation of the TgP0, tachyzoites were transfected with the HA-tagged TgP0 gene followed by immunofluorescence detection of the HA-tag. Surface translocation of transiently expressed TgP0 and blocking of tachyzoite invasion of human foreskin fibroblasts by anti-PfP0 antibodies suggest that P0 protein plays an important role in T. gondii invasion of human cells.
Collapse
Affiliation(s)
- Alfica Sehgal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | | | |
Collapse
|
55
|
Kouyanou S, Santos C, Koliaraki V, Ballesta JPG. Protein BmP0 from the silkworm Bombyx mori can be assembled and is functional in the Saccharomyces cerevisiae ribosomal stalk in the absence of the acidic P1 and P2 proteins. Gene 2003; 314:173-9. [PMID: 14527730 DOI: 10.1016/s0378-1119(03)00731-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA complementary to RNA (cDNA) of the ribosomal stalk protein BmP0 of the silkworm Bombyx mori was isolated from a cDNA library and was subsequently expressed in the conditional P0-null mutant Saccharomyces cerevisiae D67dGP0, whose ribosomes also lack the other stalk components, proteins P1/P2. The transformed strain was able to grow under restrictive conditions, indicating that in the absence of the P1/P2 proteins BmP0 can bind to the yeast ribosomes and complement the lack of the endogenous YP0 protein. In addition, the binding capacity of the B. mori ribosomal stalk components to the ribosomal particle was studied by means of high salt treatment of purified ribosomes. The BmP0 protein retained its binding to the ribosome, suggesting a stable association with the rRNA, in contrast to the acidic proteins BmP1 and BmP2, which were easily released. The results clearly indicate that, as opposed to recent in vitro results, BmP0 does not require the presence of P1/P2 proteins in order to bind to the ribosome.
Collapse
Affiliation(s)
- Sophia Kouyanou
- Division of Genetics and Biotechnology, Department of Biology, University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| | | | | | | |
Collapse
|
56
|
Lalioti VS, Pérez-Fernández J, Remacha M, Ballesta JPG. Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Mol Microbiol 2002; 46:719-29. [PMID: 12410829 DOI: 10.1046/j.1365-2958.2002.03179.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions among the yeast stalk components (P0, P1alpha, P1beta, P2alpha and P2beta) and with EF-2 have been explored using immunoprecipitation, affinity chromatography and the two-hybrid system. No stable association was detected between acidic proteins of the same type. In contrast, P1alpha and P1beta were found to interact with P2beta and P2alpha respectively. An interaction of P0 with P1 proteins, but not with P2 proteins, was also detected. This interaction is strongly increased with the P0 carboxyl end, which is able to form a pentameric complex with the four acidic proteins. The P1/P2 binding site has been located between residues 212 and 262 using different C-terminal P0 fragments. Immunoprecipitation shows the association of EF-2 with protein P0. However, the interaction is stronger with the P1/P2 proteins than with P0 in the two-hybrid assay. This interaction improves using the 100-amino-acid-long C-end of P0 and is even higher with the last 50 amino acids. The data indicate a specific association of P1alpha with P2beta and of P1beta with P2alpha rather than the dimerization of the acidic proteins found in prokaryotes. In addition, they suggest that stalk assembly begins by the interaction of the P1 proteins with P0. Moreover, as functional interactions of the complete P0 were found to increase using protein fragments, the data suggest that some active sites are exposed in the ribosome as a result of conformational changes that take place during stalk assembly and function.
Collapse
Affiliation(s)
- V S Lalioti
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid--CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
57
|
Singh S, Sehgal A, Waghmare S, Chakraborty T, Goswami A, Sharma S. Surface expression of the conserved ribosomal protein P0 on parasite and other cells. Mol Biochem Parasitol 2002; 119:121-4. [PMID: 11755193 DOI: 10.1016/s0166-6851(01)00394-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Subhash Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, India
| | | | | | | | | | | |
Collapse
|
58
|
Maekawa T, Fujihara M, Ohtsuki K. Characterization of human lactoferricin as a potent protein kinase CK2 activator regulated by A-kinase in vitro. Biol Pharm Bull 2002; 25:118-21. [PMID: 11824539 DOI: 10.1248/bpb.25.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lactoferricin (LFcin) hydrolyzed from lactoferrin (LF), a major 80 kDa iron-binding protein in milk and other exocrine secretions, was characterized as a potent activator of protein kinase CK2 (CK2) in vitro. Human LFcin (hLFcin) at 0.5 microg stimulated approx. 5-fold CK2 activity [phosphorylation of 60S acidic ribosomal proteins (P0, P1, P2) and Hsp90 (p98)] in a manner similar to other functional proteins with oligo-Arg clusters, such as salmine A1, sperm histone H2B and HIV-1 Rev. Interestingly, this stimulatory effect of hLFcin was significantly reduced when it was phosphorylated by A-kinase in vitro. These results suggest that (i) hLFcin acts as a potent CK2 activator in vitro; and (ii) the stimulatory effect of hLFcin on CK2 activity is regulated by its phosphorylation by A-kinase in vitro.
Collapse
Affiliation(s)
- Toshiro Maekawa
- Laboratory of Genetical Biochemistry and Signal Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | | | | |
Collapse
|
59
|
Guarinos E, Remacha M, Ballesta JP. Asymmetric interactions between the acidic P1 and P2 proteins in the Saccharomyces cerevisiae ribosomal stalk. J Biol Chem 2001; 276:32474-9. [PMID: 11431471 DOI: 10.1074/jbc.m103229200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae ribosomal stalk is made of five components, the 32-kDa P0 and four 12-kDa acidic proteins, P1alpha, P1beta, P2alpha, and P2beta. The P0 carboxyl-terminal domain is involved in the interaction with the acidic proteins and resembles their structure. Protein chimeras were constructed in which the last 112 amino acids of P0 were replaced by the sequence of each acidic protein, yielding four fusion proteins, P0-1alpha, P0-1beta, P0-2alpha, and P0-2beta. The chimeras were expressed in P0 conditional null mutant strains in which wild-type P0 is not present. In S. cerevisiae D4567, which is totally deprived of acidic proteins, the four fusion proteins can replace the wild-type P0 with little effect on cell growth. In other genetic backgrounds, the chimeras either reduce or increase cell growth because of their effect on the ribosomal stalk composition. An analysis of the stalk proteins showed that each P0 chimera is able to strongly interact with only one acidic protein. The following associations were found: P0-1alpha.P2beta, P0-1beta.P2alpha, P0-2alpha.P1beta, and P0-2beta.P1alpha. These results indicate that the four acidic proteins do not form dimers in the yeast ribosomal stalk but interact with each other forming two specific associations, P1alpha.P2beta and P1beta.P2alpha, which have different structural and functional roles.
Collapse
Affiliation(s)
- E Guarinos
- Centro de Biologia Molecular, Consejo Superior de Investigaciones Cientificas and Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
60
|
Juri Ayub M, Levin MJ, Aguilar CF. Overexpression and refolding of the hydrophobic ribosomal P0 protein from Trypanosoma cruzi: a component of the P1/P2/P0 complex. Protein Expr Purif 2001; 22:225-33. [PMID: 11437598 DOI: 10.1006/prep.2001.1427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The P0 protein is part of the ribosomal eukaryotic stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. P0 is the minimal portion of the stalk that is able to support accurate protein synthesis. The P0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by the Trypanosoma cruzi parasite. The T. cruzi P0 (TcP0) protein was cloned into the pRSET A vector and expressed in Escherichia coli fused to a His-tag. The identity of the protein was confirmed by immunoblotting. Due to the formation of inclusion bodies the protein was purified using the following steps: (i) differential centrifugation to separate the inclusion bodies from soluble proteins and (ii) affinity chromatography under denaturing conditions. TcP0 showed high tendency to aggregation during refolding assays. However, TcP0 could be efficiently folded in the presence of a low concentration of SDS. The folding of the protein was confirmed using urea gradient electrophoresis, limited proteolysis, circular dichroism, and tryptophan fluorescence. Native electrophoresis showed that the folded TcP0 (and not a folding intermediate) was the cause of aggregation in the absence of SDS. The protocol described here permitted us to obtain large amounts (up to 30 mg per culture liter) of pure and folded TcP0, a very hydrophobic protein with a high tendency to aggregation.
Collapse
Affiliation(s)
- M Juri Ayub
- Laboratorio de Biología Molecular Estructural, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, 5700, Argentina
| | | | | |
Collapse
|
61
|
Szick-Miranda K, Bailey-Serres J. Regulated heterogeneity in 12-kDa P-protein phosphorylation and composition of ribosomes in maize (Zea mays L.). J Biol Chem 2001; 276:10921-8. [PMID: 11278810 DOI: 10.1074/jbc.m011002200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) possesses four distinct approximately 12-kDa P-proteins (P1, P2a, P2b, P3) that form the tip of a lateral stalk on the 60 S ribosomal subunit. RNA blot analyses suggested that the expression of these proteins was developmentally regulated. Western blot analysis of ribosomal proteins isolated from various organs, kernel tissues during seed development, and root tips deprived of oxygen (anoxia) revealed significant heterogeneity in the levels of these proteins. P1 and P3 were detected in ribosomes of all samples at similar levels relative to ribosomal protein S6, whereas P2a and P2b levels showed considerable developmental regulation. Both forms of P2 were present in ribosomes of some organs, whereas only one form was detected in other organs. Considerable tissue-specific variation was observed in levels of monomeric and multimeric forms of P2a. P2b was not detected in root tips, accumulated late in seed embryo and endosperm development, and was detected in soluble ribosomes but not in membrane-associated ribosomes that copurified with zein protein bodies of the kernel endosperm. The phosphorylation of the 12-kDa P-proteins was also developmentally and environmentally regulated. The potential role of P2 heterogeneity in P-protein composition in the regulation of translation is discussed.
Collapse
Affiliation(s)
- K Szick-Miranda
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124
| | | |
Collapse
|
62
|
Chan SH, Hung FS, Chan DS, Shaw PC. Trichosanthin interacts with acidic ribosomal proteins P0 and P1 and mitotic checkpoint protein MAD2B. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2107-12. [PMID: 11277934 DOI: 10.1046/j.1432-1327.2001.02091.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trichosanthin is a ribosome-inactivating protein with multiple pharmacological properties. By a yeast two-hybrid system, ribosomal phosphoproteins P0 and P1 and a putative mitotic checkpoint protein, MAD2B, were found to interact with an active-site mutated trichosanthin (TCS). The interactions were verified by an in vitro binding assay of recombinant wild-type TCS and target proteins. The interaction domain of P0 was mapped to amino acids 220-273, which had been previously reported to be involved in the interaction with P1 and P2 in yeast. Consistent with our previous finding that the last seven residues of TCS are not essential for an active conformation, the same deletion did not affect the interaction with P0. Our present study suggests that TCS may disrupt the binding of elongation factors to the P-complex, in addition to the well-known N-glycosidase activity for ribosome inactivation.
Collapse
Affiliation(s)
- S H Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
63
|
Briones C, Ballesta JP. Conformational changes induced in the Saccharomyces cerevisiae GTPase-associated rRNA by ribosomal stalk components and a translocation inhibitor. Nucleic Acids Res 2000; 28:4497-505. [PMID: 11071938 PMCID: PMC113874 DOI: 10.1093/nar/28.22.4497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast ribosomal GTPase associated center is made of parts of the 26S rRNA domains II and VI, and a number of proteins including P0, P1alpha, P1beta, P2alpha, P2beta and L12. Mapping of the rRNA neighborhood of the proteins was performed by footprinting in ribosomes from yeast strains lacking different GTPase components. The absence of protein P0 dramatically increases the sensitivity of the defective ribosome to degradation hampering the RNA footprinting. In ribosomes lacking the P1/P2 complex, protection of a number of nucleotides is detected around positions 840, 880, 1100, 1220-1280 and 1350 in domain II as well as in several positions in the domain VI alpha-sarcin region. The protection pattern resembles the one reported for the interaction of elongation factors in bacterial systems. The results exclude a direct interaction of these proteins with the rRNA and are compatible with an increase in the ribosome affinity for EF-2 in the absence of the acidic P proteins. Interestingly, a sordarin derivative inhibitor of EF-2 causes an opposite effect, increasing the reactivity in positions protected by the absence of P1/P2. Similarly, a deficiency in protein L12 exposes nucleotides G1235, G1242, A1262, A1269, A1270 and A1272 to chemical modification, thus situating the protein binding site in the most conserved part of the 26S rRNA, equivalent to the bacterial protein L11 binding site.
Collapse
Affiliation(s)
- C Briones
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | |
Collapse
|
64
|
Gagou M, Ballesta JP, Kouyanou S. Cloning and characterization of the ribosomal protein CcP0 of the medfly Ceratitis capitata. INSECT MOLECULAR BIOLOGY 2000; 9:47-55. [PMID: 10672071 DOI: 10.1046/j.1365-2583.2000.00156.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gene of the ribosomal protein CcP0, the third member of the ribosomal P-protein family of the medfly Ceratitis capitata, was identified by genomic and cDNA sequence analysis. It codes for a polypeptide of 317 amino acids and its predicted amino acid sequence shows great similarity to the P0 proteins of other eukaryotic organisms. The CcP0 gene was expressed in Escherichia coli and the 34-kDa recombinant protein was identical to the P0 protein of purified medfly ribosomes. Both proteins reacted positively with a specific monoclonal antibody against the highly conserved C terminus of eukaryotic ribosomal P proteins. Interestingly, the medfly CcP0 seems to be the only P0 protein of higher eukaryotic organisms with basic character (pI 8.5), as shown by electrofocusing of purified ribosomes.
Collapse
Affiliation(s)
- M Gagou
- University of Athens, Department of Biology, Division of Genetics and Biotechnology, Panepistimiopolis, Athens, Greece
| | | | | |
Collapse
|
65
|
Gagou ME, Rodriguez Gabriel MA, Ballesta JP, Kouyanou S. The ribosomal P-proteins of the medfly Ceratitis capitata form a heterogeneous stalk structure interacting with the endogenous P-proteins, in conditional P0-null strains of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 2000; 28:736-43. [PMID: 10637325 PMCID: PMC102563 DOI: 10.1093/nar/28.3.736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genes encoding the ribosomal P-proteins CcP0, CcP1 and CcP2 of Ceratitis capitata were expressed in the conditional P0-null strains W303dGP0 and D67dGP0 of Saccharomyces cerevisiae, the ribosomes of which contain either standard amounts or are totally deprived of the P1/P2 proteins, respectively. The presence of the CcP0 protein restored cell viability but reduced the growth rate. In the W303CcP0 strain, all four acidic yeast proteins were found on the ribosomes, but in notably less quantity, while a preferable binding of the YP1alpha/YP2betapair was established. In the absence of the endogenous P1/P2 proteins in the D67CcP0 strain, the complementation capacity of the CcP0 protein was considerably reduced. The simultaneous expression of the three medfly genes resulted in alterations of the stalk composition: both the CcP1 and CcP2 proteins were found on the particles substituting the YP1alphaand YP2alpha proteins, respectively, but their presence did not alter the growth rate, except in the case of the YP1alpha/betadefective strain, where a helping effect on the binding of the YP2alphaand YP2betaproteins on the ribo-somes was confirmed. Therefore, the medfly ribosomal P-proteins complement the yeast P-protein deficient strains forming an heterogeneous ribosomal stalk, which, however, is not functionally equivalent to the endogenous one.
Collapse
Affiliation(s)
- M E Gagou
- University of Athens, Department of Biology, Division of Genetics and Biotechnology, Panepistimiopolis, Kouponia, 15701 Athens, Greece
| | | | | | | |
Collapse
|
66
|
Rodríguez-Gabriel MA, Remacha M, Ballesta JP. The RNA interacting domain but not the protein interacting domain is highly conserved in ribosomal protein P0. J Biol Chem 2000; 275:2130-6. [PMID: 10636918 DOI: 10.1074/jbc.275.3.2130] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein P0 interacts with proteins P1alpha, P1beta, P2alpha, and P2beta, and forms the Saccharomyces cerevisiae ribosomal stalk. The capacity of RPP0 genes from Aspergillus fumigatus, Dictyostelium discoideum, Rattus norvegicus, Homo sapiens, and Leishmania infantum to complement the absence of the homologous gene has been tested. In S. cerevisiae W303dGP0, a strain containing standard amounts of the four P1/P2 protein types, all heterologous genes were functional except the one from L. infantum, some of them inducing an osmosensitive phenotype at 37 degrees C. The polymerizing activity and the elongation factor-dependent functions but not the peptide bond formation capacity is affected in the heterologous P0 containing ribosomes. The heterologous P0 proteins bind to the yeast ribosomes but the composition of the ribosomal stalk is altered. Only proteins P1alpha and P2beta are found in ribosomes carrying the A. fumigatus, R. norvegicus, and H. sapiens proteins. When the heterologous genes are expressed in a conditional null-P0 mutant whose ribosomes are totally deprived of P1/P2 proteins, none of the heterologous P0 proteins complemented the conditional phenotype. In contrast, chimeric P0 proteins made of different amino-terminal fragments from mammalian origin and the complementary carboxyl-terminal fragments from yeast allow W303dGP0 and D67dGP0 growth at restrictive conditions. These results indicate that while the P0 protein RNA-binding domain is functionally conserved in eukaryotes, the regions involved in protein-protein interactions with either the other stalk proteins or the elongation factors have notably evolved.
Collapse
Affiliation(s)
- M A Rodríguez-Gabriel
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Cientifícas, Cantoblanco, 28049 Madrid
| | | | | |
Collapse
|
67
|
Rodriguez-Gabriel MA, Bou G, Briones E, Zambrano R, Remacha M, Ballesta JP. Structure and function of the stalk, a putative regulatory element of the yeast ribosome. Role of stalk protein phosphorylation. Folia Microbiol (Praha) 1999; 44:153-63. [PMID: 10588050 DOI: 10.1007/bf02816234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ribosomal stalk is involved directly in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes, the acidic components correspond to the 12 kDa P1 and P2 proteins, and the RNA binding component is protein P0. All these proteins are found to be phosphorylated in eukaryotic organisms. Previous in vitro data suggested this modification was involved in the activity of this structure. To confirm this possibility a mutational study has shown that phosphorylation takes place at a serine residue close to the carboxyl end of proteins P1, P2 and P0. This serine is part of a consensus casein kinase II phosphorylation site. However, by using a yeast strain carrying a temperature sensitive mutant, it has been shown that CKII is probably not the only enzyme responsible for this modification. Three new protein kinases, RAPI, RAPII and RAPIII, have been purified and compared with CKII and PK60, a previously reported enzyme that phosphorylates the stalk proteins. Differences among the five enzymes have been studied. It has also been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data available suggest that phosphorylation, although it is not involved in the interaction of the acidic proteins with the ribosome, affects ribosome activity and might participate in some ribosome regulatory mechanism.
Collapse
|
68
|
Ballesta JP, Rodriguez-Gabriel MA, Bou G, Briones E, Zambrano R, Remacha M. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiol Rev 1999; 23:537-50. [PMID: 10525165 DOI: 10.1111/j.1574-6976.1999.tb00412.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.
Collapse
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular, CSIC and UAM, Canto Blanco, 28049, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
69
|
Uchiumi T, Hori K, Nomura T, Hachimori A. Replacement of L7/L12.L10 protein complex in Escherichia coli ribosomes with the eukaryotic counterpart changes the specificity of elongation factor binding. J Biol Chem 1999; 274:27578-82. [PMID: 10488095 DOI: 10.1074/jbc.274.39.27578] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.
Collapse
Affiliation(s)
- T Uchiumi
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | | | | | | |
Collapse
|
70
|
Briones E, Briones C, Remacha M, Ballesta JP. The GTPase center protein L12 is required for correct ribosomal stalk assembly but not for Saccharomyces cerevisiae viability. J Biol Chem 1998; 273:31956-61. [PMID: 9822666 DOI: 10.1074/jbc.273.48.31956] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L12, together with the P0/P1/P2 protein complex, forms the protein moiety of the GTPase domain in the eukaryotic ribosome. In Saccharomyces cerevisiae protein L12 is encoded by a duplicated gene, rpL12A and rpL12B. Inactivation of both copies has been performed and confirmed by Southern and Western analyses. The resulting strains are viable but grow very slowly. Growth rate is recovered upon transformation with an intact copy of the L12 gene. Ribosomes from the disrupted strain lack protein L12 but are able to carry out translation in vitro at about one fourth of the control rate. The L12-deficient ribosomes have also a defective stalk containing standard amounts of the 12-kDa acidic proteins P1beta and P2alpha, but proteins P1alpha and P2beta are drastically reduced. Moreover, the affinity of P0 is reduced in the defective ribosomes. Footprinting of the 26 S rRNA GTPase domain indicates that protein L12 protects in different extent residues G1235, G1242, A1262, A1270, and A1272 from chemical modification. The results in this report indicate that protein L12 is not essential for cell viability but has a relevant role in the structure and stability of the eukaryotic ribosomal stalk.
Collapse
Affiliation(s)
- E Briones
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
71
|
Gómez-Lorenzo MG, García-Bustos JF. Ribosomal P-protein stalk function is targeted by sordarin antifungals. J Biol Chem 1998; 273:25041-4. [PMID: 9737960 DOI: 10.1074/jbc.273.39.25041] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sordarin derivatives are remarkably selective inhibitors of fungal protein synthesis. Available evidence points to a binding site for these inhibitors on elongation factor 2, but high affinity binding requires the presence of ribosomes. The gene mutated in one of the two isolated complementation groups of Saccharomyces cerevisiae mutants resistant to the sordarin derivative GM193663 has now been identified. It is RPP0, encoding the essential protein of the large ribosomal subunit stalk rpP0. Resistant mutants are found to retain most of the binding capacity for the drug, indicating that mutations in rpP0 endow the ribosome with the capacity to perform translation elongation in the presence of the inhibitor. Other proteins of the ribosomal stalk influence the expression of resistance, pointing to a wealth of interactions between stalk components and elongation factors. The involvement of multiple elements of the translation machinery in the mode of action of sordarin antifungals may explain the large selectivity of these compounds, even though the individual target components are highly conserved proteins.
Collapse
Affiliation(s)
- M G Gómez-Lorenzo
- Research Department, Glaxo Wellcome, S. A., Severo Ochoa 2, 28760 Tres Cantos, Spain
| | | |
Collapse
|
72
|
Musholt TJ, Goodfellow PJ, Scheumann GF, Pichlmayr R, Wells SA, Moley JF. Differential display in primary and metastatic medullary thyroid carcinoma. J Surg Res 1997; 69:94-100. [PMID: 9202653 DOI: 10.1006/jsre.1997.5038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite recent advances in the understanding of the role of the RET proto-oncogene in the development of familial and approximately 30% of sporadic medullary thyroid carcinomas (MTC), little is known about other genetic events that modify the course and outcome of the disease. We compared the expression of genes in intrathyroidal MTCs to autologous local lymph node metastases by means of mRNA differential display (DDRT-PCR). This is the first report of differential display using surgical specimens of a primary cancer and its metastases. Total RNA was extracted from tumor tissue of two patients with MTC associated with multiple endocrine neoplasia (MEN 2B) and sporadic MTC, respectively. Following reverse transcription (RT), the products were PCR-amplified and separated on a denaturating polyacrylamide gel. RT-PCR products demonstrating differential expression were reamplified and used as probes for Northern blot analysis. Six fragments for which differential expression was confirmed were cloned and sequenced. Resultant sequences were tested for homology to sequences in public data bases, and two novel MTC-derived fragments (MDF-1, MDF-2) were identified. Sensitivity of the method was confirmed by identification of a sequence encoding the calcitonin precursor flanking peptide which is expressed almost exclusively in MTC and normal thyroid C cells. Overexpression of the ribosomal genes S3a and P0 was found in the metastases. Recent reports suggest that components of the translational apparatus act as regulatory mediators of growth, proliferation, and neoplastic change. The altered expression of ribosomal proteins and gene products encoded by MDF-1 or MDF-2 may play an important role in the progression and metastatic spread of MTC.
Collapse
Affiliation(s)
- T J Musholt
- Washington University School of Medicine, Department of Surgery, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
73
|
Ballesta JP, Remacha M. The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:157-93. [PMID: 8787610 DOI: 10.1016/s0079-6603(08)60193-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular "Severo Ochoa" Canto Blanco, Madrid, Spain
| | | |
Collapse
|