51
|
Stapleton PD, Shannon KP, French GL. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 beta-lactamase production and loss of an outer membrane protein. Antimicrob Agents Chemother 1999; 43:1206-10. [PMID: 10223937 PMCID: PMC89134 DOI: 10.1128/aac.43.5.1206] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three cefoxitin-resistant Escherichia coli isolates from stool specimens of a patient with leukemia were either resistant, intermediate, or sensitive to imipenem. Conjugation experiments showed that cefoxitin resistance, but not imipenem resistance, was transferable. All isolates were shown by isoelectric focusing to produce two beta-lactamases with isoelectric points of 5.4 (TEM-1, confirmed by sequencing of a PCR product) and >8.5 (consistent with a class C beta-lactamase). The gene coding for the unknown beta-lactamase was cloned and sequenced and revealed an enzyme which had 99.9% sequence identity with the plasmid-determined class C beta-lactamase CMY-2. The cloned beta-lactamase gene differed from blaCMY-2 at one nucleotide position that resulted in an amino acid change, tryptophan to arginine at position 221. We propose that this enzyme be designated CMY-4. Both the imipenem-resistant and -intermediate isolates lacked a 38-kDa outer membrane protein (OMP) that was present in the imipenem-sensitive isolate. The lack of an OMP alone did not explain the difference in carbapenem susceptibilities observed. However, measurement of beta-lactamase activities (including measurements under conditions where TEM-1 beta-lactamase was inhibited) indicated that the imipenem-intermediate isolate expressed six- to eightfold less beta-lactamase than did the other isolates. This study illustrates that carbapenem resistance in E. coli can arise from high-level expression of plasmid-mediated class C beta-lactamase combined with an OMP deficiency. Furthermore, in the presence of an OMP deficiency, the level of expression of a plasmid-mediated class C beta-lactamase is an important factor in determining whether E. coli isolates are fully resistant to carbapenems.
Collapse
Affiliation(s)
- P D Stapleton
- Department of Microbiology, UMDS, St. Thomas' Hospital, London, United Kingdom.
| | | | | |
Collapse
|
52
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
53
|
Mägert HJ, Cieslak A, Alkan O, Lüscher B, Kauffels W, Forssmann WG. The golden hamster aphrodisin gene. Structure, expression in parotid glands of female animals, and comparison with a similar murine gene. J Biol Chem 1999; 274:444-50. [PMID: 9867863 DOI: 10.1074/jbc.274.1.444] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The so-called lipocalins are a family of extracellular proteins that are known to typically fulfill tasks as transport proteins for small hydrophobic molecules. However, in the last decade, a large diversity has been described concerning their functions, for example as enzymes, immunomodulators, or proteins involved in coloration and pheromone action. Aphrodisin belongs to those lipocalins, which are of significant importance for the pheromonal stimulation of copulatory behavior in male hamsters. We recently succeeded in characterizing the corresponding cDNA and demonstrated the expression of the aphrodisin gene in the vagina, uterus, and Bartholin's glands of female hamsters. Here we report the structure of the aphrodisin gene and the functionality of its promoter region. We further compare the aphrodisin gene to the related gene for mouse odorant-binding protein 1a, indicating similar functions of their products. As a novelty, we show that the aphrodisin gene, in addition to the above-mentioned tissues, is also expressed in female hamster parotid glands. In contradiction to the results expected, we finally demonstrate that aphrodisin already occurs in vaginal discharge before the female animals reach fertility. These findings may lead to the identification of as yet unknown aphrodisin functions.
Collapse
Affiliation(s)
- H J Mägert
- Lower Saxony Institute for Peptide Research, D-30 625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
54
|
Schellhorn HE, Audia JP, Wei LI, Chang L. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 1998; 180:6283-91. [PMID: 9829938 PMCID: PMC107714 DOI: 10.1128/jb.180.23.6283-6291.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During entry into stationary phase, many free-living, gram-negative bacteria express genes that impart cellular resistance to environmental stresses, such as oxidative stress and osmotic stress. Many genes that are required for stationary-phase adaptation are controlled by RpoS, a conserved alternative sigma factor, whose expression is, in turn, controlled by many factors. To better understand the numbers and types of genes dependent upon RpoS, we employed a genetic screen to isolate more than 100 independent RpoS-dependent gene fusions from a bank of several thousand mutants harboring random, independent promoter-lacZ operon fusion mutations. Dependence on RpoS varied from 2-fold to over 100-fold. The expression of all fusion mutations was normal in an rpoS/rpoS+ merodiploid (rpoS background transformed with an rpoS-containing plasmid). Surprisingly, the expression of many RpoS-dependent genes was growth phase dependent, albeit at lower levels, even in an rpoS background, suggesting that other growth-phase-dependent regulatory mechanisms, in addition to RpoS, may control postexponential gene expression. These results are consistent with the idea that many growth-phase-regulated functions in Escherichia coli do not require RpoS for expression. The identities of the 10 most highly RpoS-dependent fusions identified in this study were determined by DNA sequence analysis. Three of the mutations mapped to otsA, katE, ecnB, and osmY-genes that have been previously shown by others to be highly RpoS dependent. The six remaining highly-RpoS-dependent fusion mutations were located in other genes, namely, gabP, yhiUV, o371, o381, f186, and o215.
Collapse
Affiliation(s)
- H E Schellhorn
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
55
|
Crossett B, Suire S, Herrler A, Allen WR, Stewart F. Transfer of a uterine lipocalin from the endometrium of the mare to the developing equine conceptus. Biol Reprod 1998; 59:483-90. [PMID: 9716544 DOI: 10.1095/biolreprod59.3.483] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
One of the major, progesterone-dependent proteins secreted into the uterine lumen of the mare is a 19-kDa lipocalin (P19). It associates strongly with the embryonic capsule that envelops the young horse conceptus in early gestation, suggesting that it may be involved in sustaining early development. However, it was not known whether the protein was transported through the capsule and/or trophoblast layer and into the yolk sac cavity. To address this question, polyclonal antisera were raised against a C-terminal peptide (based on the deduced amino acid sequence of P19) and a recombinant-derived P19 fusion protein. The antiserum raised against the C-terminal peptide recognized P19 on Western blots of denatured uterine secretions (subjected to SDS-PAGE), but it did not bind to the protein in tissue sections. However, the antiserum raised against the recombinant-derived fusion protein recognized P19 both on Western blots and in histological sections. Western blot analysis of tissues and fluids collected from early-pregnant mares demonstrated significant quantities of P19 in the endometrium and uterine secretions and in the embryonic capsule, the chorion, and the yolk sac fluid, showing that the protein is transferred through to the developing embryo. Concentrations of immunoreactive P19 declined during gestation so that, by Day 30, it had virtually disappeared from both maternal and fetal tissues and fluids. Immunohistochemical staining of endometrial biopsies collected during early pregnancy localized P19 to the glandular and luminal epithelia and to the lumina of the endometrial glands. The capsule and the trophoblast layer of the chorion from early (Days 16-17) horse conceptuses also stained positively with localization of P19 to the apical surface of the trophoblast cells. There was no detectable staining either in or on the embryonic disc. The presence of P19 in both the trophoblast layer and the yolk sac fluid suggests that P19 passes into the yolk sac fluid via trophoblast cells.
Collapse
Affiliation(s)
- B Crossett
- University of Cambridge, Department of Clinical Veterinary Medicine, Equine Fertility Unit, Mertoun Paddocks, Newmarket, CB8 9BH, United Kingdom
| | | | | | | | | |
Collapse
|
56
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
57
|
Bishop RE, Leskiw BK, Hodges RS, Kay CM, Weiner JH. The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol 1998; 280:583-96. [PMID: 9677290 DOI: 10.1006/jmbi.1998.1894] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antidote/toxin gene pairs known as "addiction modules" can maintain plasmids in bacterial populations by means of post-segregational killing. However, several chromosome-encoded addiction modules may provide an entirely distinct function in the programmed cell death of moribund subpopulations under starvation conditions. We now report a novel chromosomal bacteriolytic module of Escherichia coli called the entericidin locus, which is activated in stationary phase under high osmolarity conditions by sigmaS and simultaneously repressed by the osmoregulatory EnvZ/OmpR signal transduction pathway. The entericidin locus encodes tandem paralogous genes (ecnAB) and directs the synthesis of two small cell-envelope lipoproteins. An attenuator precedes ecnA and an ompR-sensitive sigmaS promoter governs expression of ecnB. The entericidin A lipoprotein is an antidote to the bacteriolytic lipoprotein entericidin B. The entericidins are predicted to adopt amphipathic alpha-helical structures and to reciprocally modulate membrane stability. The entericidin locus is not present on any known plasmids, but is conserved in the homologous region of the Citrobacter freundii chromosome. Although the cloned C. freundii entericidin locus is expressed in E. coli independently of ompR, it carries an additional ompR-like gene called ecnR. The organization of the entericidin locus as a chromosomal antidote/toxin gene pair, which is regulated by both positive and negative osmotic signals during starvation, is consistent with an emerging paradigm of programmed bacterial cell death.
Collapse
Affiliation(s)
- R E Bishop
- Department of Biochemistry and the MRC Group in the Molecular Biology of Membranes, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
58
|
Bishop RE, Weiner JH, Barke A, Weiner JH. Enterobacterial lipocalins precede Vibrio homologue. MICROBIOLOGY (READING, ENGLAND) 1998; 144:815-816. [PMID: 9696622 DOI: 10.1099/00221287-144-4-815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- R E Bishop
- Medical Research Council Group in the Molecular Biology of Membranes and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - J H Weiner
- Medical Research Council Group in the Molecular Biology of Membranes and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew Barke
- Microbial Pathogenesis Unit, Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia
| | - J H Weiner
- Microbial Pathogenesis Unit, Department of Microbiology and Immunology, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
59
|
Yakushi T, Tajima T, Matsuyama S, Tokuda H. Lethality of the covalent linkage between mislocalized major outer membrane lipoprotein and the peptidoglycan of Escherichia coli. J Bacteriol 1997; 179:2857-62. [PMID: 9139900 PMCID: PMC179046 DOI: 10.1128/jb.179.9.2857-2862.1997] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The major outer membrane lipoprotein (Lpp) of Escherichia coli possesses serine at position 2, which is thought to function as the outer membrane sorting signal, and lysine at the C terminus, through which Lpp covalently associates with peptidoglycan. Arginine (R) is present before the C-terminal lysine in the wild-type Lpp (LppSK). By replacing serine (S) at position 2 with aspartate (D), the putative inner membrane sorting signal, and by deleting lysine (K) at the C terminus, Lpp mutants with a different residue at either position 2 (LppDK) or the C terminus (LppSR) or both (LppDR) were constructed. Expression of LppSR and LppDR little affected the growth of E. coli. In contrast, the number of viable cells immediately decreased when LppDK was expressed. Prolonged expression of LppDK inhibited separation of the inner and outer membranes by sucrose density gradient centrifugation, whereas short-term expression did not. Pulse-labeled LppDK and LppDR were localized in the inner membrane, indicating that the amino acid residue at position 2 functions as a sorting signal for the membrane localization of Lpp. LppDK accumulated in the inner membrane covalently associated with the peptidoglycan and thus prevented the separation of the two membranes. Globomycin, an inhibitor of lipoprotein-specific signal peptidase II, was lethal for E. coli only when Lpp possessed the C-terminal lysine. Taken together, these results indicate that the inner membrane accumulation of Lpp per se is not lethal for E. coli. Instead, a covalent linkage between the inner membrane Lpp having the C-terminal lysine and the peptidoglycan is lethal for E. coli, presumably due to the disruption of the cell surface integrity.
Collapse
Affiliation(s)
- T Yakushi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
60
|
Abstract
The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
Collapse
Affiliation(s)
- D R Flower
- Department of Physical Chemistry and BioAnalysis, Astra Charnwood, Loughborough, Leics, U.K
| |
Collapse
|
61
|
Abstract
The behaviours of organisms as diverse as elephants and butterflies are affected by pheromones with identical or similar structures. Recent developments in the molecular biology of pheromone detection suggest why.
Collapse
Affiliation(s)
- D R Kelly
- Department of Chemistry, University of Wales, College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, UK
| |
Collapse
|
62
|
‘Outlier’ lipocalins morethan peripheral. Trends Biochem Sci 1996. [DOI: 10.1016/s0968-0004(96)80164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|