51
|
Venkov CD, Link AJ, Jennings JL, Plieth D, Inoue T, Nagai K, Xu C, Dimitrova YN, Rauscher FJ, Neilson EG. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 2007; 117:482-91. [PMID: 17273560 PMCID: PMC1783826 DOI: 10.1172/jci29544] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 12/05/2006] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site-1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box-binding factor-A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, beta-catenin, ZO 1, vimentin, alpha1(I) collagen, and alpha-smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT.
Collapse
Affiliation(s)
- Christo D. Venkov
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrew J. Link
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer L. Jennings
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David Plieth
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tsutomu Inoue
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kojiro Nagai
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carol Xu
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yoana N. Dimitrova
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Frank J. Rauscher
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric G. Neilson
- Department of Medicine,
Department of Microbiology and Immunology, and
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Wistar Institute, Philadelphia, Pennsylvania, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
52
|
Alfieri RR, Petronini PG. Hyperosmotic stress response: comparison with other cellular stresses. Pflugers Arch 2007; 454:173-85. [PMID: 17206446 DOI: 10.1007/s00424-006-0195-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Cellular responses induced by stress are essential for the survival of cells under adverse conditions. These responses, resulting in cell adaptation to the stress, are accomplished by a variety of processes at the molecular level. After an alteration in homeostatic conditions, intracellular signalling processes link the sensing mechanism to adaptive or compensatory changes in gene expression. The ability of cells to adapt to hyperosmotic stress involves early responses in which ions move across cell membranes and late responses characterized by increased synthesis of either membrane transporters essential for uptake of organic osmolytes or of enzymes involved in their synthesis. The goal of these responses is to return the cell to its normal size and maintain cellular homeostasis. The enhanced synthesis of molecular chaperones, such as heat shock proteins, is another important component of the adaptive process that contributes to cell survival. Some responses are common to different stresses, whereas others are specific. In the first part of the review, we illustrate the characteristic and specific features of adaptive response to hypertonicity; we then describe similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, 43100 Parma, Italy.
| | | |
Collapse
|
53
|
Abstract
Mammalian renal inner medullary cells are normally exposed to extremely high NaCl concentrations. The interstitial NaCl concentration in parts of a normal renal medulla can be 500 mM or more, depending on the species. Remarkably, under these normal conditions, the high NaCl causes DNA damage, yet the cells survive and function both in cell culture and in vivo. Both in cell culture and in vivo the breaks are repaired rapidly if the NaCl concentration is lowered. This chapter describes two methods used to detect and study the DNA damage induced by osmotic stress: comet assay or single cell electrophoresis and TUNEL assay or in situ labeling of 3'-OH ends of DNA strands. This chapter also discusses how specifics of the protocols influence the conclusions about types of DNA damage and what the limitations of these methods are for detecting different types of DNA damage.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
54
|
Sheen MR, Kim SW, Jung JY, Ahn JY, Rhee JG, Kwon HM, Woo SK. Mre11-Rad50-Nbs1 complex is activated by hypertonicity. Am J Physiol Renal Physiol 2006; 291:F1014-20. [PMID: 16788144 DOI: 10.1152/ajprenal.00153.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When exposed to hypertonic conditions, cells accumulate double-strand DNA breaks (DSBs) like they are exposed to ionizing radiation. It has been proposed that inactivation of the Mre11-Rad50-Nbs1 (MRN) complex due to nuclear exit is responsible for the accumulation of DSBs as cells fail to repair DSBs produced during normal cellular activity. In this study, we examined the MRN complex in cells switched to hypertonicity. Surprisingly, we found that the MRN complex stayed in the nucleus and remained intact in response to hypertonicity. In fact, the MRN complex was dramatically activated after 4 h of switch to hypertonicity in a dose-dependent manner as shown by formation of foci. Activation of ATM and the MRN complex by hypertonicity and bleomycin was additive as was activation of their downstream targets including gammaH2AX and Chk2 indicating that the cellular response to DSB was intact in hypertonic conditions. Activation of Chk2 in response to hypertonicity was not observed in mutant cells with functionally impaired MRN complex confirming that they are in the same pathway. After 20 h of a switch to hypertonicity, MRN foci and gammaH2AX returned to a control level, suggesting that cells adapted to hypertonicity by repairing DNA. We conclude that cells respond normally to DSB and repair the DNA damages induced by hypertonicity.
Collapse
Affiliation(s)
- Mee Rie Sheen
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Stubbe J, Madsen K, Nielsen FT, Skøtt O, Jensen BL. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. Am J Physiol Renal Physiol 2006; 291:F812-22. [PMID: 16638911 DOI: 10.1152/ajprenal.00477.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rat, urinary concentrating ability develops progressively during the third postnatal (P) week and nearly reaches adult level at weaning ( P21) governed by a rise in circulating glucocorticoid. Elevated extracellular osmolality can lead to growth arrest of epithelial cells. We tested the hypothesis that supranormal exposure of rat pups to glucocorticoid before the endogenous surge enhances urinary concentrating ability but inhibits renomedullary cell proliferation. Proliferating-cell nuclear antigen (PCNA)-positive cells shifted from the nephrogenic zone in the first postnatal week to Tamm-Horsfall-positive thick ascending limb (TAL) cells at the corticomedullary junction at P10– 14. Renal PCNA protein abundance was stable in the suckling period and decreased 10-fold after weaning. Renal PCNA protein abundance decreased in response to dexamethasone (DEXA; 100 μg·kg−1·day−1, P8–12). Prolonged administration of DEXA ( P1-P11) reduced selectively the area and thickness of the outer medulla and the number of PCNA-positive cells. DEXA ( P8– 12) increased urinary and papillary osmolality in normohydrated and water-deprived pups and led to osmotic equilibrium between interstitium and urine, whereas apoptotic and GADD153-positive cells increased in the inner medulla. TAL-associated NaCl transporters Na-K-2Cl cotransporter, Na-K-ATPase-α1, Na/H exchanger type 3, and ROMK increased significantly at weaning and in response to DEXA. We conclude that a low level of circulating glucocorticoid is permissive for proliferation of Henle's loop and the outer medulla before weaning. A reduced papillary tonicity is a crucial factor for the reduced capacity to concentrate urine during postnatal kidney development. We speculate that supranormal exposure to glucocorticoid in the suckling period can alter kidney medullary structure and function permanently.
Collapse
Affiliation(s)
- Jane Stubbe
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
56
|
Perez-Pinera P, Menendez-Gonzalez M, del Valle M, Vega JA. Sodium chloride regulates Extracellular Regulated Kinase 1/2 in different tumor cell lines. Mol Cell Biochem 2006; 293:93-101. [PMID: 16817015 DOI: 10.1007/s11010-006-2958-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/08/2005] [Indexed: 11/26/2022]
Abstract
Perturbations of the extracellular ionic content by different hypo- or hyperosmolar stimuli initiate stress responses to maintain cell viability that include activation of Mitogen Activated Protein Kinases (MAPK) in cell lines derived from kidney epithelium. When hyperosmolar conditions induced by different salts occurred in the extracellular environment of tumor-derived cell lines, they activated the Extracellular Regulated Kinase 1/2 by increasing its phosphorylation steady-state on Thr202/Tyr204 in a time- and dose-dependent manner. It was found that Extracellular Regulated Kinase 1/2 activation is a consequence of selective phosphorylation by mitogen-activated protein kinase/ERK kinase. Changes in cell shape or in tubulin or actin cytoskeletal structure were not found, although cell growth arrest was observed as well as induction of apoptosis and modified cell migration ability that were dependent upon Extracellular Regulated Kinase 1/2 activation evidencing a critical role for the Extracellular Regulated Kinase 1/2 in mediating survival of cells in hyperosmotic conditions.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Julian Claveria S/N, 33006 Oviedo, Spain.
| | | | | | | |
Collapse
|
57
|
Hastwell PW, Chai LL, Roberts KJ, Webster TW, Harvey JS, Rees RW, Walmsley RM. High-specificity and high-sensitivity genotoxicity assessment in a human cell line: Validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 607:160-75. [PMID: 16781187 DOI: 10.1016/j.mrgentox.2006.04.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/04/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The battery of genetic toxicity tests required by most regulatory authorities includes both bacterial and mammalian cell assays and identifies practically all genotoxic carcinogens. However, the relatively high specificity of the Salmonella mutagenicity assay (Ames test) is offset by the low specificity of the established mammalian cell assays, which leads to difficulties in the interpretation of the biological relevance of results. This paper describes a new high-throughput assay that links the regulation of the human GADD45a gene to the production of Green Fluorescent Protein (GFP). A study of 75 well-characterised genotoxic and non-genotoxic compounds with diverse mechanisms of DNA-damage induction (including aneugens) reveals that the assay responds positively to all classes of genotoxic damage with both high specificity and high sensitivity. The current micro-well assay format does not include metabolic activation, but a separate low-throughput protocol demonstrates a successful proof-of-principle for an S9 metabolic activation assay with the model pro-mutagen cyclophosphamide. The test should be of value both as a tool in the selection of candidate compounds for further development, where additional data may be required because of conflicting information from the in vitro test battery, or in product development areas where the use of animals is to be discontinued. As a microplate assay however, it has the qualities of high throughput and low compound use that will facilitate its application in early screening for genotoxic liability.
Collapse
Affiliation(s)
- Paul W Hastwell
- Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, UK
| | | | | | | | | | | | | |
Collapse
|
58
|
Huether A, Hopfner M, Sutter AP, Baradari V, Schuppan D, Scherubl H. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer. World J Gastroenterol 2006; 12:5160-7. [PMID: 16937526 PMCID: PMC4088013 DOI: 10.3748/wjg.v12.i32.5160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the underlying mechanisms of erlotinib-induced growth inhibition in hepatocellular carcinoma (HCC).
METHODS: Erlotinib-induced alterations in gene expression were evaluated using cDNA array technology; changes in protein expression and/or protein activation due to erlotinib treatment as well as IGF-1-induced EGFR transactivation were investigated using Western blotting.
RESULTS: Erlotinib treatment inhibited the mitogen activated protein (MAP)-kinase pathway and signal transducer of activation and transcription (STAT)-mediated signaling which led to an altered expression of apoptosis and cell cycle regulating genes as demonstrated by cDNA array technology. Overexpression of proapoptotic factors like caspases and gadds associated with a down-regulation of antiapoptotic factors like Bcl-2, Bcl-XL or jun D accounted for erlotinib's potency to induce apoptosis. Downregulation of cell cycle regulators promoting the G1/S-transition and overexpression of cyclin-dependent kinase inhibitors and gadds contributed to the induction of a G1/G0-arrest in response to erlotinib. Furthermore, we displayed the transactivation of EGFR-mediated signaling by the IGF-1-receptor and showed erlotinib’s inhibitory effects on the receptor-receptor cross talk.
CONCLUSION: Our study sheds light on the under-standing of the mechanisms of action of EGFR-TK-inhibition in HCC-cells and thus might facilitate the design of combination therapies that act additively or synergistically. Moreover, our data on the pathways responding to erlotinib treatment could be helpful in predicting the responsiveness of tumors to EGFR-TKIs in the future.
Collapse
Affiliation(s)
- Alexander Huether
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Aramburu J, Drews-Elger K, Estrada-Gelonch A, Minguillón J, Morancho B, Santiago V, López-Rodríguez C. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem Pharmacol 2006; 72:1597-604. [PMID: 16904650 DOI: 10.1016/j.bcp.2006.07.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/29/2006] [Accepted: 07/08/2006] [Indexed: 11/28/2022]
Abstract
Stress, be it from environmental factors or intrinsic to the cell as result of growth and metabolism, can be harmful to cells. Mammalian cells have developed numerous mechanisms to respond to diverse forms of stress. These mechanisms combine signaling cascades and activation of gene expression programs to orchestrate an adaptive response that will allow the cell to survive and resume its normal functioning. In this review we will focus on the transcription factor NFAT5, a fundamental regulator of the response to osmotic stress in mammalian cells. Identified in 1999, NFAT5 is the latest addition to the Rel family, which comprises the NF-kappaB and NFATc proteins. Though in some of its structural and functional features NFAT5 is a hybrid between these two major groups of Rel proteins, it has unique characteristics that make it stand on its own as a third type of Rel transcription factor. Since its discovery, NFAT5 has been studied mostly in the context of the hypertonicity stress response. The advent of mouse models deficient in NFAT5 and other recent advances have confirmed a fundamental osmoprotective role for this factor in mammals, but also revealed features that suggest it may have a wider range of functions.
Collapse
Affiliation(s)
- José Aramburu
- Molecular Immunopathology Unit, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Dr. Aiguader 80, E-08003 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
60
|
Cai Q, Dmitrieva NI, Ferraris JD, Michea LF, Salvador JM, Hollander MC, Fornace AJ, Fenton RA, Burg MB. Effects of expression of p53 and Gadd45 on osmotic tolerance of renal inner medullary cells. Am J Physiol Renal Physiol 2006; 291:F341-9. [PMID: 16597604 DOI: 10.1152/ajprenal.00518.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice. Acutely elevating NaCl (and/or urea) reduces Gadd45a, but increases Gadd45b and Gadd45g mRNA, depending on the mix of NaCl and urea and the rate of increase of osmolality. Nevertheless, p2mIME cells from Gadd45b−/−, Gadd45g−/−, and Gadd45bg−/− mice survive elevation of NaCl (or urea) essentially the same as do wild-type cells. p53−/− Cells do not tolerate as high a concentration of NaCl (or urea) as p53+/+ cells, but urinary concentrating ability of p53−/− mice is normal, as is the histology of inner medullas from p53−/− and Gadd45abg−/− mice. Thus although Gadd45 and p53 may play roles in osmotically stressed mIMCD3 cells, we do not find that their expression makes an important difference, either for Gadd45 in slower proliferating p2mIME cells or for Gadd45 or p53 in normal inner medullary epithelial cells in situ.
Collapse
Affiliation(s)
- Qi Cai
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Valkova N, Kültz D. Constitutive and inducible stress proteins dominate the proteome of the murine inner medullary collecting duct-3 (mIMCD3) cell line. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1007-20. [PMID: 16713411 DOI: 10.1016/j.bbapap.2006.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 03/13/2006] [Accepted: 03/16/2006] [Indexed: 11/29/2022]
Abstract
A proteome map of the most abundant proteins in the murine inner medullary collecting duct (mIMCD3) cell line was generated by 2-dimensional gel electrophoresis (2D-GE) combined with MALDI-TOF/TOF mass spectrometry. The 2-D model map identifies 77 distinct constitutive proteins and a total of 86 spots including isoforms. Protein identification was based on both peptide mass fingerprinting (MS) and peptide fragmentation (MS/MS) data. High confidence Mascot scores were obtained in the database search, due to the high quality and the number of MS/MS spectra which provided matching sequence information to the database. A functional classification of the identified proteins showed that a high proportion were stress proteins, such as heat shock proteins and proteins with anti-oxidant activity. Other proteins identified were involved in cytoskeletal maintenance, metabolism and energy generation, as well as in translation, transcription, RNA processing and other cell cycle processes. Exposure of the mIMCD3 cells to hyperosmotic stress using 600 mOsmol/kg NaCl or Urea or 700 mOsmol/kg NaCl-Urea (50:50) resulted in the greatest proteome upregulation in 700 mosM NaCl-Urea and the greatest downregulation in 600 mosM NaCl. Several proteins with molecular chaperone function were induced, such as alpha-B crystallin, two Hsp70 isoforms, the osmotic stress protein (Osp94), as well as aldose reductase. Additional isoforms of the translation elongation factors Eef2 and Eef1a1 were induced. Characterization of the phosphoproteome of mIMCD3 cells with a phosphoprotein-specific stain showed a significant proportion of the proteome was phosphorylated. Additionally, exposure of mIMCD3 cells to 600 mOsmol/kg NaCl hyperosmotic stress resulted in a 1.8-fold higher phosphorylation level of the most acidic isoform of the heat shock protein Hsp27 compared to its phosphorylation level under iso-osmotic conditions.
Collapse
Affiliation(s)
- Nelly Valkova
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
62
|
Zhou C, Li Z, Diao H, Yu Y, Zhu W, Dai Y, Chen FF, Yang J. DNA damage evaluated by gammaH2AX foci formation by a selective group of chemical/physical stressors. Mutat Res 2006; 604:8-18. [PMID: 16423555 PMCID: PMC2756993 DOI: 10.1016/j.mrgentox.2005.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 11/11/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
It has been reported that the phosphorylated form of histone variant H2AX (gammaH2AX) plays an important role in the recruitment of DNA repair and checkpoint proteins to sites of DNA damage, particularly at double strand breaks (DSBs). Using gammaH2AX foci formation as an indicator for DNA damage, several chemicals/stress factors were chosen to assess their ability to induce gammaH2AX foci in a 24h time frame in a human amnion FL cell line. Two direct-acting genotoxins, methyl methanesulfonate (MMS) and N-ethyl-N-nitrosourea (ENU), can induce gammaH2AX foci formation in a time- and dose-dependent manner. Similarly, an indirect-acting genotoxin, benzo[a]pyrene (BP), also induced the formation of gammaH2AX foci in a time- and dose-dependent manner. Another indirect genotoxin, 2-acetyl-aminofluorene (AAF), did not induce gammaH2AX foci formation in FL cells; however, AAF can induce gammaH2AX foci formation in Chinese hamster CHL cells. Neutral comet assays also revealed the induction of DNA strand breaks by these agents. In contrast, epigenetic carcinogens azathioprine and cyclosporine A, as well as non-carcinogen dimethyl sulfoxide, did not induce gammaH2AX foci formation in FL cells. In addition, heat shock and hypertonic saline did not induce gammaH2AX foci. Cell survival analyses indicated that the induction of gammaH2AX is not correlated with the cytotoxic effects of these agents/factors. Taken together, these results suggest that gammaH2AX foci formation could be used for evaluating DNA damage; however, the different cell types used may play an important role in determining gammaH2AX foci formation induced by a specific agent.
Collapse
Affiliation(s)
- Chunxian Zhou
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Zhongxiang Li
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Huiling Diao
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yanke Yu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Wen Zhu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yayun Dai
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Fanqing F. Chen
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94210, USA
| | - Jun Yang
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
- Corresponding author. Tel.: +86 571 8721 7199; fax: +86 571 8721 7199. E-mail address: (J. Yang)
| |
Collapse
|
63
|
Suganuma M, Kurusu M, Suzuki K, Tasaki E, Fujiki H. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation ofGADD153 gene. Int J Cancer 2006; 119:33-40. [PMID: 16463383 DOI: 10.1002/ijc.21809] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To more clearly understand the molecular mechanisms involved in synergistic enhancement of cancer preventive activity with the green tea polyphenol (-)-epigallocatechin gallate (EGCG), we examined the effects of cotreatment with EGCG plus celecoxib, a cyclooxygenase-2 selective inhibitor. We specifically looked for induction of apoptosis and expression of apoptosis related genes, with emphasis on growth arrest and DNA damage-inducible 153 (GADD153) gene, in human lung cancer cell line PC-9: Cotreatment with EGCG plus celecoxib strongly induced the expression of both GADD153 mRNA level and protein in PC-9 cells, while neither EGCG nor celecoxib alone did. However, cotreatment did not induce expression of other apoptosis related genes, p21(WAF1) and GADD45. Judging by upregulation of GADD153, only cotreatment with EGCG plus celecoxib synergistically induced apoptosis of PC-9 cells. Synergistic effects with the combination were also observed in 2 other lung cancer cell lines, A549 and ChaGo K-1. Furthermore, EGCG did not enhance GADD153 gene expression or apoptosis induction in PC-9 cells in combination with N-(4-hydroxyphenyl)retinamide or with aspirin. Thus, upregulation of GADD153 is closely correlated with synergistic enhancement of apoptosis with EGCG. Cotreatment also activated the mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38 MAPK: Preteatment with PD98059 (ERK1/2 inhibitor) and UO126 (selective MEK inhibitor) abrogated both upregulation of GADD153 and synergistic induction of apoptosis of PC-9 cells, while SB203580 (p38 MAPK inhibitor) did not do so, indicating that GADD153 expression was mediated through the ERK signaling pathway. These findings indicate that high upregulation of GADD153 is a key requirement for cancer prevention in combination with EGCG.
Collapse
Affiliation(s)
- Masami Suganuma
- Research Institute of Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| | | | | | | | | |
Collapse
|
64
|
|
65
|
Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci 2005; 77:1502-15. [PMID: 15979653 DOI: 10.1016/j.lfs.2005.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 04/18/2005] [Indexed: 01/22/2023]
Abstract
Leptin is now recognized as a proinflammatory cytokine and thought to be a progressive factor for non-alcoholic steatohepatitis (NASH). Here we showed the effects of leptin on the production of TNF-alpha (tumor necrosis factor-alpha) by Kupffer cells (KCs) with signal transduction. Leptin enhanced TNF-alpha production accompanied by a dose-dependent increase of MAPK activity in lipopolysaccharide (LPS)-stimulated KCs. SB203580 and JNK inhibitor I, specific inhibitors of P38 and JNK, inhibited TNF-alpha production in KCs but PD98059, an inhibitor of the ERK pathway, did not affect TNF-alpha production by KCs. Recombinant constitutively active adenovirus (Ad)-MKK6 and-MKK7 increased TNF-alpha production in KCs with activation of P38 and JNK without any change by Ad-MEK1 delivery. On the other hand, KCs isolated from the Zucker rat (fa/fa), a leptin receptor-deficient rat, showed reduced production of TNF-alpha on stimulation with LPS. The delivery of Ad-MKK6 and-MKK7, but not Ad-MEK1, increased TNF-alpha production in KCs of Zucker rats with activation of P38 and JNK. Addition of leptin to normal rats increased LPS-induced hepatic TNF-alpha production in vivo and leptin receptor-deficient Zucker rats showed reduced hepatic TNF-alpha production on addition of LPS in vivo. These findings indicate that P38 and JNK pathways are involved in the signal transduction of leptin enhancement of LPS-induced TNF-alpha production.
Collapse
Affiliation(s)
- Jinhua Shen
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi-Pref. 755-8505, Japan
| | | | | | | | | |
Collapse
|
66
|
Huang Z, Tunnacliffe A. Gene induction by desiccation stress in human cell cultures. FEBS Lett 2005; 579:4973-7. [PMID: 16115627 DOI: 10.1016/j.febslet.2005.07.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/17/2005] [Accepted: 07/30/2005] [Indexed: 11/28/2022]
Abstract
One strategy for investigating desiccation tolerance is to use mammalian cells, which are sensitive to desiccation, as a model for testing putative adaptive mechanisms. However, how mammalian cells themselves respond to desiccation is poorly characterised. Although MAPK signal transduction pathways are activated by desiccation of human cells, hypertonicity-responsive genes AR, BGT1 and SMIT are not significantly induced, although they are proposed to be regulated by physiological changes which should occur during drying. To determine whether a response to desiccation occurs at the transcriptional level in human cells, we performed genome-wide microarray analysis. Twenty upregulated genes, including early stress response and transcription factor genes, were identified, most of which, e.g., EGR1, EGR3, SNAI1, RASD1 and GADD45B, were also induced by hypertonicity, indicating common regulatory mechanisms. Our data suggest that human cells can initiate a complex desiccation stress response distinct from, but overlapping with, that to hypertonic stress.
Collapse
Affiliation(s)
- Zebo Huang
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | |
Collapse
|
67
|
Dmitrieva NI, Burg MB, Ferraris JD. DNA damage and osmotic regulation in the kidney. Am J Physiol Renal Physiol 2005; 289:F2-7. [PMID: 15951478 DOI: 10.1152/ajprenal.00041.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal medullary cells normally are exposed to extraordinarily high interstitial NaCl concentration as part of the urinary concentrating mechanism, yet they survive and function. Acute elevation of NaCl to a moderate level causes transient cell cycle arrest in culture. Higher levels of NaCl, within the range found in the inner medulla, cause apoptosis. Recently, it was surprising to discover that even moderately high levels of NaCl cause DNA double-strand breaks. The DNA breaks persist in cultured cells that are proliferating rapidly after adaptation to high NaCl, and DNA breaks normally are present in the renal inner medulla in vivo. High NaCl inhibits repair of broken DNA both in culture and in vivo, but the DNA is rapidly repaired if the level of NaCl is reduced. The inhibition of DNA repair is associated with suppressed activity of some DNA damage-response proteins like Mre11, Chk1, and H2AX but not that of others, like GADD45, p53, ataxia telangiectasia-mutated kinase (ATM), and Ku86. In this review, we consider possible mechanisms by which the renal cells escape the known dangerous consequences of persistent DNA damage. Furthermore, we consider that the persistent DNA damage may be a sensor of hypertonicity that activates ATM kinase to provide a signal that contributes to protective osmotic regulation.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, Department of Health and Human Services, Bethesda, MD 20892-1603, USA
| | | | | |
Collapse
|
68
|
Sättler MB, Merkler D, Maier K, Stadelmann C, Ehrenreich H, Bähr M, Diem R. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2005; 11 Suppl 2:S181-92. [PMID: 15459752 DOI: 10.1038/sj.cdd.4401504] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In multiple sclerosis (MS), long-term disability is primarily caused by axonal and neuronal damage. We demonstrated in a previous study that neuronal apoptosis occurs early during experimental autoimmune encephalomyelitis, a common animal model of MS. In the present study, we show that, in rats suffering from myelin oligodendrocyte glycoprotein (MOG)-induced optic neuritis, systemic application of erythropoietin (Epo) significantly increased survival and function of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. We identified three independent intracellular signaling pathways involved in Epo-induced neuroprotection in vivo: Protein levels of phospho-Akt, phospho-MAPK 1 and 2, and Bcl-2 were increased under Epo application. Using a combined treatment of Epo together with a selective inhibitor of phosphatidylinositol 3-kinase (PI3-K) prevented upregulation of phospho-Akt and consecutive RGC rescue. We conclude that in MOG-EAE the PI3-K/Akt pathway has an important influence on RGC survival under systemic treatment with Epo.
Collapse
Affiliation(s)
- M B Sättler
- Neurologische Universitätsklinik, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
69
|
Amundson SA, Do KT, Vinikoor L, Koch-Paiz CA, Bittner ML, Trent JM, Meltzer P, Fornace AJ. Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene 2005; 24:4572-9. [PMID: 15824734 DOI: 10.1038/sj.onc.1208653] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression responses of human cell lines exposed to a diverse set of stress agents were compared by cDNA microarray hybridization. The B-lymphoblastoid cell line TK6 (p53 wild-type) and its p53-null derivative, NH32, were treated in parallel to facilitate investigation of p53-dependent responses. RNA was extracted 4 h after the beginning of treatment when no notable decrease in cell viability was evident in the cultures. Gene expression signatures were defined that discriminated between four broad general mechanisms of stress agents: Non-DNA-damaging stresses (heat shock, osmotic shock, and 12-O-tetradecanoylphorbol 13-acetate), agents causing mainly oxidative stress (arsenite and hydrogen peroxide), ionizing radiations (neutron and gamma-ray exposures), and other DNA-damaging agents (ultraviolet radiation, methyl methanesulfonate, adriamycin, camptothecin, and cis-Platinum(II)diammine dichloride (cisplatin)). Within this data set, non-DNA-damaging stresses could be discriminated from all DNA-damaging stresses, and profiles for individual agents were also defined. While DNA-damaging stresses showed a strong p53-dependent element in their responses, no discernible p53-dependent responses were triggered by the non-DNA-damaging stresses. A set of 16 genes did exhibit a robust p53-dependent pattern of induction in response to all nine DNA-damaging agents, however.
Collapse
Affiliation(s)
- Sally A Amundson
- Gene Response Section, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Pihakaski-Maunsbach K, Tokonabe S, Vorum H, Rivard CJ, Capasso JM, Berl T, Maunsbach AB. The γ-subunit of Na-K-ATPase is incorporated into plasma membranes of mouse IMCD3 cells in response to hypertonicity. Am J Physiol Renal Physiol 2005; 288:F650-7. [PMID: 15572522 DOI: 10.1152/ajprenal.00162.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertonicity mediated by chloride upregulates the expression of the γ-subunit of Na-K-ATPase in cultured cells derived from the murine inner medullary collecting duct (IMCD3; Capasso JM, Rivard CJ, Enomoto LM, and Berl T. Proc Natl Acad Sci USA 100: 6428–6433, 2003). The purpose of this study was to examine the cellular locations and the time course of γ-subunit expression after long-term adaptation and acute hypertonic challenges induced with different salts. Cells were analyzed by confocal immunofluorescence and immunoelectron microscopy with antibodies against the COOH terminus of the Na-K-ATPase γ-subunit or the γbsplice variant. Cells grown in 300 mosmol/kgH2O showed no immunoreactivity for the γ-subunit, whereas cells adapted to 600 or 900 mosmol/kgH2O demonstrated distinct reactivity located at the plasma membrane of all cells. IMCD3 cell cultures acutely challenged to 550 mosmol/kgH2O with sodium chloride or choline chloride showed incorporation of γ into plasma membrane 12 h after osmotic challenge and distinct membrane staining in ∼40% of the cells 48 h after osmotic shock. In contrast, challenging the IMCD3 cells to 550 mosmol/kgH2O by addition of sodium acetate did not result in expression of the γ-subunit in the membranes of surviving cells after 48 h. The present results demonstrate that the Na-K-ATPase γ-subunit becomes incorporated into the basolateral membrane of IMCD3 cells after both acute hyperosmotic challenge and hyperosmotic adaptation. We conclude that the γ-subunit has an important role in the function of Na-K-ATPase to sustain the cellular cation balance over the plasma membrane in a hypertonic environment.
Collapse
Affiliation(s)
- Kaarina Pihakaski-Maunsbach
- The Water and Salt Research Ctr., Dept. of Cell Biology, Institute of Anatomy, Univ. of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The countercurrent system in the medulla of the mammalian kidney provides the basis for the production of urine of widely varying osmolalities, but necessarily entails extreme conditions for medullary cells, i.e., high concentrations of solutes (mainly NaCl and urea) in antidiuresis, massive changes in extracellular solute concentrations during the transitions from antidiuresis to diuresis and vice versa, and low oxygen tension. The strategies used by medullary cells to survive in this hostile milieu include accumulation of organic osmolytes and heat shock proteins, the extensive use of the glycolysis for energy production, and a well-orchestrated network of signaling pathways coordinating medullary circulation and tubular work.
Collapse
Affiliation(s)
- Wolfgang Neuhofer
- Department of Physiology, University of Munich, D-80336 Munich, Germany.
| | | |
Collapse
|
72
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
73
|
Copp J, Wiley S, Ward MW, van der Geer P. Hypertonic shock inhibits growth factor receptor signaling, induces caspase-3 activation, and causes reversible fragmentation of the mitochondrial network. Am J Physiol Cell Physiol 2005; 288:C403-15. [PMID: 15456696 DOI: 10.1152/ajpcell.00095.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperosmotic stress can be encountered by the kidney and the skin, as well as during treatment of acute brain damage. It can lead to cell cycle arrest or apoptosis. Exactly how mammalian cells detect hyperosmolarity and how the cell chooses between cell cycle arrest or death remains to be established. It has been proposed that hyperosmolarity is detected directly by growth factor receptor protein tyrosine kinases. To investigate this, we tested whether growth factors and osmotic stress cooperate in the activation of signaling pathways. Receptors responded normally to the presence of growth factors, and we observed normal levels of GTP-bound Ras under hyperosmotic conditions. In contrast, activation of Raf, Akt, ERK1, ERK2, and c-Jun NH2-terminal kinase was strongly reduced. These observations suggest that hyperosmotic conditions block signaling directly downstream of active Ras. It is thought that apoptotic cell death due to environmental stress is initiated by cytochrome c release from the mitochondria. Visualization of cytochrome c using immunofluorescence showed that hypertonic conditions result in a breakup of the mitochondrial network, which is reestablished within 1 h after hypertonic medium is replaced with isotonic medium. When we carried out live imaging, we observed that the mitochondrial membrane potential disappeared immediately after the onset of hyperosmotic shock. Our observations provide new insights into the hypertonic stress response pathway. In addition, they show that signaling downstream of Ras and mitochondrial dynamics can easily be manipulated by the exposure of cells to hyperosmotic conditions.
Collapse
Affiliation(s)
- Jeremy Copp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
74
|
Fiol DF, Kültz D. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc Natl Acad Sci U S A 2005; 102:927-32. [PMID: 15642943 PMCID: PMC545544 DOI: 10.1073/pnas.0408956102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Indexed: 11/18/2022] Open
Abstract
Gills of euryhaline teleosts are excellent models for studying osmotic-stress adaptation because they directly contact the aquatic environment and are an important effector tissue during osmotic stress. We acclimated tilapia (Oreochromis mossambicus) from fresh water (FW) to seawater (SW); performed suppression subtractive hybridization of gill mRNAs; and identified two transcription factors, osmotic stress transcription factor 1 (OSTF1) and the tilapia homolog of transcription factor II B (TFIIB), that are rapidly and transiently induced during hyperosmotic stress. mRNA levels increase 6-fold for OSTF1 and 4-fold for TFIIB, and they reach maxima 2 h after SW transfer. Protein levels increase 7.5-fold for OSTF1 and 9-fold for TFIIB, and they reach maxima 4 h after SW transfer. Induction of OSTF1 and TFIIB increases gradually with increasing salinity. Induction of OSTF1 and TFIIB is specific for osmotic stress and absent during oxidative stress (1 mM H2O2) or heat shock (+10 degrees C). Bioinformatic analysis of OSTF1 reveals that it is a transcription factor of the TGF-beta-stimulated clone 22/GILZ family. Because some mammalian homologs are strongly induced by glucocorticoids, OSTF1 may represent the molecular link between the SW hormone cortisol and transcriptional regulation of ion transport and cell differentiation in teleost gills. Coinduction of OSTF1 and TFIIB may serve to recruit TFIIB preferentially to OSTF1 target genes during hyperosmotic stress and compensate for reduced rates of transcription resulting from salt-induced chromatin compaction. We conclude that OSTF1 and TFIIB are critical elements of osmosensory signal transduction in euryhaline teleosts that mediate osmotic adaptation by means of transcriptional regulation.
Collapse
Affiliation(s)
- Diego F Fiol
- Physiological Genomics Group, Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
75
|
Cai Q, Dmitrieva NI, Ferraris JD, Brooks HL, van Balkom BWM, Burg M. Pax2 expression occurs in renal medullary epithelial cells in vivo and in cell culture, is osmoregulated, and promotes osmotic tolerance. Proc Natl Acad Sci U S A 2005; 102:503-8. [PMID: 15623552 PMCID: PMC544323 DOI: 10.1073/pnas.0408840102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pax2 is a transcription factor that is crucial for kidney development, and it is also expressed in the normal adult kidney, where its physiological function is unknown. In the present study, we find by cDNA microarray analysis that Pax2 expression in second-passage mouse inner-medullary epithelial cells is increased by a high NaCl concentration, which is significant because NaCl levels are normally high in the inner medulla in vivo, and varies with urinary concentration. Furthermore, a high NaCl concentration increases Pax2 mRNA and protein expression in mouse inner medullary collecting duct (mIMCD3) cells, and its transcriptional activity. Pax2 mRNA and protein expression is high in normal adult mouse renal inner medulla but much lower in renal cortex. Pax2 protein is present in collecting duct cells in both renal medulla and cortex and in thin descending limbs of Henle's loop in inner medulla. Treating Brattleboro rats with desamino-Cys-1,d-Arg-8 vasopressin, which increases inner-medullary NaCl concentration, causes a 4-fold increase in inner-medullary Pax2 protein. Treatment with furosemide, which decreases inner-medullary NaCl, reduces inner-medullary Pax2 mRNA and protein. Pax2-specific short interfering RNA increases high NaCl concentration-induced activation of caspase-3 and apoptotic bodies in mIMCD3 cells. We thus conclude that (i) Pax2 is expressed in normal renal medulla, (ii) its expression is regulated there by the normally high and variable NaCl concentration, and (iii) it protects renal medullary cells from high NaCl concentration-induced apoptosis.
Collapse
Affiliation(s)
- Qi Cai
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1603, USA
| | | | | | | | | | | |
Collapse
|
76
|
Dmitrieva NI, Burg MB. Hypertonic stress response. Mutat Res 2005; 569:65-74. [PMID: 15603752 DOI: 10.1016/j.mrfmmm.2004.06.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/21/2004] [Accepted: 06/14/2004] [Indexed: 05/01/2023]
Abstract
Mammalian renal inner medullary cells are normally exposed to extremely high NaCl concentrations. Remarkably, under these normal conditions, the high NaCl causes DNA damage and inhibits its repair, yet the cells survive and function both in cell culture and in vivo. The interstitial NaCl concentration in parts of a normal renal medulla can be 500 mM or more, depending on the species. Studies of how the cells survive and function despite this extreme stress have led to the discovery of protective adaptations, including accumulation of large amounts of organic osmolytes, which normalize cell volume and intracellular ionic strength, despite the hypertonicity of the high NaCl. Those adaptations, however, do not prevent DNA damage. High NaCl induces DNA breaks rapidly, and the DNA breaks persist even after the cells become adapted to the high NaCl. The adapted cells proliferate rapidly in cell culture and function adequately in vivo despite the DNA breaks. Both in cell culture and in vivo the breaks are rapidly repaired if the NaCl concentration is lowered. Although acute elevation of NaCl causes transient cell cycle arrest and, when the elevation is too extreme, apoptosis, proliferation of adapted cells is not arrested in culture and apoptosis is not evident either in culture or in vivo. Further, high NaCl impairs activation of several components of the classical DNA damage response such as Mre11, H2AX and Chk1 leading to inhibition of DNA repair. Nevertheless, other regular participants in the DNA damage response, such as Gadd45a, Gadd153, p53, Hsp70, and ATM are still upregulated by high NaCl. How high NaCl causes the DNA breaks and how the cells survive them is conjectural at this point. We discuss possible answers to these questions, based on current knowledge about induction and processing of DNA breaks.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, 10 Center Drive, Building 10, Room 6N260, Bethesda, MD 20892-1603, USA
| | | |
Collapse
|
77
|
Maaser K, Sutter AP, Krahn A, Höpfner M, Grabowski P, Scherübl H. Cell cycle-related signaling pathways modulated by peripheral benzodiazepine receptor ligands in colorectal cancer cells. Biochem Biophys Res Commun 2004; 324:878-86. [PMID: 15474510 DOI: 10.1016/j.bbrc.2004.09.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Indexed: 01/17/2023]
Abstract
Specific ligands of the peripheral benzodiazepine receptor (PBR) have been shown to induce both apoptosis and G1/G0 cell cycle arrest in colorectal cancers. The signaling pathways leading to cell cycle arrest are still unknown. Using cDNA array technology, we identified signaling molecules involved in cell cycle arrest induced by the PBR ligands FGIN-1-27 and PK 11195. Differential gene expression was confirmed by semi-quantitative RT-PCR or Western blot analysis of gene products. The PBR ligand-mediated signaling involved the upregulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27Kip1, cdc16, and the cell cycle inhibitors gadd45 and gadd153, the downregulation of the cyclins D1 and B1, as well as the inactivation of ERK1/2. The p21-deficient colorectal cancer cell line HCT116 p21-/- was significantly less sensitive to PBR ligands than the parental HCT116 wild-type cells, demonstrating the functional involvement of p21WAF1/CIP1 in PBR ligand-mediated G1 arrest. This study thus revealed PBR ligand-triggered signaling pathways leading to cell cycle arrest. Moreover, we showed the functional implication and interaction of differentially expressed gene products and provided a model of signaling pathways involved in PBR ligand-induced G1 arrest. These results form the basis for future PBR ligand-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Kerstin Maaser
- Medical Clinic I, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ. Tau Becomes a More Favorable Substrate for GSK-3 When It Is Prephosphorylated by PKA in Rat Brain. J Biol Chem 2004; 279:50078-88. [PMID: 15375165 DOI: 10.1074/jbc.m406109200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein tau is abnormally hyperphosphorylated in Alzheimer's disease (AD) and other tauopathies and is believed to lead to neurodegeneration in this family of diseases. Here we show that infusion of forskolin, a specific cAMP-dependent protein kinase A (PKA) activator, into the lateral ventricle of brain in adult rats induced activation of PKA by severalfold and concurrently enhanced the phosphorylation of tau at Ser-214, Ser-198, Ser-199, and or Ser-202 (Tau-1 site) and Ser-396 and or Ser-404 (PHF-1 site), which are among the major abnormally hyperphosphorylated sites seen in AD. PKA activation positively correlated to the extent of tau phosphorylation at these sites. Infusion of forskolin together with PKA inhibitor or glycogen synthase kinase-3 (GSK-3) inhibitor revealed that the phosphorylation of tau at Ser-214 was catalyzed by PKA and that the phosphorylation at both the Tau-1 and the PHF-1 sites is induced by basal level of GSK-3, because forskolin activated PKA and not GSK-3 and inhibition of the latter inhibited the phosphorylation at Tau-1 and PHF-1 sites. Inhibition of cdc2, cdk5, or MAPK had no significant effect on the forskolin-induced hyperphosphorylation of tau. Forskolin inhibited spatial memory in a dose-dependent manner in the absence but not in the presence of R(p)-adenosine 3',5'-cyclic monophosphorothioate triethyl ammonium salt, a PKA inhibitor. These results demonstrate for the first time that phosphorylation of tau by PKA primes it for phosphorylation by GSK-3 at the Tau-1 and the PHF-1 sites and that an associated loss in spatial memory is inhibited by inhibition of the hyperphosphorylation of tau. These data provide a novel mechanism of the hyperphosphorylation of tau and identify both PKA and GSK-3 as promising therapeutic targets for AD and other tauopathies.
Collapse
Affiliation(s)
- Shi Jie Liu
- Pathophysiology Department, Neuroscience Institute, Tongji Medical College, Hua-Zhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Sanders PM, Tisdale MJ. Effect of zinc-alpha2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett 2004; 212:71-81. [PMID: 15246563 DOI: 10.1016/j.canlet.2004.03.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Revised: 03/09/2004] [Accepted: 03/16/2004] [Indexed: 11/17/2022]
Abstract
The plasma protein zinc-alpha2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the beta3-adrenergic receptor (beta3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 microM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a beta3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 microM ZAG. This effect was not mediated through the beta3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia.
Collapse
Affiliation(s)
- Paul M Sanders
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
80
|
Yoshida T, Müller E, Stears R, Shirota S, Tsuchiya K, Akiba T, Gullans SR. Osmoadaptation-related genes in inner medulla of mouse kidney using microarray. Biochem Biophys Res Commun 2004; 322:250-7. [PMID: 15313198 DOI: 10.1016/j.bbrc.2004.07.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Indexed: 11/27/2022]
Abstract
To distinguish biological molecular processes of osmotic stress occurring in inner medulla, we utilized microarrays to monitor expression profiles. RNAs from three segments (cortex, outer medulla, and inner medulla) of mouse kidney were isolated and applied to microarrays. We found 35 genes expressed highly in inner medulla. Next, microarrays for the RNAs from mouse medullary collecting duct cell line (mIMCD) cells and osmotically adapted mIMCD cells (HT cells) were performed (designed as resistant to 1270mOsm/H(2)O). Of 35 genes highly expressed in inner medulla, 6 genes such as; B-cell translocation gene protein (BTG), myc-basic motif homologue, gelsolin, cell surface glycoprotein, laminin beta2, and tubulo-interstitial nephritis antigen, were also expressed highly in HT cells. Using real-time PCR, we confirmed the expression of six genes. Additionally acute osmotic stress induced the BTG. By comparing the inner medulla to a mIMCD3, we identified genes which respond to acute and chronic hyperosmotic stress.
Collapse
Affiliation(s)
- Takumi Yoshida
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
81
|
Mak SK, Kültz D. Gadd45 Proteins Induce G2/M Arrest and Modulate Apoptosis in Kidney Cells Exposed to Hyperosmotic Stress. J Biol Chem 2004; 279:39075-84. [PMID: 15262964 DOI: 10.1074/jbc.m406643200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gadd45 proteins are induced by hyperosmolality in renal inner medullary (IM) cells, but their role for cell adaptation to osmotic stress is not known. We show that a cell line derived from murine renal IM cells responds to moderate hyperosmotic stress (540 mosmol/kg) by activation of G(2)/M arrest without significant apoptosis. If the severity of hyperosmotic stress exceeds the tolerance limit of this cell line (620 mosmol/kg) apoptosis is strongly induced. Using transient overexpression of ectopic Gadd45 proteins and simultaneous analysis of transfected versus non-transfected cells by laser-scanning cytometry, we were able to measure the effects of Gadd45 super-induction during hyperosmolality on G(2)/M arrest and apoptosis. Our results demonstrate that induction of all three Gadd45 isoforms inhibits mitosis and promotes G(2)/M arrest during moderate hyperosmotic stress but not in isosmotic controls. Furthermore, all three Gadd45 proteins are also involved in control of apoptosis during severe hyperosmotic stress. Under these conditions Gadd45gamma induction strongly potentiates apoptosis. In contrast, Gadd45alpha/beta induction transiently increases caspase 3/7 and annexin V binding before 12 h but inhibits later stages of apoptosis during severe hyperosmolality. These results show that Gadd45 isoforms function in common but also in distinct pathways during hyperosmolality and that their increased abundance contributes to the low mitotic index and protection of genomic integrity in cells of the mammalian renal inner medulla.
Collapse
Affiliation(s)
- Sally K Mak
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
82
|
Wetzel RK, Pascoa JL, Arystarkhova E. Stress-induced expression of the gamma subunit (FXYD2) modulates Na,K-ATPase activity and cell growth. J Biol Chem 2004; 279:41750-7. [PMID: 15280368 DOI: 10.1074/jbc.m405622200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In kidney, the Na,K-ATPase is associated with a single span protein, the gamma subunit (FXYD2). Two splice variants are differentially expressed along the nephron and have a differential influence on Na,K-ATPase when stably expressed in mammalian cells in culture. Here we used a combination of gene induction and gene silencing techniques to test the functional impact of gamma by means other than transfection. NRK-52E cells (of proximal tubule origin) do not express gamma as a protein under regular tissue culture conditions. However, when they were exposed to hyperosmotic medium, induction of only the gammaa splice variant was observed, which was accompanied by a reduction in the rate of cell division. Kinetic analysis of stable enzyme properties from control (alpha1beta1) and hypertonicity-treated cultures (alpha1beta1gammaa) revealed a significant reduction (up to 60%) of Na,K-ATPase activity measured under V(max) conditions with little or no change in the amounts of alpha1beta1. This effect as well as the reduction in cell growth rate was practically abolished when gamma expression was knocked down using specific small interfering RNA duplexes. Surprisingly, a similar induction of endogenous gammaa because of hypertonicity was seen in rat cell lines of other than renal origin: C6 (glioma), PC12 (pheochromocytoma), and L6 (myoblasts). Furthermore, exposure of NRK-52E cells to other stress inducers such as heat shock, exogenous oxidation, and chemical stress also resulted in a selective induction of gammaa. Taken together, the data imply that induction of gammaa may have adaptive value by being a part of a general cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Randall K Wetzel
- Laboratory of Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
83
|
Deane EE, Woo NYS. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 2004; 287:R1054-63. [PMID: 15242828 DOI: 10.1152/ajpregu.00347.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Certain fish have the remarkable capability of euryhalinity, being able to withstand large variations in salinity for indefinite periods. Using the highly euryhaline species, silver sea bream (Sparus sarba), as an experimental model, some of the molecular processes involved during ion regulation (Na+-K+-ATPase), cytoprotection [heat shock protein (hsp) 70], and growth (somatotropic axis) were studied. To perform these studies, seven key genes involved in these processes were cloned, and the tissue-specific expression profiles in fish adapted to salinities of 6 parts per thousand (ppt; hypoosmotic), 12 ppt (isoosmotic), 33 ppt (seawater), and 50 ppt (hypersaline) were studied. In gills, the transcriptional and translational expression profiles of Na+-K+-ATPase alpha- and beta-subunit genes were lowest in isoosmotic-adapted fish, whereas in kidneys the expression of the beta-subunit increased in seawater- and hypersaline-adapted groups. The hsp70 multigene family, comprising genes coding for heat shock cognate (hsc70), inducible heat shock protein (hsp70), and a heat shock transcription factor (hsf1), was found to be highly upregulated in gills of seawater- and hypersaline-adapted fish. In liver, hsc70 expression was lowest in isoosmotic groups, and in kidneys the hsp70 multigene family remained unchanged over the salinity range tested. The regulation of the somatotropic axis was studied by measuring pituitary growth hormone expression and liver IGF-I expression in salinity-adapted fish. The expression amounts of both genes involved in the somatotropic axis were highest in fish maintained at an isoosmotic salinity. The results of this study provide new information on key molecular processes involved in euryhalinity of fish.
Collapse
Affiliation(s)
- Eddie E Deane
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | |
Collapse
|
84
|
Pan F, Zarate J, Choudhury A, Rupprecht R, Bradley TM. Osmotic stress of salmon stimulates upregulation of a cold inducible RNA binding protein (CIRP) similar to that of mammals and amphibians. Biochimie 2004; 86:451-61. [PMID: 15308334 DOI: 10.1016/j.biochi.2004.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 06/18/2004] [Indexed: 11/20/2022]
Abstract
Salmon are subjected to hyperosmotic stress during transition from freshwater to the marine environment. A variety of mechanisms have evolved to allow movement of the animal from a hydrating to a dehydrating environment. Using differential assay of mRNA expression, a 1.3 kb transcript was found to be upregulated in branchial lamellae of salmon exposed to hyperosmotic conditions. The transcript contains an open reading frame of 618 nt coding for a 205 amino acid protein with a molecular mass of 21.5 kDa. The putative protein, dubbed salmon glycine-rich RNA binding protein (SGRP), possesses a high degree of identity (>70%) with the cold inducible RNA binding proteins (CIRP) of mammals and amphibians and contains the canonical features of these proteins including a single RNA recognition motif (RRM), high glycine content and conserved flanking motifs. SGRP mRNA was observed to increase in response to hyperosmotic stress of branchial tissue with maximum levels of expression after 48 h of exposure. Transcript also was observed in liver, kidney and heart but was not upregulated significantly by osmotic stress in these tissues. Exposure of isolated lamellae to heat stress and sodium arsenite, known inducers of hsps, did not stimulate accumulation of SGRP transcript. Similarly, inhibition of protein synthesis with cycloheximide and the MAPK and MEK signal transduction pathways with SB202190 and PD98059 failed to alter expression of the gene. Of significance was the absence of an increase in expression of SGRP in response to cold stress (DeltaT = 5 and 12 degrees C for 12 and 24 h). The findings of this research suggest that ectothermic salmon inhabiting boreal waters possess a protein analogous to the CIRPs currently identified in mammals and amphibians. In contrast to the function of CIRPs, SGRP appears to have a more prominent role in adaptation to hyperosmotic conditions rather than cold stress.
Collapse
Affiliation(s)
- Feng Pan
- Dept of Fisheries, Animal and Veterinary Science, Building #14 East Farm, URI, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
85
|
Yin F, Bruemmer D, Blaschke F, Hsueh WA, Law RE, Herle AJV. Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells. Oncogene 2004; 23:4614-23. [PMID: 15064713 DOI: 10.1038/sj.onc.1207598] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 12/16/2003] [Accepted: 02/03/2004] [Indexed: 11/08/2022]
Abstract
We previously reported that the PPARgamma agonist troglitazone (TRO) inhibits proliferation and induces apoptosis in human MCF-7 breast carcinoma cells. To understand the mechanisms of antiproliferative and pro-apoptotic effects of TRO, we screened a limited DNA array containing 23 genes involved in regulating either the cell cycle and/or apoptosis. Four of the 23 genes screened exhibited regulation by TRO, with growth arrest and DNA damage-inducible gene 45 (GADD45) being the most strongly upregulated. TRO induced GADD45 mRNA expression in a time- and dose-dependent manner. Depletion of GADD45 by siRNA abrogated TRO-induced apoptosis in MCF-7 cells demonstrating the physiological relevance of GADD45 upregulation. Signaling pathways mediating TRO-induced GADD45 were also investigated. Several mitogen-activated protein kinase (MAPK) pathways were involved in the induction of GADD45 by TRO. Inhibition of the c-jun N-terminal kinase MAPK pathway by SP600125 partially abolished TRO-induced GADD45 mRNA, and protein expression and apoptosis. In contrast, inhibition of the p38 MAPK pathway by SB203580, or through overexpression of a dominant-negative mutant of p38 MAPK, augmented GADD45 mRNA induction and GADD45 promoter activation as well as cell apoptosis by TRO. Blockade of the extracellular signal-regulated kinase MAPK pathway by PD98059 also enhanced TRO's effects on GADD45 and apoptosis. Two other PPARgamma agonists pioglitazone and rosiglitazone did not induce GADD45 expression. Our finding of GADD45 induction by TRO may provide a new insight concerning the mechanisms for TRO's antiproliferative and pro-apoptotic effects in breast cancer cells.
Collapse
Affiliation(s)
- Fen Yin
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, California, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Sutter AP, Maaser K, Gerst B, Krahn A, Zeitz M, Scherübl H. Enhancement of peripheral benzodiazepine receptor ligand-induced apoptosis and cell cycle arrest of esophageal cancer cells by simultaneous inhibition of MAPK/ERK kinase. Biochem Pharmacol 2004; 67:1701-10. [PMID: 15081869 DOI: 10.1016/j.bcp.2004.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/05/2004] [Indexed: 11/16/2022]
Abstract
Specific ligands of the peripheral benzodiazepine receptor (PBR) activate pro-apoptotic and anti-proliferative signaling pathways. Previously, we found that PBR ligands activated the p38 mitogen-activated protein kinase (MAPK) pathway in esophageal cancer cells, and that the activation of p38MAPK contributed to tumor cell apoptosis and cell cycle arrest. Here, we report that PBR ligands also activate the pro-survival MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in esophageal cancer cells, which might compromise the efficacy of PBR ligands. Hence, a combination treatment of PBR ligands and MEK inhibitors, which are emerging as promising anticancer agents, was pursued to determine whether this treatment could lead to enhanced apoptosis and cell cycle arrest. Using Western blotting we demonstrated a time- and dose-dependent phosphorylation of ERK1/2 in response to PBR ligands. Apoptosis was investigated by assessment of mitochondrial alterations and caspase-3 activity. Cell cycle arrest was measured by flow cytometric analysis of stained isolated nuclei. The inhibition of MEK/ERK with a pharmacologic inhibitor, 2'-amino-3'-methoxyflavone (PD 98059), resulted in a synergistic enhancement of PBR-ligand-induced growth inhibition, apoptosis and cell cycle arrest. Specifity of the pharmacologic inhibitor was confirmed by the use of 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U 0126), a second MEK/ERK inhibitor, and 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U 0124), a structural analogue of it which does not display any affinity to MEK. Enhanced pro-apoptotic and anti-proliferative effects were observed both in KYSE-140 esophageal squamous cancer and OE-33 adenocarcinoma cells, suggesting that this effect was not cell-type specific. In addition, the PBR-mediated overexpression of the stress response gene (growth arrest and DNA-damage-inducible gene gadd153) was synergistically enhanced by MEK inhibition. This is the first report of enhanced PBR-ligand-mediated apoptosis and cell cycle arrest by simultaneous MEK inhibition, suggesting a new anticancer strategy.
Collapse
Affiliation(s)
- Andreas P Sutter
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Medical Clinic I, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
87
|
Dmitrieva NI, Cai Q, Burg MB. Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo. Proc Natl Acad Sci U S A 2004; 101:2317-22. [PMID: 14983007 PMCID: PMC356948 DOI: 10.1073/pnas.0308463100] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acute exposure of cells in culture to high NaCl damages DNA and impairs its repair. However, after several hours of cell cycle arrest, cells multiply in the hypertonic medium. Here, we show that, although adapted cells proliferate rapidly and do not become apoptotic, they nevertheless contain numerous DNA breaks, which do not elicit a DNA damage response. Thus, in adapted cells, Mre11 exonuclease is mainly present in the cytoplasm, rather than nucleus, and histone H2AX and chk1 are not phosphorylated, as they normally would be in response to DNA damage. Also, the adapted cells are deficient in repair of luciferase reporter plasmids damaged by UV irradiation. On the other hand, the DNA damage response activates rapidly when the level of NaCl is reduced. Then, Mre11 moves into the nucleus, and H2AX and chk1 become phosphorylated. Renal inner medullary cells in vivo are normally exposed to a variable, but always high, level of NaCl. As with adapted cells in culture, inner medullary cells in normal mice exhibit numerous DNA breaks. These DNA breaks are rapidly repaired when the NaCl level is decreased by injection of the diuretic furosemide. Moreover, repair of DNA breaks induced by ionizing radiation is inhibited in the inner medulla. Histone H2AX does not become phosphorylated, and repair synthesis is not detectable in response to total body irradiation unless NaCl is lowered by furosemide. Thus, both in cell culture and in vivo, although cells adapt to high NaCl, their DNA is damaged and its repair is inhibited.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1603, USA.
| | | | | |
Collapse
|
88
|
Nakajima K, Tohyama Y, Kohsaka S, Kurihara T. Protein kinase Cα requirement in the activation of p38 mitogen-activated protein kinase, which is linked to the induction of tumor necrosis factor α in lipopolysaccharide-stimulated microglia. Neurochem Int 2004; 44:205-14. [PMID: 14602083 DOI: 10.1016/s0197-0186(03)00163-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, Gö6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.
Collapse
Affiliation(s)
- Kazuyuki Nakajima
- Neurobiology Lab, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | |
Collapse
|
89
|
Smith HJ, Tisdale MJ. Signal transduction pathways involved in proteolysis-inducing factor induced proteasome expression in murine myotubes. Br J Cancer 2003; 89:1783-8. [PMID: 14583784 PMCID: PMC2394402 DOI: 10.1038/sj.bjc.6601328] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proteolysis-inducing factor (PIF) is produced by cachexia-inducing tumours and initiates protein catabolism in skeletal muscle. The potential signalling pathways linking the release of arachidonic acid (AA) from membrane phospholipids with increased expression of the ubiquitin–proteasome proteolytic pathway by PIF has been studied using C2C12 murine myotubes as a surrogate model of skeletal muscle. The induction of proteasome activity and protein degradation by PIF was blocked by quinacrine, a nonspecific phospholipase A2 (PLA2) inhibitor and trifluroacetyl AA, an inhibitor of cytosolic PLA2. PIF was shown to increase the expression of calcium-independent cytosolic PLA2, determined by Western blotting, at the same concentrations as those inducing maximal expression of 20S proteasome α-subunits and protein degradation. In addition, both U-73122, which inhibits agonist-induced phospholipase C (PLC) activation and D609, a specific inhibitor of phosphatidylcholine-specific PLC also inhibited PIF-induced proteasome activity. This suggests that both PLA2 and PLC are involved in the release of AA in response to PIF, and that this is important in the induction of proteasome expression. The two tyrosine kinase inhibitors genistein and tryphostin A23 also attenuated PIF-induced proteasome expression, implicating tyrosine kinase in this process. PIF induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) at the same concentrations as that inducing proteasome expression, and the effect was blocked by PD98059, an inhibitor of MAPK kinase, as was also the induction of proteasome expression, suggesting a role for MAPK activation in PIF-induced proteasome expression.
Collapse
Affiliation(s)
- H J Smith
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | - M J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK. E-mail:
| |
Collapse
|
90
|
Höpfner M, Sutter AP, Gerst B, Zeitz M, Scherübl H. A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br J Cancer 2003; 89:1766-75. [PMID: 14583782 PMCID: PMC2394425 DOI: 10.1038/sj.bjc.6601346] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Therapeutic options to inhibit the growth and spread of neuroendocrine (NE) gastrointestinal tumours are still limited. Since gefitinib (4-(3-chloro-4-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline), an inhibitor of epidermal growth factor receptor-sensitive tyrosine kinase (EGFR-TK), had been shown to suppress potently the growth of various non-NE tumour entities, we studied the antineoplastic potency of gefitinib in NE gastrointestinal tumour cells. In human insulinoma (CM) cells, in human pancreatic carcinoid (BON) cells and in NE tumour cells of the gut (STC-1), gefitinib induced a time- and dose-dependent growth inhibition by almost 100%. The antiproliferative potency of gefitinib correlated with the proliferation rate of the tumour cells. So the IC50 value of gefitinib was 4.7±0.6 μM in the fast-growing CM cells, still 16.8±0.4 μM in the moderate-growing BON cells, and up to 31.5±2.5 μM in the slow-growing STC-1 cells. Similarly, the induction of apoptosis and cell-cycle arrest by gefitinib differed according to growth characteristics: fast-growing CM cells displayed a strong G0/G1 arrest in response to gefitinib, while no significant cell-cycle alterations were seen in the slow-growing STC-1. Vice versa, the proapoptotic effects of gefitinib, as determined by caspase-3 activation and DNA fragmentation, were most pronounced in the slow-growing STC-1 cells. Using cDNA microarrays, we found extensive changes in the expression of genes involved in the regulation of apoptosis and cell cycle after incubation with gefitinib. Among them, an upregulation of the growth arrest and DNA damage-inducible gene GADD153 was observed. Phosphorylation of ERK1/2, which inhibits GADD153 expression, was reduced in a time-dependent manner. However, no gefitinib-induced activation of the GADD153-inducing p38 mitogen-activated protein kinase was detected. Our data demonstrate that the inhibition of EGFR-TK by gefitinib induces growth inhibition, apoptosis and cell-cycle arrest in NE gastrointestinal tumour cells. Thus, EGFR-TK inhibition appears to be a promising novel approach for the treatment of NE tumour disease.
Collapse
Affiliation(s)
- M Höpfner
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - A P Sutter
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - B Gerst
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - M Zeitz
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - H Scherübl
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany. E-mail:
| |
Collapse
|
91
|
Tabary O, Muselet C, Miesch MC, Yvin JC, Clément A, Jacquot J. Reduction of chemokine IL-8 and RANTES expression in human bronchial epithelial cells by a sea-water derived saline through inhibited nuclear factor-kappaB activation. Biochem Biophys Res Commun 2003; 309:310-6. [PMID: 12951051 DOI: 10.1016/j.bbrc.2003.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NaCl content of airway surface fluid is believed to be of central importance in lung pathology. To test whether the Na+ concentration could influence the inflammatory response in human bronchial epithelial cells (BECs), we investigated the interleukin (IL)-8 and RANTES expression in BECs exposed to an isotonic sea-water derived low Na+ (ISW) saline compared to isotonic 0.9% NaCl saline. Exposure of BECs to ISW saline caused a significant decrease in IL-8 and RANTES gene expression and protein production as compared to that observed with 0.9% NaCl saline. Furthermore, we observed a concomitant reduction of phosphorylated IkappaBalpha associated with a marked inhibition of NF-kappaB-DNA binding activity in BECs exposed to ISW saline as compared to 0.9% NaCl saline. These findings support a new role for Na+ in the pathogenesis of airway inflammatory disorders. Therapies targeted at lowering Na+ level in airway epithelium may be beneficial in treating inflammatory lung diseases.
Collapse
|
92
|
Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 2003. [PMID: 12904460 DOI: 10.1523/jneurosci.23-18-06993.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optic neuritis is one of the most common clinical manifestations of multiple sclerosis (MS), a chronic inflammatory disease of the CNS. High-dosage methylprednisolone treatment has been established as the standard therapy of acute inflammation of the optic nerve (ON). The rationale for corticosteroid treatment lies in the antiinflammatory and immunosuppressive properties of these drugs, as shown in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. To investigate the influence of methylprednisolone therapy on the survival of retinal ganglion cells (RGCs), the neurons that form the axons of the ON, we used a rat model of myelin oligodendrocyte glycoprotein (MOG)-induced EAE. Optic neuritis was diagnosed by recording visual evoked potentials, and RGC function was monitored by measuring electroretinograms. Methylprednisolone treatment significantly increased RGC apoptosis during MOG-EAE. By Western blot analysis, we identified the underlying molecular mechanism: a suppression of mitogen-activated protein kinase (MAPK) phosphorylation, which is a key event in an endogenous neuroprotective pathway. The methylprednisolone-induced inhibition of MAPK phosphorylation was calcium dependent. Hence, we provide evidence for negative effects of steroid treatment on neuronal survival during chronic inflammatory autoimmune disease of the CNS, which should result in a reevaluation of the current therapy regimen.
Collapse
|
93
|
Zhang L, Wang W, Hayashi Y, Jester JV, Birk DE, Gao M, Liu CY, Kao WWY, Karin M, Xia Y. A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J 2003; 22:4443-54. [PMID: 12941696 PMCID: PMC202382 DOI: 10.1093/emboj/cdg440] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 07/15/2003] [Accepted: 07/16/2003] [Indexed: 11/14/2022] Open
Abstract
MEKK1-deficient mice show an eye open at birth phenotype caused by impairment in embryonic eyelid closure. MEK kinase 1 (MEKK1) is highly expressed in the growing tip of the eyelid epithelium, which displays loose cell-cell contacts and prominent F-actin fibers in wild-type mice, but compact cell contacts, lack of polymerized actin and a concomitant impairment in c-Jun N-terminal phosphorylation in MEKK1-deficient mice. In cultured keratinocytes, MEKK1 is essential for JNK activation by TGF-beta and activin, but not by TGF-alpha. MEKK1-driven JNK activation is required for actin stress fiber formation, c-Jun phosphorylation and cell migration. However, MEKK1 ablation does not impair other TGF-beta/activin functions, such as nuclear translocation of Smad4. These results establish a specific role for the MEKK1-JNK cascade in transmission of TGF-beta and activin signals that control epithelial cell movement, providing the mechanistic basis for the regulation of eyelid closure by MEKK1. This study also suggests that the signaling mechanisms that control eyelid closure in mammals and dorsal closure in Drosophila are evolutionarily conserved.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Kültz D. Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 2003; 206:3119-24. [PMID: 12909693 DOI: 10.1242/jeb.00549] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells respond to acute environmental change by activating a stress response that is widely studied. However, knowledge of this stress response is fragmentary, and a unifying concept explaining its universality for many different species and types of stress is lacking. The need for a holistic view emphasizing the key aspects of the stress response is addressed by the following hypothesis. The cellular stress response is a reaction to any form of macromolecular damage that exceeds a set threshold, independent of the underlying cause. It is aimed at temporarily increasing tolerance limits towards macromolecular damage by utilizing a phylogenetically conserved set of genes and pathways that mediate global macromolecular stabilization and repair to promote cellular and organismal integrity under suboptimal conditions. This mechanism affords time for a separate set of stressor-specific adaptations, designed to re-establish cellular homeostasis, to take action. Supporting evidence, emerging conclusions, and ways to test this hypothesis are presented.
Collapse
Affiliation(s)
- Dietmar Kültz
- University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
95
|
Dina OA, McCarter GC, de Coupade C, Levine JD. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 2003; 39:613-24. [PMID: 12925276 DOI: 10.1016/s0896-6273(03)00473-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) and epinephrine act directly on nociceptors to produce mechanical hyperalgesia through protein kinase A (PKA) alone or through a combination of PKA, protein kinase C epsilon (PKCepsilon), and extracellular signal-regulated kinase (ERK), respectively. Disruptors of the cytoskeleton (microfilaments, microtubules, and intermediate filaments) markedly attenuated the hyperalgesia in rat paws caused by injection of epinephrine or its downstream mediators. In contrast, the hyperalgesia induced by PGE(2) or its mediators was not affected by any of the cytoskeletal disruptors. These effects were mimicked in vitro, as measured by enhancement of the tetrodotoxin-resistant sodium current. When PGE(2) hyperalgesia was shifted to dependence on PKCepsilon and ERK as well as PKA, as when the tissue is "primed" by prior treatment with carrageenan, it too became dependent on an intact cytoskeleton. Thus, inflammatory mediator-induced mechanical hyperalgesia was differentially dependent on the cytoskeleton such that cytoskeletal dependence correlated with mediation by PKCepsilon and ERK.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, NIH Pain Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
96
|
Sutter AP, Maaser K, Barthel B, Scherübl H. Ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in oesophageal cancer cells: involvement of the p38MAPK signalling pathway. Br J Cancer 2003; 89:564-72. [PMID: 12888831 PMCID: PMC2394363 DOI: 10.1038/sj.bjc.6601125] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 04/30/2003] [Accepted: 05/07/2003] [Indexed: 12/31/2022] Open
Abstract
Specific ligands of the peripheral benzodiazepine receptor (PBR) are known to induce apoptosis and cell cycle arrest in oesophageal cancer cells. However, the underlying mechanisms are still unknown. Here, we investigated the transcriptional alterations and activation of protein kinases in response to PBR-specific ligands. Using cDNA arrays, we examined the transcriptional effects of the PBR-specific ligand FGIN-1-27 in two oesophageal cancer cell lines, KYSE-140 (squamous cell carcinoma) and OE-33 (adenocarcinoma). In oesophageal cancer cells, FGIN-1-27 induced extensive changes in the expression of genes involved in the regulation of apoptosis and cell cycle. Both in oesophageal cancer cell lines (KYSE-140, OE-33) we observed a strong upregulation of the growth arrest and DNA-damage-inducible genes, gadd45 and gadd153, in response to PBR ligands. gadd genes are known to be induced by p38MAPK activation. Using Western blotting we detected a time- and dose-dependent phosphorylation of p38MAPK, which was found to be functionally involved in gadd induction, apoptosis, and cell cycle arrest. In conclusion, our data indicate that PBR-specific ligands cause apoptosis and cell cycle arrest by activation of the p38MAPK pathway and induction of gadd45 and gadd153.
Collapse
Affiliation(s)
- A P Sutter
- Medical Clinic I,
Gastroenterology, Infectious Diseases, Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - K Maaser
- Medical Clinic I,
Gastroenterology, Infectious Diseases, Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - B Barthel
- Medical Clinic I,
Gastroenterology, Infectious Diseases, Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - H Scherübl
- Medical Clinic I,
Gastroenterology, Infectious Diseases, Rheumatology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| |
Collapse
|
97
|
Dmitrieva NI, Bulavin DV, Burg MB. High NaCl causes Mre11 to leave the nucleus, disrupting DNA damage signaling and repair. Am J Physiol Renal Physiol 2003; 285:F266-74. [PMID: 12684226 DOI: 10.1152/ajprenal.00060.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High NaCl causes DNA double-strand breaks and cell cycle arrest, but the mechanism of its genotoxicity has been unclear. In this study, we describe a novel mechanism that contributes to this genotoxicity. The Mre11 exonuclease complex is a central component of DNA damage response. This complex assembles at sites of DNA damage, where it processes DNA ends for subsequent activation of repair and initiates cell cycle checkpoints. However, this does not occur with DNA damage caused by high NaCl. Rather, following high NaCl, Mre11 exits from the nucleus, DNA double-strand breaks accumulate in the S and G2 phases of the cell cycle, and DNA repair is inhibited. Furthermore, the exclusion of Mre11 from the nucleus by high NaCl persists following UV or ionizing radiation, also preventing DNA repair in response to those stresses, as evidenced by absence of H2AX phosphorylation at places of DNA damage and by impaired repair of damaged reporter plasmids. Activation of chk1 by phosphorylation on Ser345 generally is required for DNA damage-induced cell cycle arrest. However, chk1 does not become phosphorylated during high NaCl-induced cell cycle arrest. Also, high NaCl prevents ionizing and UV radiation-induced phosphorylation of chk1, but cell cycle arrest still occurs, indicating the existence of alternative mechanisms for the S and G2/M delays. DNA breaks that occur normally during processes such as DNA replication and transcription, as well as damages to DNA induced by genotoxic stresses, ordinarily are rapidly repaired. We propose that inhibition of this repair by high NaCl results in accumulation of DNA damage, accounting for the genotoxicity of high NaCl, and that cell cycle delay induced by high NaCl slows accumulation of DNA damage until the DNA damage-response network can be reactivated.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Rm. 6N260, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
98
|
Csapo Z, Keszler G, Safrany G, Spasokoukotskaja T, Talianidis I, Staub M, Sasvari-Szekely M. Activation of deoxycytidine kinase by gamma-irradiation and inactivation by hyperosmotic shock in human lymphocytes. Biochem Pharmacol 2003; 65:2031-9. [PMID: 12787883 DOI: 10.1016/s0006-2952(03)00182-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in the intracellular metabolism of deoxynucleosides and their analogues, phosphorylating a wide range of drugs used in the chemotherapy of leukaemia and solid tumours. Previously, we found that activity of dCK can be enhanced by incubating primary cultures of lymphocytes with substrate analogues of the enzyme, as well as with various genotoxic agents. Here we present evidence that exposure of human lymphocytes to 0.5-2 Gy dosage of gamma-radiation as well as incubation of cells with calyculin A, a potent inhibitor of protein phosphatase 1 and 2A, both elevate dCK activity without changing the level of dCK protein. When cells were gamma-irradiated in the presence of calyculin A, a more pronounced activation of dCK was observed. In contrast, both basal and stimulated dCK activities were reduced by hyperosmotic treatment of the cells. DNA repair determined by the Comet assay and by thymidine incorporation was induced by irradiation. Complete repair of gamma-irradiated DNA was detected within 1 hr following the irradiation along with dCK activation, but the rate of repair was not accelerated by calyculin A. These data provide evidence for the activation of dCK upon DNA damage and repair that seems to be mediated by phosphorylation of the enzyme, suggesting the role of dCK in DNA repair processes.
Collapse
Affiliation(s)
- Zsolt Csapo
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
99
|
Neufeld AH, Liu B. Comparison of the signal transduction pathways for the induction of gene expression of nitric oxide synthase-2 in response to two different stimuli. Nitric Oxide 2003; 8:95-102. [PMID: 12620372 DOI: 10.1016/s1089-8603(02)00164-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human optic nerve astrocytes induce nitric oxide synthase-2 (NOS-2) in vitro in response to cytokines (interferon-gamma/interleukin-1beta) and elevated hydrostatic pressure. Using relatively specific inhibitors, we have compared induction of NOS-2 in response to these two stimuli to determine whether the same or different signal transduction pathways participate in the responses. Using SN50 and CAGE, which inhibit the NFkappaB pathway, the induction of NOS-2 in response to both cytokines and elevated hydrostatic pressure was blocked. Using SB202190 and SB203580, which inhibit p38 mitogen-activated protein kinase, only the response to cytokines was blocked. In contrast, when inhibitors of epidermal growth factor receptor tyrosine kinase AG 82 and AG 18 were used, the induction of NOS-2 in response to pressure, but not in response to cytokines, was blocked. Signal transduction pathways presumably regulate the synthesis of NOS-2 through downstream events that induce transcription of the NOS-2 gene. Our data suggest that activation of different sites in the promoter region of the NOS-2 gene is needed for these different stimuli to induce NOS-2.
Collapse
Affiliation(s)
- Arthur H Neufeld
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Box 8096, St. Louis, MO 63110, USA.
| | | |
Collapse
|
100
|
Su ZZ, Lebedeva IV, Sarkar D, Gopalkrishnan RV, Sauane M, Sigmon C, Yacoub A, Valerie K, Dent P, Fisher PB. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene 2003; 22:1164-80. [PMID: 12606943 DOI: 10.1038/sj.onc.1206062] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant gliomas are extremely aggressive cancers currently lacking effective treatment modalities. Gene therapy represents a promising approach for this disease. A requisite component for improving gene-based therapies of brain cancer includes tumor suppressor genes that exhibit cancer constrained inhibitory activity. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7) as a gene associated with melanoma cell growth, differentiation and progression. Ectopic expression of mda-7 by means of a replication-incompetent adenovirus (Ad), Ad.mda-7, induces growth suppression and apoptosis selectively in diverse human cancers, without producing any apparent harmful effect in normal cells. We presently demonstrate that Ad.mda-7 induces growth inhibition and apoptosis in malignant human gliomas expressing both mutant and wild-type p53, and these effects correlate with an elevation in expression of members of the growth arrest and DNA damage (GADD) gene family. In contrast, infection with a recombinant Ad expressing wild-type p53, Ad.wtp53, specifically affects mutant p53 expressing gliomas. When tested in early passage normal and immortal human fetal astrocytes, growth inhibition resulting from infection with Ad.mda-7 or Ad.wtp53 is significantly less than in malignant gliomas and no toxicity is evident in these normal cells. Moreover, infection of gliomas with Ad.mda-7 or treatment with purified GST-MDA-7 protein sensitizes both wild-type and mutant p53 expressing tumor cells to the growth inhibitory and antisurvival effects of ionizing radiation, and this response correlates with increased expression of specific members of the GADD gene family. Since heterogeneity in p53 expression is common in evolving gliomas, the present findings suggest that Ad.mda-7 may, in many instances, prove more beneficial for the gene-based therapy of malignant gliomas than administration of wild-type p53.
Collapse
Affiliation(s)
- Zao-Zhong Su
- Department of Pathology, Columbia university, College of Physicians and Surgeons, New York , NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|