51
|
Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Front Genet 2019; 10:556. [PMID: 31244888 PMCID: PMC6581679 DOI: 10.3389/fgene.2019.00556] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog-GLI (HH-GLI) pathway is a highly conserved signaling that plays a critical role in controlling cell specification, cell–cell interaction and tissue patterning during embryonic development. Canonical activation of HH-GLI signaling occurs through binding of HH ligands to the twelve-pass transmembrane receptor Patched 1 (PTCH1), which derepresses the seven-pass transmembrane G protein-coupled receptor Smoothened (SMO). Thus, active SMO initiates a complex intracellular cascade that leads to the activation of the three GLI transcription factors, the final effectors of the HH-GLI pathway. Aberrant activation of this signaling has been implicated in a wide variety of tumors, such as those of the brain, skin, breast, gastrointestinal, lung, pancreas, prostate and ovary. In several of these cases, activation of HH-GLI signaling is mediated by overproduction of HH ligands (e.g., prostate cancer), loss-of-function mutations in PTCH1 or gain-of-function mutations in SMO, which occur in the majority of basal cell carcinoma (BCC), SHH-subtype medulloblastoma and rhabdomyosarcoma. Besides the classical canonical ligand-PTCH1-SMO route, mounting evidence points toward additional, non-canonical ways of GLI activation in cancer. By non-canonical we refer to all those mechanisms of activation of the GLI transcription factors occurring independently of SMO. Often, in a given cancer type canonical and non-canonical activation of HH-GLI signaling co-exist, and in some cancer types, more than one mechanism of non-canonical activation may occur. Tumors harboring non-canonical HH-GLI signaling are less sensitive to SMO inhibition, posing a threat for therapeutic efficacy of these antagonists. Here we will review the most recent findings on the involvement of alternative signaling pathways in inducing GLI activity in cancer and stem cells. We will also discuss the rationale of targeting these oncogenic pathways in combination with HH-GLI inhibitors as a promising anti-cancer therapies.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sinforosa Gagliardi
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Barbara Stecca
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| |
Collapse
|
52
|
Fan NW, Ho TC, Wu CW, Tsao YP. Pigment epithelium-derived factor peptide promotes limbal stem cell proliferation through hedgehog pathway. J Cell Mol Med 2019; 23:4759-4769. [PMID: 31066230 PMCID: PMC6584522 DOI: 10.1111/jcmm.14364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Expansion of limbal epithelial stem cells (LSCs) is crucial for the success of limbal transplantation. Previous studies showed that pigment epithelium‐derived peptide (PEDF) short peptide 44‐mer could effectively expand LSCs and maintain them in a stem‐cell state, but the mechanism remained unclear. In the current study, we found that pharmacological inhibition of Sonic Hedgehog (SHh) activity reduced the LSC holoclone number and suppressed LSC proliferation in response to 44‐mer. In mice subjected to focal limbal injury, 44‐mer facilitated the restoration of the LSC population in damaged limbus, and such effect was impeded by the SHh or ATGL (a PEDF receptor) inhibitor. Furthermore, we showed that 44‐mer increased nuclear translocation of Gli1 and Gli3 in LSCs. Knockdown of Gli1 or Gli3 suppressed the ability of 44‐mer to induce cyclin D1 expression and LSC proliferation. In addition, ATGL inhibitor suppressed the 44‐mer‐induced phosphorylation of STAT3 at Tyr705 in LSC. Both inhibitors for ATGL and STAT3 attenuated 44‐mer‐induced SHh activation and LSC proliferation. In conclusion, our data demonstrate that SHh‐Gli pathway driven by ATGL/STAT3 signalling accounts for the 44‐mer‐mediated LSC proliferation.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
53
|
Taylor R, Long J, Yoon JW, Childs R, Sylvestersen KB, Nielsen ML, Leong KF, Iannaccone S, Walterhouse DO, Robbins DJ, Iannaccone P. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair (Amst) 2019; 79:10-21. [PMID: 31085420 PMCID: PMC6570425 DOI: 10.1016/j.dnarep.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5′ exons and large introns 5′ of the translational start. Here we show that Sonic Hedgehog (SHH) stimulates occupancy in the introns by H3K27ac, H3K4me3 and the histone reader protein BRD4. H3K27ac and H3K4me3 occupancy is not significantly changed by removing BRD4 from the human intron and transcription start site (TSS) region. We identified six GLI binding sites (GBS) in the first intron of the human GLI1 gene that are in regions of high sequence conservation among mammals. GLI1 and GLI2 bind all of the GBS in vitro. Elimination of GBS1 and 4 attenuates transcriptional activation by GLI1. Elimination of GBS1, 2, and 4 attenuates transcriptional activation by GLI2. Eliminating all sites essentially eliminates reporter gene activation. Further, GLI1 binds the histone variant H2A.Z. These results suggest that GLI1 and GLI2 can regulate GLI1 expression through protein-protein interactions involving complexes of transcription factors, histone variants, and reader proteins in the regulatory intron of the GLI1 gene. GLI1 acting in trans on the GLI1 intron provides a mechanism for GLI1 positive feedback and auto-regulation. Understanding the combinatorial protein landscape in this locus will be important to interrupting the GLI positive feedback loop and providing new therapeutic approaches to cancers associated with GLI1 overexpression.
Collapse
Affiliation(s)
- Robert Taylor
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Jun Long
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA
| | - Joon Won Yoon
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Ronnie Childs
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | | | | | - King-Fu Leong
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David O Walterhouse
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA.
| | - Philip Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
54
|
Mazzonetto PC, Ariza CB, Ocanha SG, de Souza TA, Ko GM, Menck CFM, Massironi SMG, Porcionatto MA. Mutation in NADPH oxidase 3 (NOX3) impairs SHH signaling and increases cerebellar neural stem/progenitor cell proliferation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1502-1515. [PMID: 30853403 DOI: 10.1016/j.bbadis.2019.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023]
Abstract
Abnormalities in cerebellar structure and function may cause ataxia, a neurological dysfunction of motor coordination. In the course of the present study, we characterized a mutant mouse lineage with an ataxia-like phenotype. We localized the mutation on chromosome 17 and mapped it to position 1534 of the Nox3 gene, resulting in p.Asn64Tyr change. The primary defect observed in Nox3eqlb mice was increased proliferation of cerebellar granule cell precursors (GCPs). cDNA microarray comparing Nox3eqlb and BALB/c neonatal cerebellum revealed changes in the expression of genes involved in the control of cell proliferation. Nox3eqlb GCPs and NSC produce higher amounts of reactive oxygen species (ROS) and upregulate the expression of SHH target genes, such as Gli1-3 and Ccnd1 (CyclinD1). We hypothesize that this new mutation is responsible for an increase in proliferation via stimulation of the SHH pathway. We suggest this mutant mouse lineage as a new model to investigate the role of ROS in neuronal precursor cell proliferation.
Collapse
Affiliation(s)
- P C Mazzonetto
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - C B Ariza
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of General Pathology, Center of Biological Sciences, Universidade Estadual de Londrina (UEL), Brazil
| | - S G Ocanha
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - T A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - G M Ko
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - S M G Massironi
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - M A Porcionatto
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil.
| |
Collapse
|
55
|
Zhang Z, Zhan X, Kim B, Wu J. A proteomic approach identifies SAFB-like transcription modulator (SLTM) as a bidirectional regulator of GLI family zinc finger transcription factors. J Biol Chem 2019; 294:5549-5561. [PMID: 30782847 DOI: 10.1074/jbc.ra118.007018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Indexed: 01/20/2023] Open
Abstract
In Sonic hedgehog (SHH) signaling, GLI family zinc finger (GLI)-mediated diverse gene transcription outcomes are strictly regulated and are important for SHH function in both development and disease. However, how the GLI factors differentially regulate transcription in response to variable SHH activities is incompletely understood. Here, using a newly generated, tagged Gli3 knock-in mouse (Gli3TAP ), we performed proteomic analyses and identified the chromatin-associated SAFB-like transcription modulator (SLTM) as a GLI-interacting protein that context-dependently regulates GLI activities. Using immunoprecipitation and immunoblotting, RT-quantitative PCR, and ChIP assays, we show that SLTM interacts with all three GLI proteins and that its cellular levels are regulated by SHH. We also found that SLTM enhances GLI3 binding to chromatin and increases GLI3 repressor (GLI3R) form protein levels. In a GLI3-dependent manner, SLTM promoted the formation of a repressive chromatin environment and functioned as a GLI3 co-repressor. In the absence of GLI3 or in the presence of low GLI3 levels, SLTM co-activated GLI activator (GLIA)-mediated target gene activation and cell differentiation. Moreover, in vivo Sltm deletion generated through CRISPR/Cas9-mediated gene editing caused perinatal lethality and SHH-related abnormal ventral neural tube phenotypes. We conclude that SLTM regulates GLI factor binding to chromatin and contributes to the transcriptional outcomes of SHH signaling via a novel molecular mechanism.
Collapse
Affiliation(s)
| | - Xiaoming Zhan
- From the Department of Physiology and.,Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Jiang Wu
- From the Department of Physiology and
| |
Collapse
|
56
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
57
|
Razumilava N, Shiota J, Mohamad Zaki NH, Ocadiz-Ruiz R, Cieslak CM, Zakharia K, Allen BL, Gores GJ, Samuelson LC, Merchant JL. Hedgehog Signaling Modulates Interleukin-33-Dependent Extrahepatic Bile Duct Cell Proliferation in Mice. Hepatol Commun 2019; 3:277-292. [PMID: 30766964 PMCID: PMC6357834 DOI: 10.1002/hep4.1295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023] Open
Abstract
Hedgehog (HH) signaling participates in hepatobiliary repair after injury and is activated in patients with cholangiopathies. Cholangiopathies are associated with bile duct (BD) hyperplasia, including expansion of peribiliary glands, the niche for biliary progenitor cells. The inflammation-associated cytokine interleukin (IL)-33 is also up-regulated in cholangiopathies, including cholangiocarcinoma. We hypothesized that HH signaling synergizes with IL-33 in acute inflammation-induced BD hyperplasia. We measured extrahepatic BD (EHBD) thickness and cell proliferation with and without an IL-33 challenge in wild-type mice, mice overexpressing Sonic HH (pCMV-Shh), and mice with loss of the HH pathway effector glioma-associated oncogene 1 (Gli1lacZ/lacZ ). LacZ reporter mice were used to map the expression of HH effector genes in mouse EHBDs. An EHBD organoid (BDO) system was developed to study biliary progenitor cells in vitro. EHBDs from the HH overexpressing pCMV-Shh mice showed increased epithelial cell proliferation and hyperplasia when challenged with IL-33. In Gli1lacZ/lacZ mice, we observed a decreased proliferative response to IL-33 and decreased expression of Il6. The HH ligands Shh and Indian HH (Ihh) were expressed in epithelial cells, whereas the transcriptional effectors Gli1, Gli2, and Gli3 and the HH receptor Patched1 (Ptch1) were expressed in stromal cells, as assessed by in situ hybridization and lacZ reporter mice. Although BDO cells lacked canonical HH signaling, they expressed the IL-33 receptor suppression of tumorigenicity 2. Accordingly, IL-33 treatment directly induced BDO cell proliferation in a nuclear factor κB-dependent manner. Conclusion: HH ligand overexpression enhances EHBD epithelial cell proliferation induced by IL-33. This proproliferative synergism of HH and IL-33 involves crosstalk between HH ligand-producing epithelial cells and HH-responding stromal cells.
Collapse
Affiliation(s)
| | - Junya Shiota
- Department of Internal Medicine University of Michigan Ann Arbor MI
| | | | | | | | - Kais Zakharia
- Department of Internal Medicine University of Michigan Ann Arbor MI
| | - Benjamin L Allen
- Department of Cell and Developmental Biology University of Michigan Ann Arbor MI
| | | | - Linda C Samuelson
- Department of Internal Medicine University of Michigan Ann Arbor MI
- Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Juanita L Merchant
- Department of Internal Medicine University of Michigan Ann Arbor MI
- Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| |
Collapse
|
58
|
Nicotine inhibits murine Leydig cell differentiation and maturation via regulating Hedgehog signal pathway. Biochem Biophys Res Commun 2019; 510:1-7. [DOI: 10.1016/j.bbrc.2018.11.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022]
|
59
|
Valenza F, Cittaro D, Stupka E, Biancolini D, Patricelli MG, Bonanomi D, Lazarević D. A novel truncating variant of GLI2 associated with Culler-Jones syndrome impairs Hedgehog signalling. PLoS One 2019; 14:e0210097. [PMID: 30629636 PMCID: PMC6328167 DOI: 10.1371/journal.pone.0210097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/16/2018] [Indexed: 12/30/2022] Open
Abstract
Background GLI2 encodes for a transcription factor that controls the expression of several genes in the Hedgehog pathway. Mutations in GLI2 have been described as causative of a spectrum of clinical phenotypes, notably holoprosencephaly, hypopituitarism and postaxial polydactyl. Methods In order to identify causative genetic variant, we performed exome sequencing of a trio from an Italian family with multiple affected individuals presenting clinical phenotypes in the Culler-Jones syndrome spectrum. We performed a series of cell-based assays to test the functional properties of mutant GLI2. Results Here we report a novel deletion c.3493delC (p.P1167LfsX52) in the C-terminal activation domain of GLI2. Functional assays confirmed the pathogenicity of the identified variant and revealed a dominant-negative effect of mutant GLI2 on Hedgehog signalling. Conclusions Our results highlight the variable clinical manifestation of GLI2 mutations and emphasize the value of functional characterisation of novel gene variants to assist genetic counselling and diagnosis.
Collapse
Affiliation(s)
- Fabiola Valenza
- Molecular Neurobiology Laboratory, Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Donatella Biancolini
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | | | - Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarević
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
60
|
McKenzie JA, Maschhoff C, Liu X, Migotsky N, Silva MJ, Gardner MJ. Activation of hedgehog signaling by systemic agonist improves fracture healing in aged mice. J Orthop Res 2019; 37:51-59. [PMID: 29663560 PMCID: PMC6226344 DOI: 10.1002/jor.24017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process of many coordinated biological pathways. This system can go awry resulting in nonunion, which leads to significant patient morbidity. The Hedgehog (Hh) signaling pathway is upregulated in fracture healing. We hypothesized that the Hh signaling pathway can be pharmacologically modulated to positively affect fracture healing. Diaphyseal femur fractures were created in elderly mice (18 months, C57BL/6 females), which have a blunted and delayed healing response compared to younger mice, and were stabilized with intramedullary pins. To activate the Hh pathway we targeted the receptor Smoothened using an agonist (Hh-Ag1.5 [Hh-Ag]) and compared this to a vehicle control. Expression of Hh target genes were significantly increased in the fracture callus of the agonist group compared to controls, indicating pathway activation. Expression of osteogenic and chondrogenic-related genes was greatly upregulated in fracture callus versus intact femora, although Hh agonist treatment did not consistently enhance this response. Blindly graded, radiographic callus healing scores were significantly higher in the Hh-Ag groups at post operative day (POD) 14, indicating earlier callus bridging. On microCT, Hh-Ag treatment led to greater callus volume (+40%) and bone volume (+25%) at POD21. By day 14, callus vascularity, as assessed by 3D microCT angiography vessel volume, was 85% greater in the Hh-Ag group. Finally, mechanical strength of the calluses in the Hh-Ag groups was significantly greater than in the control groups at POD21. In conclusion, systemic administration of a Hh agonist appears to improve the osseous and vascular healing responses in a mouse fracture healing-impaired model. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
| | | | - Xiaochen Liu
- Washington University Orthopedics, St. Louis, MO
| | | | | | - Michael J. Gardner
- Washington University Orthopedics, St. Louis, MO,Stanford University Orthopedics, Stanford, CA
| |
Collapse
|
61
|
Rao C, Chen J, Peng Q, Mo Q, Xia X, Lu X. Mutational Screening of GLI3, SHH, and SHH ZRS in 78 Chinese Children with Nonsyndromic Polydactyly. Genet Test Mol Biomarkers 2018; 22:577-581. [PMID: 30235038 DOI: 10.1089/gtmb.2018.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polydactyly is one of the most common congenital limb abnormalities. Our objective was to identify the genetic causes of non-syndromic polydactyly in 78 Chinese children. MATERIALS AND METHODS Genomic DNA was isolated from 78 independent nonsyndromic polydactyly patients, of whom 71 had preaxial polydactyly (PPD), six had postaxial polydactyly (PAP), and one showed combined PPD1 and PAP-A/B. The coding areas and exon/intron boundaries of the GLI3 and SHH genes and the genomic region of SHH ZRS were amplified by polymerase chain reaction and sequenced. RESULTS The patient with combined PPD1 and PAP-A/B (subject DUO36) exhibited a heterozygous nonsense mutation in chr7: 42004164G>A (ENST00000395925, c.4507C>T, p.Gln1503Stop ) of the GLI3 gene that has not been previously recorded. We did not detect any mutations in GLI3, SHH, or SHH ZRS in the other 77 nonsyndromic polydactyly patients. CONCLUSION The novel mutation in GLI3 c.4507C>T is likely one of the causes of the PAP and PPD1 of subject DUO36. This important finding should facilitate the optimization of genetic testing for nonsyndromic polydactyly.
Collapse
Affiliation(s)
- Chunbao Rao
- 1 Department of Center for Scientific Research, Dongguan Children's Hospital , Dongguan, Guangdong, China
- 2 Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics , Dongguan, Guangdong, China
| | - Jiahui Chen
- 3 Department of Child Orthopaedics, Dongguan Children's Hospital , Dongguan, Guangdong, China
| | - Qi Peng
- 1 Department of Center for Scientific Research, Dongguan Children's Hospital , Dongguan, Guangdong, China
- 2 Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics , Dongguan, Guangdong, China
| | - Qineng Mo
- 3 Department of Child Orthopaedics, Dongguan Children's Hospital , Dongguan, Guangdong, China
| | - Xiansheng Xia
- 3 Department of Child Orthopaedics, Dongguan Children's Hospital , Dongguan, Guangdong, China
| | - Xiaomei Lu
- 1 Department of Center for Scientific Research, Dongguan Children's Hospital , Dongguan, Guangdong, China
- 2 Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics , Dongguan, Guangdong, China
| |
Collapse
|
62
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
63
|
Role of Sonic Hedgehog Signaling Pathway in Intervertebral Disc Formation and Maintenance. ACTA ACUST UNITED AC 2018; 4:173-179. [PMID: 30687592 DOI: 10.1007/s40610-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
a Purpose of Review The intervertebral discs (IVD) are an essential component of the spine. Degeneration of the discs, commonly due to age or injury, is a leading cause of chronic lower back pain. Despite its high prevalence, there is no effective treatment for disc disease due to limited understanding of disc at the cellular and molecular level. b Recent Findings Recent research has demonstrated the importance of the intracellular developmental pathway sonic hedgehog (Shh) during the formation and postnatal maintenance of the IVD. Recent studies corroborate that the down-regulation of SHH expression is associated with pathological changes in the IVDs and demonstrate the reactivation of the hedgehog pathway as a promising avenue for rescuing health disc structure and function. c Summary Understanding the role of developmental signaling pathways that regulate disc formation and maintenance may help develop strategies to recapitulate the same mechanism for disc treatment and hence improve the quality and longevity of patient lives.
Collapse
|
64
|
Kanzaki A, Kato Y, Kariya T, Kanda Y, Shirai K, Arai T, Tsuboi R. Response of basal cell carcinoma to imiquimod was associated with the Gli1 : Gli3 expression ratio. Br J Dermatol 2018; 179:1406-1407. [PMID: 30019418 DOI: 10.1111/bjd.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Kanzaki
- Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Y Kato
- Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.,Department of Dermatology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0944, Japan
| | - T Kariya
- Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Y Kanda
- Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - K Shirai
- Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - T Arai
- Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - R Tsuboi
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
65
|
Palencia-Campos A, Ullah A, Nevado J, Yildirim R, Unal E, Ciorraga M, Barruz P, Chico L, Piceci-Sparascio F, Guida V, De Luca A, Kayserili H, Ullah I, Burmeister M, Lapunzina P, Ahmad W, Morales AV, Ruiz-Perez VL. GLI1 inactivation is associated with developmental phenotypes overlapping with Ellis-van Creveld syndrome. Hum Mol Genet 2018; 26:4556-4571. [PMID: 28973407 DOI: 10.1093/hmg/ddx335] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
GLI1, GLI2 and GLI3 form a family of transcription factors which regulate development by mediating the action of Hedgehog (Hh) morphogens. Accordingly, inactivating variants in GLI2 and GLI3 are found in several developmental disorders. In contrast, loss-of-function mutations in GLI1 have remained elusive, maintaining enigmatic the role of this gene in the human embryo. We describe eight patients from three independent families having biallelic truncating variants in GLI1 and developmental defects overlapping with Ellis-van Creveld syndrome (EvC), a disease caused by diminished Hh signaling. Two families had mutations in the last exon of the gene and a third family was identified with an N-terminal stop gain variant predicted to be degraded by the NMD-pathway. Analysis of fibroblasts from one of the patients with homozygous C-terminal truncation of GLI1 demonstrated that the corresponding mutant GLI1 protein is fabricated by patient cells and becomes upregulated in response to Hh signaling. However, the transcriptional activity of the truncated GLI1 factor was found to be severely impaired by cell culture and in vivo assays, indicating that the balance between GLI repressors and activators is altered in affected subjects. Consistent with this, reduced expression of the GLI target PTCH1 was observed in patient fibroblasts after chemical induction of the Hh pathway. We conclude that GLI1 inactivation is associated with a phenotypic spectrum extending from isolated postaxial polydactyly to an EvC-like condition.
Collapse
Affiliation(s)
- Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Julian Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Ruken Yildirim
- Diyarbakir Children State Hospital, Clinic of Pediatric Endocrinology, Diyarbakir, Turkey
| | - Edip Unal
- Department of Pediatric Endocrinology, Dicle University, Diyarbakir, Turkey
| | - Maria Ciorraga
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Pilar Barruz
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Lucia Chico
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSoM) Istanbul, Istanbul 34010, Turkey
| | - Irfan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Margit Burmeister
- Department of Psychiatry.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| |
Collapse
|
66
|
Guo X, Riobo-Del Galdo NA, Kim EJ, Grant GR, Manning DR. Overlap in signaling between Smoothened and the α subunit of the heterotrimeric G protein G13. PLoS One 2018; 13:e0197442. [PMID: 29763457 PMCID: PMC5953476 DOI: 10.1371/journal.pone.0197442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/02/2018] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog family of morphogens has long been known to utilize, through the 7-transmembrane protein Smoothened (Smo), the heterotrimeric G protein Gi in both canonical and noncanonical forms of signaling. Other G proteins, while not specifically utilized by Smo, may nonetheless provide access to some of the events controlled by it. We reported several years ago that the G protein G13 activates one or more forms of the Gli family of transcription factors. While the Gli transcription factors are well known targets for Smo, the uncertain mechanism of activation by G13 and the identity of the targeted Gli(s) limited predictions as to the extent to which G13 might mimic Smo's actions. We evaluate here the potential for overlap in G13 and Smo signaling using C3H10T1/2 and 3T3-L1 cells as models of osteogenesis and adipogenesis, respectively. We find in C3H10T1/2 cells that a constitutively active form of Gα13 (Gα13QL) increases Gli1 mRNA, as does a constitutively active form of Smo (SmoA1). We find as well that Gα13QL induces alkaline phosphatase activity, a marker of osteogenesis, albeit the induction is far less substantial than that achieved by SmoA1. In 3T3-L1 cells both Gα13QL and SmoA1 markedly suppress adipogenic differentiation as determined by triglyceride accumulation. RNA sequencing reveals that Gα13QL and SmoA1 regulate many of the same genes but that quantitative and qualitative differences exist. Differences also exist, we find, between SmoA1 and purmorphamine, an agonist for Smo. Therefore, while comparisons of constitutively active proteins are informative, extrapolations to the setting of agonists require care.
Collapse
Affiliation(s)
- Xueshui Guo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalia A. Riobo-Del Galdo
- Leeds Institute of Cancer and Pathology and School of Molecular and Cellular Biology, University of Leeds, United Kingdom
| | - Eun Ji Kim
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David R. Manning
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
67
|
Kunova Bosakova M, Varecha M, Hampl M, Duran I, Nita A, Buchtova M, Dosedelova H, Machat R, Xie Y, Ni Z, Martin JH, Chen L, Jansen G, Krakow D, Krejci P. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum Mol Genet 2018; 27:1093-1105. [PMID: 29360984 PMCID: PMC5886260 DOI: 10.1093/hmg/ddy031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for significantly shortened primary cilia in ACH and TD cartilage growth plates. Using in vivo and in vitro methodologies, our data demonstrate that transient versus sustained activation of FGF signaling correlated with different cilia consequences. Transient FGF pathway activation elongated cilia, while sustained activity shortened cilia. FGF signaling extended primary cilia via ERK MAP kinase and mTORC2 signaling, but not through mTORC1. Employing a GFP-tagged IFT20 construct to measure intraflagellar (IFT) speed in cilia, we showed that FGF signaling affected IFT velocities, as well as modulating cilia-based Hedgehog signaling. Our data integrate primary cilia into canonical FGF signal transduction and uncover a FGF-cilia pathway that needs consideration when elucidating the mechanisms of physiological and pathological FGFR function, or in the development of FGFR therapeutics.
Collapse
Affiliation(s)
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Marek Hampl
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Hana Dosedelova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Radek Machat
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Yangli Xie
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing 400042, China
| | - Jorge H Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lin Chen
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing 400042, China
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
68
|
Merk DJ, Ohli J, Merk ND, Thatikonda V, Morrissy S, Schoof M, Schmid SN, Harrison L, Filser S, Ahlfeld J, Erkek S, Raithatha K, Andreska T, Weißhaar M, Launspach M, Neumann JE, Shakarami M, Plenker D, Marra MA, Li Y, Mungall AJ, Moore RA, Ma Y, Jones SJM, Lutz B, Ertl-Wagner B, Rossi A, Wagener R, Siebert R, Jung A, Eberhart CG, Lach B, Sendtner M, Pfister SM, Taylor MD, Chavez L, Kool M, Schüller U. Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Dev Cell 2018; 44:709-724.e6. [PMID: 29551561 DOI: 10.1016/j.devcel.2018.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.
Collapse
Affiliation(s)
- Daniel J Merk
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Natalie D Merk
- Munich Center for Integrated Protein Science at the Chemistry Department, Technical University, 85747 Munich, Germany
| | - Venu Thatikonda
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sorana Morrissy
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada
| | - Melanie Schoof
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany
| | - Susanne N Schmid
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Department of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Serap Erkek
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Kaamini Raithatha
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Andreska
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Marc Weißhaar
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Michael Launspach
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mehdi Shakarami
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Dennis Plenker
- Department of Translational Genomics, University of Cologne, 50931 Cologne, Germany
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Yisu Li
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Andrea Rossi
- Department of Pediatric Neuroradiology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Charles G Eberhart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
69
|
Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol 2018; 447:28-41. [PMID: 29548942 DOI: 10.1016/j.ydbio.2018.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Molecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has become increasingly intriguing to the research community due to its ability to act as a cellular antenna, receive and transduce molecular stimuli, and initiate a cellular response. In this review, we discuss the structure of primary cilia, emphasizing how the ciliary components contribute to the transduction of signaling pathways. Furthermore, we address how the cilium integrates these signals and conveys them into cellular processes such as proliferation, migration and tissue patterning. Gaining a deeper understanding of the mechanisms used by primary cilia to receive and integrate molecular signals is essential, as it opens the door for the identification of therapeutic targets within the cilium that could alleviate pathological conditions brought on by aberrant molecular signaling.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
70
|
Gonnissen A, Isebaert S, Perneel C, McKee CM, Van Utterbeeck F, Lerut E, Verrill C, Bryant RJ, Joniau S, Muschel RJ, Haustermans K. Patched 1 Expression Correlates with Biochemical Relapse in High-Risk Prostate Cancer Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:795-804. [PMID: 29339090 PMCID: PMC5840486 DOI: 10.1016/j.ajpath.2017.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022]
Abstract
There is an unmet clinical need for adequate biomarkers to aid risk stratification and management of prostate cancer (PCa) patients. Even within the high-risk PCa category, not all patients will invariably have a poor prognosis, and improved stratification of this heterogeneous group is needed. In this context, components of the hedgehog (Hh) pathway may have promise as biomarkers, because the available evidence suggests increased Hh pathway activity may confer a poorer outcome in advanced and castrate-resistant PCa. In this study, potential associations between Hh pathway protein expression and clinicopathological factors, including time to biochemical recurrence (BCR), were investigated using a tissue microarray constructed from benign and malignant prostate samples from 75 predominantly high-risk PCa patients who underwent radical prostatectomy. Hh signaling activity was found to differ between benign and malignant prostate tissue, with a greater amount of active Hh signaling present in malignant than benign prostate epithelium. High expression of Patched 1 in malignant prostate epithelium was found to be an independent predictor of BCR in high-risk PCa patients. Glioma-associated oncogene 1 may potentially represent a clinically useful biomarker of an aggressive tumor phenotype. Evaluation of Hh signaling activity in PCa patients may be useful for risk stratification, and epithelial Patched 1 expression, in particular, may be a prognostic marker for BCR in high-risk PCa patients.
Collapse
Affiliation(s)
- Annelies Gonnissen
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium; Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium; Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium.
| | - Christiaan Perneel
- Department of Applied Mathematics, Royal Military Academy, Brussels, Belgium
| | - Chad M McKee
- Department of Oncology, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Evelyne Lerut
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard J Bryant
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Ruth J Muschel
- Department of Oncology, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium; Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
71
|
Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci 2018; 18:8-20. [PMID: 29274272 DOI: 10.17305/bjbms.2018.2756] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway was first identified in the common fruit fly. It is a highly conserved evolutionary pathway of signal transmission from the cell membrane to the nucleus. The Hh signaling pathway plays an important role in the embryonic development. It exerts its biological effects through a signaling cascade that culminates in a change of balance between activator and repressor forms of glioma-associated oncogene (Gli) transcription factors. The components of the Hh signaling pathway involved in the signaling transfer to the Gli transcription factors include Hedgehog ligands (Sonic Hh [SHh], Indian Hh [IHh], and Desert Hh [DHh]), Patched receptor (Ptch1, Ptch2), Smoothened receptor (Smo), Suppressor of fused homolog (Sufu), kinesin protein Kif7, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP). The activator form of Gli travels to the nucleus and stimulates the transcription of the target genes by binding to their promoters. The main target genes of the Hh signaling pathway are PTCH1, PTCH2, and GLI1. Deregulation of the Hh signaling pathway is associated with developmental anomalies and cancer, including Gorlin syndrome, and sporadic cancers, such as basal cell carcinoma, medulloblastoma, pancreatic, breast, colon, ovarian, and small-cell lung carcinomas. The aberrant activation of the Hh signaling pathway is caused by mutations in the related genes (ligand-independent signaling) or by the excessive expression of the Hh signaling molecules (ligand-dependent signaling - autocrine or paracrine). Several Hh signaling pathway inhibitors, such as vismodegib and sonidegib, have been developed for cancer treatment. These drugs are regarded as promising cancer therapies, especially for patients with refractory/advanced cancers.
Collapse
Affiliation(s)
- Ana Marija Skoda
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
72
|
Li N, Truong S, Nouri M, Moore J, Al Nakouzi N, Lubik AA, Buttyan R. Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene 2018; 37:2313-2325. [PMID: 29429990 PMCID: PMC5916917 DOI: 10.1038/s41388-017-0098-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) is an oncogenic signaling pathway that regulates the activity of Gli transcription factors. Canonical Hh is a Smoothened- (Smo-) driven process that alters the post-translational processing of Gli2/Gli3 proteins. Though evidence supports a role for Gli action in prostate cancer (PCa) cell growth and progression, there is little indication that Smo is involved. Here we describe a non-canonical means for activation of Gli transcription in PCa cells mediated by the binding of transcriptionally-active androgen receptors (ARs) to Gli3. Androgens stimulated reporter expression from a Gli-dependent promoter in a variety of AR + PCa cells and this activity was suppressed by an anti-androgen, Enz, or by AR knockdown. Androgens also upregulated expression of endogenous Gli-dependent genes. This activity was associated with increased intranuclear binding of Gli3 to AR that was antagonized by Enz. Fine mapping of the AR binding domain on Gli2 showed that AR recognizes the Gli protein processing domain (PPD) in the C-terminus. Mutations in the arginine-/serine repeat elements of the Gli2 PPD involved in phosphorylation and ubiquitinylation blocked the binding to AR. β-TrCP, a ubiquitin ligase that recognizes the Gli PPD, competed with AR for binding to this site. AR binding to Gli3 suppressed its proteolytic processing to the Gli3 repressor form (Gli3R) whereas AR knockdown increased Gli3R. Both full-length and truncated ARs were able to activate Gli transcription. Finally, we found that an ARbinding decoy polypeptide derived from the Gli2 C-terminus can compete with Gli3 for binding to AR. Exogenous overexpression of this decoy suppressed Gli transcriptional activity in PCa cells. Collectively, this work identifies a novel pathway for non-canonical activation of Hh signaling in PCa cells and identifies a means for interference that may have clinical relevance for PCa patients.
Collapse
Affiliation(s)
- Na Li
- The Vancouver Prostate Centre, Vancouver, Canada
| | - Sarah Truong
- The Vancouver Prostate Centre, Vancouver, Canada.,The Interdisciplinary Oncology Program of The University of British Columbia, Vancouver, Canada
| | - Mannan Nouri
- The Interdisciplinary Oncology Program of The University of British Columbia, Vancouver, Canada
| | | | | | | | - Ralph Buttyan
- The Interdisciplinary Oncology Program of The University of British Columbia, Vancouver, Canada. .,Urologic Sciences, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
73
|
Ito S, Kitazawa R, Haraguchi R, Kondo T, Ouchi A, Ueda Y, Kitazawa S. Novel GLI3 variant causing overlapped Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS) phenotype with agenesis of gallbladder and pancreas. Diagn Pathol 2018; 13:1. [PMID: 29368652 PMCID: PMC6389258 DOI: 10.1186/s13000-017-0682-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background A proper balance between the activator and the repressor form of GLI3, a zinc-finger transcription factor downstream of hedgehog signaling, is essential for proper development of various organs during development. Mutations in different domains of the GLI3 gene underlie several congenital diseases including Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). Case presentation Here, we describe the case of an overlapped phenotype of these syndromes with agenesis of the gallbladder and the pancreas, bearing a c.2155 C > T novel likely pathogenic variant of GLI3 gene by missense point mutation causing p.P719S at the proteolytic cleavage site. Conclusions Although agenesis of the gallbladder and the pancreas is uncommon in GLI3 morphopathy, a slight difference in the gradient or the balance between activator and repressor in this case may hinder sophisticated spatial and sequential hedgehog signaling that is essential for proper development of gallbladder and pancreas from endodermal buds.
Collapse
Affiliation(s)
- Saki Ito
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Division of Diagnostic Pathology, Ehime University Hospital, Toon City, Ehime, 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Takeshi Kondo
- Division of Legal Medicine, Kobe University Graduate School of Medicine, Kobe City, Hyogo, 650-0017, Japan
| | - Ayaka Ouchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Division of Diagnostic Pathology, Ehime University Hospital, Toon City, Ehime, 791-0295, Japan
| | - Yasuo Ueda
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Division of Diagnostic Pathology, Ehime University Hospital, Toon City, Ehime, 791-0295, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan.
| |
Collapse
|
74
|
The utility of stem cells in pediatric urinary bladder regeneration. Pediatr Res 2018; 83:258-266. [PMID: 28915233 DOI: 10.1038/pr.2017.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Pediatric patients with a neurogenic urinary bladder, caused by developmental abnormalities including spina bifida, exhibit chronic urological problems. Surgical management in the form of enterocystoplasty is used to enlarge the bladder, but is associated with significant clinical complications. Thus, alternative methods to enterocystoplasty have been explored through the incorporation of stem cells with tissue engineering strategies. Within the context of this review, we will examine the use of bone marrow stem cells and induced pluripotent stem cells (iPSCs), as they relate to bladder regeneration at the anatomic and molecular levels. The use of bone marrow stem cells has demonstrated significant advances in bladder tissue regeneration as multiple aspects of bladder tissue have been recapitulated including the urothelium, bladder smooth muscle, vasculature, and peripheral nerves. iPSCs, on the other hand, have been well characterized and used in multiple tissue-regenerative settings, yet iPSC research is still in its infancy with regards to bladder tissue regeneration with recent studies describing the differentiation of iPSCs to the bladder urothelium. Finally, we examine the role of the Sonic Hedgehog signaling cascade that mediates the proliferative response during regeneration between bladder smooth muscle and urothelium. Taken together, this review provides a current, comprehensive perspective on bladder regeneration.
Collapse
|
75
|
Lupu FI, Burnett JB, Eggenschwiler JT. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev Biol 2017; 434:24-35. [PMID: 29166577 DOI: 10.1016/j.ydbio.2017.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023]
Abstract
Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.
Collapse
Affiliation(s)
- Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
76
|
Liu X, McKenzie JA, Maschhoff CW, Gardner MJ, Silva MJ. Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice. Bone 2017; 103:241-251. [PMID: 28734986 PMCID: PMC5568453 DOI: 10.1016/j.bone.2017.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
Abstract
Fracture healing recapitulates many aspects of developmental osteogenesis. The hedgehog (Hh) signaling pathway, essential to skeletal development, is upregulated during fracture healing, although its importance is unclear. Our goal was to assess the functional importance of Hh signaling in endochondral fracture healing. We created closed, transverse diaphyseal femur fractures in mice, stabilized with an intramedullary pin, and administered a systemic Hh inhibitor or vehicle. Because Hh pathway activation is mediated by the receptor Smoothened (Smo), we used the Smo antagonist GDC-0449 (GDC, 50mg/kg, twice daily) to target the pathway. First, in vehicle-treated 10-wk. female C57BL/6 mice we confirmed that Hh signaling was increased in fracture callus compared to intact bone, with >5-fold upregulation of target genes Ptch1 and Gli1. Additionally, using 10-wk. male and female Gli1 reporter mice, we saw a strong activation of the reporter in the osseous regions of the fracture callus 7-10days after fracture. GDC treatment significantly blunted these responses, indicating effective inhibition of fracture-induced Hh signaling in bone. Moreover, microCT analysis revealed that GDC treatment significantly reduced cancellous and cortical bone volume at non-fracture sites (tibial metaphysis and diaphysis), suggesting that the drug inhibited normal bone formation. GDC treatment had a modest effect on fracture healing, with evidence of delayed callus mineralization radiographically (significantly lower Goldberg score at day 14) and by microCT (reduced callus vBMD at 14days), and a delay in the recovery of torsional rotation to normal (elevated rotation-at-peak torque at 21days). On the other hand, GDC treatment did not inhibit qPCR or morphological measures of chondrogenesis or angiogenesis, and did not impair the recovery of failure torque (at day 14 or 21), a measure of biomechanical competence. In summary, GDC treatment inhibited Hh signaling, which delayed but did not prevent fracture healing in young mice. We conclude that Hh signaling is strongly induced after fracture and may play a role in early callus mineralization, although it does not appear to be required for eventual healing.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Clayton W Maschhoff
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael J Gardner
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
77
|
Ho UY, Wainwright BJ. Patched1 patterns Fibroblast growth factor 10 and Forkhead box F1 expression during pulmonary branch formation. Mech Dev 2017; 147:37-48. [PMID: 28939119 DOI: 10.1016/j.mod.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
Hedgehog (Hh) signalling, Fibroblast growth factor 10 (Fgf10) and Forkhead box F1 (Foxf1) are each individually important for directing pulmonary branch formation but their interactions are not well understood. Here we demonstrate that Hh signalling is vital in regulating Foxf1 and Fgf10 expression during branching. The Hedgehog receptor Patched1 (Ptch1) was conditionally inactivated in the lung mesenchyme by Dermo1-Cre in vivo or using a recombinant Cre recombinase protein (HNCre) in lung cultures resulting in cell autonomous activation of Hh signalling. Homozygous mesenchymal Ptch1 deleted embryos (Dermo1Cre+/-;Ptch1lox/lox) showed secondary branching and lobe formation defects. Fgf10 expression is spatially reduced in the distal tip of Dermo1Cre+/-;Ptch1lox/lox lungs and addition of Fgf10 recombinant protein to these lungs in culture has shown partial restoration of branching, indicating Ptch1 function patterns Fgf10 to direct lung branching. Foxf1 expression is upregulated in Dermo1Cre+/-;Ptch1lox/lox lungs, suggesting Foxf1 may mediate Hh signalling effects in the lung mesenchyme. In vitro HNCre-mediated Ptch1 deleted lung explants support the in vivo observations, with evidence of mesenchyme hyperproliferation and this is consistent with the previously reported role of Hh signalling in maintaining mesenchymal cell survival. Consequently it is concluded that during early pseudoglandular stage of lung development Ptch1 patterns Fgf10 and regulates Foxf1 expression in the lung mesenchyme to direct branch formation and this is essential for proper lobe formation and lung function.
Collapse
Affiliation(s)
- Uda Y Ho
- Institute for Molecular Bioscience, The University of Queensland, Australia.
| | | |
Collapse
|
78
|
Liu G, Huang W, Wang J, Liu X, Yang J, Zhang Y, Geng Y, Tan W, Zhang A. Discovery of Novel Macrocyclic Hedgehog Pathway Inhibitors Acting by Suppressing the Gli-Mediated Transcription. J Med Chem 2017; 60:8218-8245. [PMID: 28873303 DOI: 10.1021/acs.jmedchem.7b01185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A systemic medicinal chemistry campaign was conducted based on a literature hit compound 5 bearing the 4,5-dihydro-2H-benzo[b][1,5]oxazocin-6(3H)-one core through cyclization of two side substituents of the bicyclic skeleton combined with N-atom walking or ring walking and the central ring expansion or extraction approaches, leading to several series of structurally unique tricyclic compounds. Among these, compound 29a was identified as the most potent against the Hedgehog (Hh) signaling pathway showing an IC50 value of 23 nM. Mechanism studies indicated that compound 29a inhibited the Hh signaling pathway by suppressing the expression of the transcriptional factors Gli rather than by interrupting the binding of Gli with DNA. We further observed that 29a was equally potent against both Smo wild type and the two major resistant mutants (Smo D473H and Smo W535L). It potently inhibited the proliferation of medulloblastoma cells and showed significant tumor growth inhibition in the ptch± ;p53-/- medulloblastoma allograft mice model. Though more studies are needed to clarify the precise interaction pattern of 29a with Gli, its promising in vitro and in vivo properties encourage further profiling as a new-generation Hh signaling inhibitor to treat tumors primarily or secondarily resistant to current Smo inhibitors.
Collapse
Affiliation(s)
- Gang Liu
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Xiaohua Liu
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yong Geng
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
79
|
Thorpe SD, Gambassi S, Thompson CL, Chandrakumar C, Santucci A, Knight MM. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria. J Cell Physiol 2017; 232:2407-2417. [PMID: 28158906 PMCID: PMC5484994 DOI: 10.1002/jcp.25839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU.
Collapse
Affiliation(s)
- Stephen D. Thorpe
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Silvia Gambassi
- Dipartimento di BiotecnologieChimica e FarmaciaUniversità degli Studi di SienaSienaItaly
| | - Clare L. Thompson
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Charmilie Chandrakumar
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Annalisa Santucci
- Dipartimento di BiotecnologieChimica e FarmaciaUniversità degli Studi di SienaSienaItaly
| | - Martin M. Knight
- Institute of BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
80
|
Li J, Cui Y, Xu J, Wang Q, Yang X, Li Y, Zhang X, Qiu M, Zhang Z, Zhang Z. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 2017; 292:15814-15825. [PMID: 28794157 DOI: 10.1074/jbc.m117.777532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hedgehog signaling plays crucial roles in the development of calvarial bone, relying on the activation of Gli transcription factors. However, the molecular mechanism of the role of regulated Gli protein level in osteogenic specification of mesenchyme still remains elusive. Here, we show by conditionally inactivating Suppressor of Fused (Sufu), a critical repressor of Hedgehog signaling, in Wnt1-Cre-mediated cranial neural crest (CNC) or Dermo1-Cre-mediated mesodermal lineages that Sufu restraint of Hedgehog activity level is critical for differentiation of preosteogenic mesenchyme. Ablation of Sufu results in failure of calvarial bone formation, including CNC-derived bones and mesoderm-derived bones, depending on the Cre line being used. Although mesenchymal cells populate to frontonasal destinations, where they are then condensed, Sufu deletion significantly inhibits the proliferation of osteoprogenitor cells, and these cells no longer differentiate into osteoblasts. We show that there is suppression of Runx2 and Osterix, the osteogenic regulators, in calvarial mesenchyme in the Sufu mutant. We show that down-regulation of several genes upstream to Runx2 and Osterix is manifested within the calvarial primordia, including Bmp2 and its downstream genes Msx1/2 and Dlx5 By contrast, we find that Gli1, the Hedgehog activity readout gene, is excessively activated in mesenchyme. Deletion of Sufu in CNC leads to a discernible decrease in the repressive Gli3 form and an increase in the full-length Gli2. Finally, we demonstrate that simultaneous deletion of Gli2 and Sufu in CNC completely restores calvarial bone formation, suggesting that a sustained level of Hedgehog activity is critical in specification of the osteogenic mesenchymal cells.
Collapse
Affiliation(s)
- Jianying Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ying Cui
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Jie Xu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Qihui Wang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xueqin Yang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Yan Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xiaoyun Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Mengsheng Qiu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ze Zhang
- the Department of Ophthamology, Tulane Medical Center, Tulane University, New Orleans, Louisiana 70112
| | - Zunyi Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| |
Collapse
|
81
|
Burnett JB, Lupu FI, Eggenschwiler JT. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice. Dev Biol 2017; 430:32-40. [PMID: 28778798 DOI: 10.1016/j.ydbio.2017.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse.
Collapse
Affiliation(s)
- Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | - Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | | |
Collapse
|
82
|
Micrognathia in mouse models of ciliopathies. Biochem Soc Trans 2017; 44:1753-1759. [PMID: 27913686 DOI: 10.1042/bst20160241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/17/2022]
Abstract
Defects in the development of the mandible can lead to micrognathia, or small jaw, which manifests in ciliopathic conditions, such as orofaciodigital syndrome, Meckel-Gruber syndrome, and Bardet-Biedl syndrome. Although micrognathia occurs frequently in human and mouse ciliopathies, it has been difficult to pinpoint the underlying cellular causes. In this mini-review, we shed light on the tissue-specific contributions to ciliary dysfunction in the development of the mandible. First, we outline the steps involved in setting up the jaw primordium and subsequent steps in the outgrowth of the mandibular skeleton. We then determine the critical tissue interactions using mice carrying a conditional mutation in the cilia gene Ofd1 Our studies highlight the usefulness of the Ofd1 mouse model and illustrate long-term possibilities for understanding the cellular and biochemical events underlying micrognathia.
Collapse
|
83
|
Quaranta R, Pelullo M, Zema S, Nardozza F, Checquolo S, Lauer DM, Bufalieri F, Palermo R, Felli MP, Vacca A, Talora C, Di Marcotullio L, Screpanti I, Bellavia D. Maml1 acts cooperatively with Gli proteins to regulate sonic hedgehog signaling pathway. Cell Death Dis 2017; 8:e2942. [PMID: 28726779 PMCID: PMC5550871 DOI: 10.1038/cddis.2017.326] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/25/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (GCPs) and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma. The effects of Shh pathway are mediated by the Gli family of transcription factors, which controls the expression of a number of target genes, including Gli1. Here, we identify Mastermind-like 1 (Maml1) as a novel regulator of the Shh signaling since it interacts with Gli proteins, working as a potent transcriptional coactivator. Notably, Maml1 silencing results in a significant reduction of Gli target genes expression, with a negative impact on cell growth of NIH3T3 and Patched1−/− mouse embryonic fibroblasts (MEFs), bearing a constitutively active Shh signaling. Remarkably, Shh pathway activity results severely compromised both in MEFs and GCPs deriving from Maml1−/− mice with an impairment of GCPs proliferation and cerebellum development. Therefore Maml1−/− phenotype mimics aspects of Shh pathway deficiency, suggesting an intrinsic requirement for Maml1 in cerebellum development. The present study shows a new role for Maml1 as a component of Shh signaling, which plays a crucial role in both development and tumorigenesis.
Collapse
Affiliation(s)
- Roberta Quaranta
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Maria Pelullo
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Francesca Nardozza
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina 04100, Italy
| | | | | | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Alessandra Vacca
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy.,Institute Pasteur-Foundation Cenci Bolognetti, Sapienza University, Rome 00161, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy.,Institute Pasteur-Foundation Cenci Bolognetti, Sapienza University, Rome 00161, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| |
Collapse
|
84
|
Hoelzl MA, Heby-Henricson K, Gerling M, Dias JM, Kuiper RV, Trünkle C, Bergström Å, Ericson J, Toftgård R, Teglund S. Differential requirement of SUFU in tissue development discovered in a hypomorphic mouse model. Dev Biol 2017; 429:132-146. [PMID: 28688895 DOI: 10.1016/j.ydbio.2017.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023]
Abstract
Suppressor of Fused (SUFU) is an essential negative regulator of the Hedgehog (HH) pathway and involved in GLI transcription factor regulation. Due to early embryonic lethality of Sufu-/- mice, investigations of SUFU's role later in development are limited to conditional, tissue-specific knockout models. In this study we developed a mouse model (SufuEx456(fl)/Ex456(fl)) with hypomorphic features where embryos were viable up to E18.5, although with a spectrum of developmental defects of varying severity, including polydactyly, exencephaly and omphalocele. Development of certain tissues, like the skeleton, was more affected than that of others such as skin, which remained largely normal. Interestingly, no apparent changes in the dorso-ventral patterning of the neural tube at E9.0 could be seen. Thus, this model provides an opportunity to globally study SUFU's molecular function in organogenesis beyond E9.5. Molecularly, SufuEx456(fl)/Ex456(fl) embryos displayed aberrant mRNA splicing and drastically reduced levels of Sufu wild-type mRNA and SUFU protein in all tissues. As a consequence, at E9.5 the levels of all three different GLI proteins were reduced. Interestingly, despite the reduction of GLI3 protein levels, the critical ratio of the GLI3 full-length transcriptional activator versus GLI3 truncated repressor remained unchanged compared to wild-type embryos. This suggests that the limited amount of SUFU protein present is sufficient for GLI processing but not for stabilization. Our data demonstrate that tissue development is differentially affected in response to the reduced SUFU levels, providing novel insight regarding the requirements of different levels of SUFU for proper organogenesis.
Collapse
Affiliation(s)
- Maria A Hoelzl
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| | - Karin Heby-Henricson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Raoul V Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Cornelius Trünkle
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Åsa Bergström
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Rune Toftgård
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Stephan Teglund
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| |
Collapse
|
85
|
Xia W, Jiao J. Histone variant H3.3 orchestrates neural stem cell differentiation in the developing brain. Cell Death Differ 2017; 24:1548-1563. [PMID: 28524856 PMCID: PMC5563987 DOI: 10.1038/cdd.2017.77] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
During the brain development, the process of neural stem cells (NSCs) proliferation and differentiation is precisely regulated. The deficiency in the embryonic brain development will cause serious developmental disorders. Epigenetic modifications play critical roles in controlling proliferation and differentiation in different types of stem cells. Histone variants, as one of epigenetic regulators, have been reported to be associated with many bioprocesses. Among different variants, H3.3 is one of the important epigenetic regulators, but its role in embryonic NSCs remains unclear. Here we demonstrate that H3.3 is intrinsically required for NSCs proliferation and differentiation. Suppression of the H3.3 mediated by shRNAs causes the reduction of the PAX6-positive NSCs proliferation, and promotes the premature terminal mitosis and neuronal differentiation. Particularly, the level of the H4K16ac is selectively reduced in the H3.3 knockdown NSCs. We further confirm that H3.3 is directly interacted with the MOF, a specific H4K16 acetyltransferase. Interestingly, H3.3/MOF increases the level of H4K16ac by a mutual cooperation manner. However, the H3.3K36R mutant could not increase the level of H4K16ac. RNA-seq data show the GLI1, a transcriptional regulator, is downregulated in H3.3 knockdown NSCs. Furthermore, the neurogenesis phenotype of the GLI1 knockdown is consistent with the H3.3 knockdown. Overexpression of the H3.3, MOF, and GLI1 could rescue the abnormal phenotype caused by H3.3 knockdown in the embryonic brain, but H3.1 or H3.3K36R overexpression can not rescue it. Taken together, these results suggest that H3.3 cooperates with MOF to increase the level of the H4K16ac and the GLI1, and then regulates the NSCs proliferation and differentiation.
Collapse
Affiliation(s)
- Wenlong Xia
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
86
|
Wu F, Zhang Y, Sun B, McMahon AP, Wang Y. Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chem Biol 2017; 24:252-280. [PMID: 28286127 DOI: 10.1016/j.chembiol.2017.02.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
The Hedgehog (HH) signaling pathway was discovered originally as a key pathway in embryonic patterning and development. Since its discovery, it has become increasingly clear that the HH pathway also plays important roles in a multitude of cancers. Therefore, HH signaling has emerged as a therapeutic target of interest for cancer therapy. In this review, we provide a brief overview of HH signaling and the key molecular players involved and offer an up-to-date summary of our current knowledge of endogenous and exogenous small molecules that modulate HH signaling. We discuss experiences and lessons learned from the decades-long efforts toward the development of cancer therapies targeting the HH pathway. Challenges to develop next-generation cancer therapies are highlighted.
Collapse
Affiliation(s)
- Fujia Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
87
|
Xiang Y, Jiang L, Wang B, Xu Y, Cai H, Fu Q. Mutational screening of GLI3, SHH, preZRS, and ZRS in 102 Chinese children with nonsyndromic polydactyly. Dev Dyn 2017; 246:392-402. [PMID: 28127823 DOI: 10.1002/dvdy.24488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polydactyly is a group of congenital limb malformations that show high degree of phenotypic variability and genetic heterogeneity. RESULTS In the present study, four genomic regions (exons of GLI3, SHH, and noncoding sequences of preZRS and ZRS) involved in hedgehog (Hh) signaling pathway were sequenced for 102 unrelated Chinese children with nonsyndromic polydactyly. Two GLI3 variants (c.2844 G > G/A; c.1486C > C/T) and four preZRS variants (chr7:156585336 A>G; chr7:156585421 C>A; chr7: 156585247 G>C; chr7:156585420 A > C) were observed in 2(2.0%) and 6(5.9%) patients, respectively. These variants are not over-represented in the Chinese healthy population. All the 8 cases showed preaxial polydactyly in hands. Additionally, no specific patterns of malformation predicted mutations in other candidate genes or sequences. CONCLUSIONS This is the first report of the assessment of the frequency of GLI3/SHH/preZRS/ZRS in Chinese patients to show any higher possibility of mutations or variants for the 4 genes or sequences in China. Developmental Dynamics 246:392-402, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Limin Jiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bo Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yunlan Xu
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haiqing Cai
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
88
|
Al-Qattan MM, Shamseldin HE, Salih MA, Alkuraya FS. GLI3-related polydactyly: a review. Clin Genet 2017; 92:457-466. [PMID: 28224613 DOI: 10.1111/cge.12952] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
GLI3 mutations are known to be associated with nine syndromes/conditions in which polydactyly is a feature. In this review, the embryology, pathogenesis, and animal models of GLI3-related polydactyly are discussed first. This is followed by a detailed review of the genotype-phenotype correlations. Based on our review of the literature and our clinical experiences, we recommend viewing GLI3-related syndromes/conditions as four separate entities; each characterized by a specific pattern of polydactyly. These four entities are: the preaxial polydactyly type IV-Greig-acrocallosal spectrum, postaxial polydactyly types A/B, Pallister-Hall syndrome (PHS), and oral-facial-digital overlap syndrome. We also provide illustrative clinical examples from our practice including a family with a novel GLI3 mutation causing PHS. The review also introduces the term 'Forme Fruste' preaxial polydactyly and gives several conclusions/recommendations including the recommendation to revise the current criteria for the clinical diagnosis of PHS.
Collapse
Affiliation(s)
- M M Al-Qattan
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - H E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - M A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
89
|
Sonic -'Jack-of-All-Trades' in Neural Circuit Formation. J Dev Biol 2017; 5:jdb5010002. [PMID: 29615560 PMCID: PMC5831768 DOI: 10.3390/jdb5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
Collapse
|
90
|
Riku M, Inaguma S, Ito H, Tsunoda T, Ikeda H, Kasai K. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis. Oncotarget 2016; 7:5690-701. [PMID: 26744317 PMCID: PMC4868714 DOI: 10.18632/oncotarget.6788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022] Open
Abstract
Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1.
Collapse
Affiliation(s)
- Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takumi Tsunoda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
91
|
Wang G, Wang JJ, Fu XL, Guang R, To SST. Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme (Review). Oncol Rep 2016; 37:657-670. [PMID: 27959421 DOI: 10.3892/or.2016.5309] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
Cell metabolism can be reprogrammed by tissue hypoxia leading to cell transformation and glioblastoma multiforme (GBM) progression. In response to hypoxia, GBM cells are able to express a transcription factor called hypoxia inducible factor-1 (HIF-1). HIF-1 belongs to a family of heterodimeric proteins that includes HIF-1α and HIF-1β subunits. HIF-1α has been reported to play a pivotal role in GBM development and progression. In the present review, we discuss the role of HIF-1α in glucose uptake, cancer proliferation, cell mobility and chemoresistance in GBM. Evidence from previous studies indicates that HIF-1α regulates angiogenesis, metabolic and transcriptional signaling pathways. Examples of such are the EGFR, PI3K/Akt and MAPK/ERK pathways. It affects cell migration and invasion by regulating glucose metabolism and growth in GBM cells. The present review focuses on the strategies through which to target HIF-1α and the related downstream genes highlighting their regulatory roles in angiogenesis, apoptosis, migration and glucose metabolism for the development of future GBM therapeutics. Combined treatment with inhibitors of HIF-1α and glycolysis may enhance antitumor effects in clinical settings.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Jun-Jie Wang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Xing-Li Fu
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Rui Guang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong, SAR, P.R. China
| |
Collapse
|
92
|
Ermilov AN, Kumari A, Li L, Joiner AM, Grachtchouk MA, Allen BL, Dlugosz AA, Mistretta CM. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling. PLoS Genet 2016; 12:e1006442. [PMID: 27893742 PMCID: PMC5125561 DOI: 10.1371/journal.pgen.1006442] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.
Collapse
Affiliation(s)
- Alexandre N Ermilov
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Archana Kumari
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Libo Li
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ariell M Joiner
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marina A Grachtchouk
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrzej A Dlugosz
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
93
|
Chang CF, Chang YT, Millington G, Brugmann SA. Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 2016; 12:e1006351. [PMID: 27802276 PMCID: PMC5089743 DOI: 10.1371/journal.pgen.1006351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development. Primary cilia are ubiquitous organelles that serve to transduce molecular signals within a cell. Loss of functional primary cilia results in a disease class called ciliopathies. Ciliopathies have a broad range of phenotypes; however, severe facial anomalies are commonly associated with this disease class. The facial midline is particularly sensitive to loss of primary cilia, frequently undergoing a significant widening. This phenotype is similar to that which occurs when there are gain-of-function defects in the Sonic Hedgehog pathway. This manuscript addresses the molecular basis for midfacial widening in ciliopathies. Importantly, we determine mechanisms to both rescue and phenocopy the ciliopathic midfacial phenotype. In sum, this work provides novel insight into the molecular mechanisms of midfacial patterning and the extent to which loss of cilia impact that process.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Grethel Millington
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
- * E-mail:
| |
Collapse
|
94
|
|
95
|
Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J Dev Biol 2016; 4:jdb4030027. [PMID: 29615591 PMCID: PMC5831775 DOI: 10.3390/jdb4030027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.
Collapse
|
96
|
Zhang Y, Alvarez-Bolado G. Differential developmental strategies by Sonic hedgehog in thalamus and hypothalamus. J Chem Neuroanat 2016; 75:20-7. [DOI: 10.1016/j.jchemneu.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
|
97
|
Li P, Lee EH, Du F, Gordon RE, Yuelling LW, Liu Y, Ng JMY, Zhang H, Wu J, Korshunov A, Pfister SM, Curran T, Yang ZJ. Nestin Mediates Hedgehog Pathway Tumorigenesis. Cancer Res 2016; 76:5573-83. [PMID: 27496710 DOI: 10.1158/0008-5472.can-16-1547] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
The intermediate filament protein Nestin serves as a biomarker for stem cells and has been used to identify subsets of cancer stem-like cells. However, the mechanistic contributions of Nestin to cancer pathogenesis are not understood. Here, we report that Nestin binds the hedgehog pathway transcription factor Gli3 to mediate the development of medulloblastomas of the hedgehog subtype. In a mouse model system, Nestin levels increased progressively during medulloblastoma formation, resulting in enhanced tumor growth. Conversely, loss of Nestin dramatically inhibited proliferation and promoted differentiation. Mechanistic investigations revealed that the tumor-promoting effects of Nestin were mediated by binding to Gli3, a zinc finger transcription factor that negatively regulates hedgehog signaling. Nestin binding to Gli3 blocked Gli3 phosphorylation and its subsequent proteolytic processing, thereby abrogating its ability to negatively regulate the hedgehog pathway. Our findings show how Nestin drives hedgehog pathway-driven cancers and uncover in Gli3 a therapeutic target to treat these malignancies. Cancer Res; 76(18); 5573-83. ©2016 AACR.
Collapse
Affiliation(s)
- Peng Li
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Fang Du
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Renata E Gordon
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra W Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yongqiang Liu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Hao Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. Heidelberg University Hospital, Heidelberg, Germany
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
98
|
Mutations of the Sonic Hedgehog Pathway Underlie Hypothalamic Hamartoma with Gelastic Epilepsy. Am J Hum Genet 2016; 99:423-9. [PMID: 27453577 DOI: 10.1016/j.ajhg.2016.05.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes. Somatic mutations were identified in genes involving regulation of the sonic hedgehog (Shh) pathway in 14/38 individuals (37%). Three individuals had somatic mutations in PRKACA, which encodes a cAMP-dependent protein kinase that acts as a repressor protein in the Shh pathway, and four subjects had somatic mutations in GLI3, an Shh pathway gene associated with HH. In seven other individuals, we identified two recurrent and three single brain-tissue-specific, large copy-number or loss-of-heterozygosity (LOH) variants involving multiple Shh genes, as well as other genes without an obvious biological link to the Shh pathway. The Shh pathway genes in these large somatic lesions include the ligand itself (SHH and IHH), the receptor SMO, and several other Shh downstream pathway members, including CREBBP and GLI2. Taken together, our data implicate perturbation of the Shh pathway in at least 37% of individuals with the HH epilepsy syndrome, consistent with the concept of a developmental pathway brain disease.
Collapse
|
99
|
Ramsbottom SA, Pownall ME, Roelink H, Conway SJ. Regulation of Hedgehog Signalling Inside and Outside the Cell. J Dev Biol 2016; 4:23. [PMID: 27547735 PMCID: PMC4990124 DOI: 10.3390/jdb4030023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction.
Collapse
Affiliation(s)
- Simon A. Ramsbottom
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
- Correspondence: ; Tel.: +44-(0)191-241-8612
| | | | | | | |
Collapse
|
100
|
Fu L, Wu H, Cheng SY, Gao D, Zhang L, Zhao Y. Set7 mediated Gli3 methylation plays a positive role in the activation of Sonic Hedgehog pathway in mammals. eLife 2016; 5. [PMID: 27146893 PMCID: PMC4884081 DOI: 10.7554/elife.15690] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
Hedgehog signaling plays very important roles in development and cancers. Vertebrates have three transcriptional factors, Gli1, Gli2 and Gli3. Among them, Gli3 is a very special transcriptional factor which closely resembles Cubitus interruptus (Ci, in Drosophila) structurally and functionally as a ‘double agent’ for Shh target gene expression. Here we show that Gli3 full-length, but not the truncated form, can be methylated at K436 and K595. This methylation is specifically catalyzed by Set7, a lysine methyltransferase (KMT). Methylation at K436 and K595 respectively increases the stability and DNA binding ability of Gli3, resulting in an enhancement of Shh signaling activation. Furthermore, functional experiments indicate that the Gli3 methylation contributes to the tumor growth and metastasis in non-small cell lung cancer in vitro and in vivo. Therefore, we propose that Set7 mediated methylation is a novel PTM of Gli3, which positively regulates the transactivity of Gli3 and the activation of Shh signaling. DOI:http://dx.doi.org/10.7554/eLife.15690.001 Cells in mammals need to be able to communicate with each other to enable them to work together in tissues and organs. A signaling pathway called Hedgehog signaling plays a crucial role in carrying information between cells in developing embryos, but if it is active at other times it can also promote the development of cancers. The Hedgehog signaling pathway regulates the activity of several proteins, including one called Gli3. When the Hedgehog signaling pathway is not active, Gli3 is able to switch off certain genes in the cells. On the other hand, when the signaling pathway is active, Gli3 changes shape so that it is able to activate its target genes instead. It is thought that this shape change is triggered by the addition (or removal) of chemical tags to Gli3. So far, researchers have reported that several different types of chemical tags can modify the activity of Gli3. However, it is not clear whether another type of chemical tag – known as a methyl tag – is involved in regulating Gli3. Fu et al. studied Hedgehog signaling in mice. The experiments show that an enzyme called Set7 can modify Gli3 by adding methyl tags to certain sites in the protein. This modification makes the protein’s structure more stable and helps it to bind to the target genes. Further experiments show that these methyl groups contribute to the progression of lung cancer. Fu et al.’s findings expand our understanding of how chemical tags can alter the cells’ response to Hedgehog signaling activity. Future challenges are to understand exactly how Set7 and Gli3 interact and to develop drugs that can block this interaction, which may have the potential to treat cancer. DOI:http://dx.doi.org/10.7554/eLife.15690.002
Collapse
Affiliation(s)
- Lin Fu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hailong Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|