51
|
Van de Wouwer M, Couzinié C, Serrano-Palero M, González-Fernández O, Galmés-Varela C, Menéndez-Antolí P, Grau L, Villalobo A. Activation of the BRCA1/Chk1/p53/p21(Cip1/Waf1) pathway by nitric oxide and cell cycle arrest in human neuroblastoma NB69 cells. Nitric Oxide 2012; 26:182-91. [PMID: 22401965 DOI: 10.1016/j.niox.2012.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) works as a bi-modal effector of cell proliferation, inducing either the increase or decrease of cell growth when cells are exposed, respectively, to low or high NO concentrations. To get further insight into the action of NO, we tested the effect of short- and long-lived NO donors on the control of the cell cycle in human neuroblastoma NB69 cells. We demonstrated that long-time exposure of cells to NO not only decreased the expression and/or the phosphorylation of elements involved in the control of the G(1)/S transition, such as the transcriptional repressor pRb and cyclin D1, but also down-regulated systems controlling the S and G(2)/M phases, such as the phosphorylation of Cdk1(cdc2) and the expression of cyclins A and B1. Increasing concentrations of NO also induced a biphasic effect on the expression of cyclins D1, A and B1, while this effect was less pronounced for cyclin E expression, but the levels of mRNAs of those cyclins changed in a distinct and complex manner. NO also changed the phosphorylation pattern of cyclin E and decreased the levels of phospho-cyclins D1 and B1. Moreover, NO decreased the expression of the Cdk inhibitors p16(Ink4a) and p19(Ink4d), without affecting p27(Kip1). In contrast, NO induced a biphasic effect on p21(Cip1/Waf1) expression. The BRCA1/Chk1/p53 pathway mediated the upregulation of p21(Cip1/Waf1). We also demonstrated that the NO-mediated up-regulation of p21(Cip1/Waf1) was inversely correlated with the activation status of the p38MAPK pathway.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
52
|
YAMAGUCHI A, NAMEKAWA M, ITOH T, TERAMAE N. Microviscosity of Supercooled Water Confined within Aminopropyl-modified Mesoporous Silica as Studied by Time-resolved Fluorescence Spectroscopy. ANAL SCI 2012; 28:1065-70. [DOI: 10.2116/analsci.28.1065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Akira YAMAGUCHI
- College of Science and Frontier Research Center for Applied Atomic Sciences, Ibaraki University
| | - Manato NAMEKAWA
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Tetsuji ITOH
- Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Norio TERAMAE
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
53
|
Khan R, Khan AQ, Qamar W, Lateef A, Tahir M, Rehman MU, Ali F, Sultana S. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: probable role of p38MAPK and p53. Toxicol Appl Pharmacol 2011; 258:315-29. [PMID: 22155348 DOI: 10.1016/j.taap.2011.11.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/02/2011] [Accepted: 11/18/2011] [Indexed: 01/22/2023]
Abstract
Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage.
Collapse
Affiliation(s)
- Rehan Khan
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi-110062, India
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Benatar T, Yang W, Amemiya Y, Evdokimova V, Kahn H, Holloway C, Seth A. IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways. Breast Cancer Res Treat 2011; 133:563-73. [PMID: 21997538 DOI: 10.1007/s10549-011-1816-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
Insulin-like growth factor binding protein 7 (IGFBP7) has been shown to be a tumor suppressor in a variety of cancers. We previously have shown that IGFBP7 expression is inversely correlated with disease progression and poor outcome in breast cancer. Overexpression of IGFBP7 in MDA-MB-468, a triple-negative breast cancer (TNBC) cell line, resulted in inhibition of growth and migration. Xenografted tumors bearing ectopic IGFBP7 expression were significantly growth-impaired compared to IGFBP7-negative controls, which suggested that IGFBP7 treatment could inhibit breast cancer cell growth. To confirm this notion, 14 human patient primary breast tumors were analyzed by qRTPCR for IGFBP7 expression. The TNBC tumors expressed the lowest levels of IGFBP7 expression, which also correlated with higher tumorigenicity in mice. Furthermore, when breast cancer cell lines were treated with IGFBP7, only the TNBC cell lines were growth inhibited. Treatment of NOD/SCID mice harboring xenografts of TNBC cells with IGFBP7 systemically every 3-4 days inhibited tumorigenesis, with associated anti-angiogenic effects, together with increased apoptosis. Upon examining the mechanism of IGFBP7-mediated growth inhibition in TNBC cells, we found that cells not only were arrested in G1 phase of the cell cycle but also underwent senescence as a result of treatment with IGFBP7. Interestingly, IGFBP7 treatment was also associated with strong activation of the stress-associated p38 MAPK pathway, together with upregulation of p53 and the cyclin-dependent protein kinase (CDK) inhibitor, p21(cip1). Prolonged treatment of cells with IGFBP7 resulted in increased cell death, marked by an increase in apoptotic cells and associated cleaved PARP. This is the first study showing that exogenous IGFBP7 inhibits TNBC cell growth both in vitro and in vivo. Taken together, these results suggest IGFBP7 treatment might have therapeutic potential for TNBC.
Collapse
Affiliation(s)
- Tania Benatar
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
55
|
Ladelfa MF, Toledo MF, Laiseca JE, Monte M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 2011; 15:1749-61. [PMID: 20919943 DOI: 10.1089/ars.2010.3652] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
p53 is a crucial transcription factor with tumor suppressive properties that elicits its function through specific target genes. It constitutes a pivotal system that integrates information received by many signaling pathways and subsequently orchestrates cell fate decisions, namely, growth-arrest, senescence, or apoptosis. Reactive oxygen species (ROS) production in cells can play a key role in signal transduction, being able to trigger different processes as cell death or cell proliferation. Sustained oxidative stress can induce genomic instability and collaborates with cancer development, whereas acute enhancement of high ROS levels leads to toxic oxidative cell damage and cell death. Here, it has been considered p53 broad potential contribution through its ability to regulate selected key cancer signaling pathways, where ROS participate as inductors or effectors of the final biological outcome. Further, we have discussed how p53 could play a role in preventing potentially harmful oxidative state and cell proliferation by pro-oncogenic pathways such as PI3K/AKT/mTOR and WNT/β-catenin or under hypoxia state. In addition, we have considered potential mechanisms by which p53 could collaborate with signal transduction pathways such as transforming growth factor-β (TGF-β) and stress-activated protein kinases (SAPK) that produce ROS, to stop or eliminate uncontrolled proliferating cells.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Laboratorio de Biología Celular y Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| | | | | | | |
Collapse
|
56
|
Vesicular stomatitis virus expressing tumor suppressor p53 is a highly attenuated, potent oncolytic agent. J Virol 2011; 85:10440-50. [PMID: 21813611 DOI: 10.1128/jvi.05408-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-strand RNA rhabdovirus, preferentially replicates in and eradicates transformed versus nontransformed cells and is thus being considered for use as a potential anticancer treatment. The genetic malleability of VSV also affords an opportunity to develop more potent agents that exhibit increased therapeutic activity. The tumor suppressor p53 has been shown to exert potent antitumor properties, which may in part involve stimulating host innate immune responses to malignancies. To evaluate whether VSV expressing p53 exhibited enhanced oncolytic action, the murine p53 (mp53) gene was incorporated into recombinant VSVs with or without a functional viral M gene-encoded protein that could either block (VSV-mp53) or enable [VSV-M(mut)-mp53] host mRNA export following infection of susceptible cells. Our results indicated that VSV-mp53 and VSV-M(mut)-mp53 expressed high levels of functional p53 and retained the ability to lyse transformed versus normal cells. In addition, we observed that VSV-ΔM-mp53 was extremely attenuated in vivo due to p53 activating innate immune genes, such as type I interferon (IFN). Significantly, immunocompetent animals with metastatic mammary adenocarcinoma exhibited increased survival following treatment with a single inoculation of VSV-ΔM-mp53, the mechanisms of which involved enhanced CD49b+ NK and tumor-specific CD8+ T cell responses. Our data indicate that VSV incorporating p53 could provide a safe, effective strategy for the design of VSV oncolytic therapeutics and VSV-based vaccines.
Collapse
|
57
|
Induction and activation of the p53 pathway: a role for the protein kinase CK2? Mol Cell Biochem 2011; 356:133-8. [DOI: 10.1007/s11010-011-0966-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 02/02/2023]
|
58
|
Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53. Oncogene 2011; 30:3599-611. [PMID: 21423215 DOI: 10.1038/onc.2011.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mixed lineage leukemia 5 (MLL5) has been implicated in multiple aspects of cell physiology, such as hematopoiesis, cell cycle control and chromatin regulatory network. In this study, we present evidence that MLL5 is involved in the camptothecin (CPT)-induced p53 activation. CPT promoted the degradation of MLL5 protein in a time- and dose-dependent manner in actively replicating cells. The downregulation of MLL5 led to phosphorylation of p53 at Ser392, which was abrogated by exogenous overexpression of MLL5. In MLL5-knockdown cells, p53 protein was stabilized and bound to DNA with higher affinity, leading to activation of downstream genes. Co-immunoprecipitation showed that MLL5 preferentially interacted with the tetramerized form of p53, and knockdown of MLL5 promoted chromatin accumulation of p53 tetramers, suggesting that the association of MLL5 with p53 may prevent the p53 tetramers from binding to the chromatin target sites. The role of MLL5 in CPT-induced p53 activation was conserved in developing zebrafish, where CPT downregulated zebrafish Mll5 protein, and the microinjection of zebrafish mll5 mRNA substantially blocked the CPT-induced apoptosis. In summary, our study proposed MLL5 as a novel component in the regulation of p53 homeostasis and a new cellular determinant of CPT.
Collapse
|
59
|
Yuan F, Xie Q, Wu J, Bai Y, Mao B, Dong Y, Bi W, Ji G, Tao W, Wang Y, Yuan Z. MST1 promotes apoptosis through regulating Sirt1-dependent p53 deacetylation. J Biol Chem 2011; 286:6940-5. [PMID: 21212262 DOI: 10.1074/jbc.m110.182543] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mammalian Sterile 20-like kinase 1 (MST1) protein kinase plays an important role in the apoptosis induced by a variety of stresses. The MST1 is a serine/threonine kinase that is activated upon apoptotic stimulation, which in turn activates its downstream targets, JNK/p38, histone H2B and FOXO. It has been reported that overexpression of MST1 initiates apoptosis by activating p53. However, the molecular mechanisms underlying MST1-p53 signaling during apoptosis are unclear. Here, we report that MST1 promotes genotoxic agent-induced apoptosis in a p53-dependent manner. We found that MST1 increases p53 acetylation and transactivation by inhibiting the deacetylation of Sirtuin 1 (Sirt1) and its interaction with p53 and that Sirt1 can be phosphorylated by MST1 leading to the inhibition of Sirt1 activity. Collectively, these findings define a novel regulatory mechanism involving the phosphorylation of Sirt1 by MST1 kinase which leads to p53 activation, with implications for our understanding of signaling mechanisms during DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Fang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Liu JJ, Lin M, Yu JY, Liu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 2011; 300:105-14. [DOI: 10.1016/j.canlet.2010.10.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 09/07/2010] [Accepted: 10/04/2010] [Indexed: 12/19/2022]
|
61
|
Kim CH, Yoo YM. Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:365-9. [PMID: 21311676 DOI: 10.4196/kjpp.2010.14.6.365] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/14/2010] [Accepted: 11/22/2010] [Indexed: 11/15/2022]
Abstract
In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.
Collapse
Affiliation(s)
- Chi Hyun Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 220-710, Korea
| | | |
Collapse
|
62
|
Thandavarayan RA, Watanabe K, Sari FR, Ma M, Lakshmanan AP, Giridharan VV, Gurusamy N, Nishida H, Konishi T, Zhang S, Muslin AJ, Kodama M, Aizawa Y. Modulation of doxorubicin-induced cardiac dysfunction in dominant-negative p38α mitogen-activated protein kinase mice. Free Radic Biol Med 2010; 49:1422-31. [PMID: 20705132 DOI: 10.1016/j.freeradbiomed.2010.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/05/2010] [Accepted: 08/02/2010] [Indexed: 11/16/2022]
Abstract
Doxorubicin (Dox) is a widely used antitumor drug, but its application is limited because of its cardiotoxic side effects. Increased expression of p38α mitogen-activated protein kinase (MAPK) promotes cardiomyocyte apoptosis and is associated with cardiac dysfunction induced by prolonged agonist stimulation. However, the role of p38α MAPK is not clear in Dox-induced cardiac injury. Cardiac dysfunction was induced by a single injection of Dox into wild-type (WT) mice and transgenic mice with cardiac-specific expression of a dominant-negative mutant form of p38α MAPK (TG). Left ventricular (LV) fractional shortening and ejection fraction were higher and the expression levels of phospho-p38 MAPK and phospho-MAPK-activated mitogen kinase 2 were significantly suppressed in TG mouse heart compared to WT mice after Dox injection. Production of LV proinflammatory cytokines, cardiomyocyte DNA damage, myocardial apoptosis, caspase-3-positive cells, and phospho-p53 expression were decreased in TG mice after Dox injection. Moreover, LV expression of NADPH oxidase subunits and reactive oxygen species was significantly less in TG mice compared to WT mice after Dox injection. These findings suggest that p38α MAPK may play a role in the regulation of cardiac function, oxidative stress, and inflammatory and apoptotic mediators in the heart after Dox administration.
Collapse
Affiliation(s)
- Rajarajan A Thandavarayan
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata City 956-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Smeeton J, Zhang X, Bulus N, Mernaugh G, Lange A, Karner CM, Carroll TJ, Fässler R, Pozzi A, Rosenblum ND, Zent R. Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Development 2010; 137:3233-43. [PMID: 20823064 DOI: 10.1242/dev.052845] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The integrin-linked kinase (ILK), pinch and parvin ternary complex connects the cytoplasmic tails of beta1 integrins to the actin cytoskeleton. We recently showed that constitutive expression of ILK and alpha parvin in both the ureteric bud and the metanephric mesenchyme of the kidney is required for kidney development. In this study, we define the selective role of ILK in the ureteric bud of the mouse kidney in renal development by deleting it in the ureteric cell lineage before the onset of branching morphogenesis (E10.5). Although deleting ILK resulted in only a moderate decrease in branching, the mice died at 8 weeks of age from obstruction due to the unprecedented finding of intraluminal collecting duct cellular proliferation. ILK deletion in the ureteric bud resulted in the inability of collecting duct cells to undergo contact inhibition and to activate p38 mitogen-activated protein kinase (MAPK) in vivo and in vitro. p38 MAPK activation was not dependent on the kinase activity of ILK. Thus, we conclude that ILK plays a crucial role in activating p38 MAPK, which regulates cell cycle arrest of epithelial cells in renal tubulogenesis.
Collapse
Affiliation(s)
- Joanna Smeeton
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ito M, Miyado K, Nakagawa K, Muraki M, Imai M, Yamakawa N, Qin J, Hosoi Y, Saito H, Takahashi Y. Age-associated changes in the subcellular localization of phosphorylated p38 MAPK in human granulosa cells. Mol Hum Reprod 2010; 16:928-37. [DOI: 10.1093/molehr/gaq076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
65
|
BRCA1-IRIS overexpression abrogates UV-induced p38MAPK/p53 and promotes proliferation of damaged cells. Oncogene 2010; 29:5274-85. [DOI: 10.1038/onc.2010.262] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
66
|
Waning DL, Lehman JA, Batuello CN, Mayo LD. Controlling the Mdm2-Mdmx-p53 Circuit. Pharmaceuticals (Basel) 2010; 3:1576-1593. [PMID: 20651945 PMCID: PMC2907906 DOI: 10.3390/ph3051576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 02/07/2023] Open
Abstract
The p53 tumor suppressor is a key protein in maintaining the integrity of the genome by inducing either cell cycle arrest or apoptosis following cellular stress signals. Two human family members, Mdm2 and Mdmx, are primarily responsible for inactivating p53 transcription and targeting p53 protein for ubiquitin-mediated degradation. In response to genotoxic stress, post-translational modifications to p53, Mdm2 and Mdmx stabilize and activate p53. The role that phosphorylation of these molecules plays in the cellular response to genotoxic agents has been extensively studied with respect to cancer biology. In this review, we discuss the main phosphorylation events of p53, Mdm2 and Mdmx in response to DNA damage that are important for p53 stability and activity. In tumors that harbor wild-type p53, reactivation of p53 by modulating both Mdm2 and Mdmx signaling is well suited as a therapeutic strategy. However, the rationale for development of kinase inhibitors that target the Mdm2-Mdmx-p53 axis must be carefully considered since modulation of certain kinase signaling pathways has the potential to destabilize and inactivate p53.
Collapse
Affiliation(s)
- David L. Waning
- Herman B Wells Center for Pediatric Research, 980 West Walnut, Walther Hall R3-C548, Indianapolis, IN 46202, USA
| | - Jason A. Lehman
- Herman B Wells Center for Pediatric Research, 980 West Walnut, Walther Hall R3-C548, Indianapolis, IN 46202, USA
| | - Christopher N. Batuello
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, IN 46202, USA
| | - Lindsey D. Mayo
- Herman B Wells Center for Pediatric Research, 980 West Walnut, Walther Hall R3-C548, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, IN 46202, USA
| |
Collapse
|
67
|
Shi Y, Han G, Wu H, Ye K, Tian Z, Wang J, Shi H, Ye M, Zou H, Huo K. Casein kinase 2 interacts with human mitogen- and stress-activated protein kinase MSK1 and phosphorylates it at multiple sites. BMB Rep 2010; 42:840-5. [PMID: 20044958 DOI: 10.5483/bmbrep.2009.42.12.840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen- and stress-activated protein kinase (MSK1) palys a crucial role in the regulation of transcription downstream of extracellular-signal-regulated kinase1/2 (ERK1/2) and mitogen- activated protein kinase p38. MSK1 can be phosphorylated and activated in cells by both ERK1/2 and p38alpha. In this study, Casein Kinase 2 (CK2) was identified as a binding and regulatory partner for MSK1. Using the yeast two-hybrid system, MSK1 was found to interact with the CK2beta regulatory subunit of CK2. Interactions between MSK1 and the CK2alpha catalytic subunit and CK2beta subunit were demonstrated in vitro and in vivo. We further found that CK2alpha can only interact with the C-terminal kinase domain of MSK1. Using site-directed mutagenesis assay and mass spectrometry, we identified five sites in the MSK1 C-terminus that could be phosphorylated by CK2 in vitro: Ser757, Ser758, Ser759, Ser760 and Thr793. Of these, Ser757, Ser759, Ser760 and Thr793 were previously unknown.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Kim W, Yang HJ, Youn H, Yun YJ, Seong KM, Youn B. Myricetin inhibits Akt survival signaling and induces Bad-mediated apoptosis in a low dose ultraviolet (UV)-B-irradiated HaCaT human immortalized keratinocytes. JOURNAL OF RADIATION RESEARCH 2010; 51:285-296. [PMID: 20339252 DOI: 10.1269/jrr.09141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Deregulation of cell survival pathways and resistance to apoptosis are generally accepted as crucial aspects of tumorigenesis. As in many tumors, increasing occurrence of human skin cancer and other conflicting effects of solar ultraviolet (UV) radiation enhance the demand for novel chemoprevention agents. Myricetin, a naturally occurring phytochemical, is potent in anti-cancer promoting activity and affords to the chemopreventive potential of several healthy-foods, including fruits and vegetables. We demonstrate here that myricetin inhibits Akt activity to induce apoptosis in a low dose ('repairable dose') UVB-irradiated keratinocytes. Treatment of UVB-irradiated HaCaT cells with an apoptosis-inducing concentration of myricetin (20 microM) resulted in a decrease in phosphorylation of Akt leading to inhibition of its kinase activity. Myricetin treatment also caused a decrease in phosphorylation of Bad (a pro-apoptotic protein), a direct target of Akt in signaling pathway. Interaction between Bad and 14-3-3beta was reduced markedly in UVB-irradiated cells upon a treatment with myricetin. Comparable to these results, myricetin treatment promoted mitochondrial translocation of Bad, loss of the mitochondrial membrane potential, and release of the mitochondrial apoptotic proteins including cytochrome c, Smac, and AIF. Ectopic expression of constitutively active Akt granted statistically significant protection against myricetin-induced apoptosis. In addition, myricetin-induced apoptosis in UVB-irradiated cells was notably attenuated in the presence of caspase inhibitors. Together, these results indicate that myricetin might take on potent chemopreventive activity by inhibiting the Akt-mediated survival signaling axis in UVB-induced skin carcinogenesis.
Collapse
Affiliation(s)
- Wanyeon Kim
- College of Natural Sciences, Department of Biological Sciences, Pusan National University, Busan, Korea
| | | | | | | | | | | |
Collapse
|
69
|
Cox ML, Meek DW. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 2010; 22:564-71. [PMID: 19932175 DOI: 10.1016/j.cellsig.2009.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Post-translational modifications play important roles during the stabilisation and activation of p53 by various genotoxic and non-genotoxic stresses. Ser392 has been reported to be a major UV-stimulated phosphorylation site that is modified through the p38 MAPK pathway in a manner that may involve recruitment of CK2. Here we show that phosphorylation of Ser392 is an integral event that occurs not only in response to UV, but also during the induction of p53 by a range of stimuli including treatment of cells with the MDM2 inhibitor, Nutlin 3a. Strikingly, phosphorylation of Ser392 and Ser33 was also observed following induction of the p53 pathway by ARF which has previously been thought to induce p53 in a phosphorylation-independent manner. The induction of Ser392 phosphorylation by diverse stimuli can be explained by a common mechanism in which its phosphorylation at a low rate, coupled with the rapid turnover of p53, limits the accumulation of phosphorylated molecules until a stimulus stabilises p53 and allows the Ser392-phosphorylated p53 to accumulate. We also provide biological evidence that Ser392 phosphorylation is not mediated by a UV-associated route involving p38 MAPK, either directly or indirectly via CK2. These data suggest that, physiologically, Ser392 may be phosphorylated by an, as yet, unidentified protein kinase.
Collapse
Affiliation(s)
- Miranda L Cox
- Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | |
Collapse
|
70
|
Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O. p38(MAPK) in the senescence of human and murine fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:126-37. [PMID: 20886761 DOI: 10.1007/978-1-4419-7002-2_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncogenic and environmental stresses, such as reactive oxygen species, UV radiation etc, can induce premature cellular senescence without critical telomere shortening. The role of the Ras/Raf/ERK signal transduction cascade in this process has been previously established, but recent evidence also indicates a critical role of the p38 MAP kinases pathway. Oncogenic and environmental stresses impinge upon the p38(MAPK) pathway, suggesting a major role of this pathway in senescence induced by stresses. Prematurely senescent cells are most likely to appear in several age-relatedpathologies associated with a stressful environment and/or the release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Florence Debacq-Chainiaux
- University of Namur, Research Unit on Cellular Biology, Rue de Bruxelles, 61, Namur B-5000, Belgium.
| | | | | | | | | |
Collapse
|
71
|
Plasticity in Differentiation of Salivary Glands: The Signaling Pathway That Induces Dedifferentiation of Parotid Acinar Cells. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80034-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Abstract
The p53 protein is one of the most important tumor suppressor proteins. Normally, the p53 protein is in a latent state. However, when its activity is required, e.g. upon DNA damage, nucleotide depletion or hypoxia, p53 becomes rapidly activated and initiates transcription of pro-apoptotic and cell cycle arrest-inducing target genes. The activity of p53 is regulated both by protein abundance and by post-translational modifications of pre-existing p53 molecules. In the 30 years of p53 research, a plethora of modifications and interaction partners that modulate p53's abundance and activity have been identified and new ones are continuously discovered. This review will summarize our current knowledge on the regulation of p53 abundance and activity.
Collapse
Affiliation(s)
- Karen A Boehme
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | |
Collapse
|
73
|
Anggakusuma, Yanti, Hwang JK. Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells. J Dermatol Sci 2009; 57:114-22. [PMID: 19914807 DOI: 10.1016/j.jdermsci.2009.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/15/2009] [Accepted: 10/03/2009] [Indexed: 01/25/2023]
Abstract
BACKGROUND UVB irradiation (290-320 nm) is the most damaging component of the UV spectrum and causes both direct and indirect damage to the basal cell layer of the epidermis; this results in the activation of a number of signaling pathways involved in pathophysiological processes in the skin, such as photoaging and inflammation. In photoaging UVB irradiation promotes degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and, in inflammation, UVB irradiation promotes the expression of inducible cyclooxygenase (COX-2), leading to overproduction of inflammatory mediators. OBJECTIVE We first investigated the protective effects of macelignan from Myristica fragrans Houtt. on immortalized human keratinocytes (HaCaT) against UVB damage. We then explored the inhibitory effects of macelignan on UVB-induced MMP-9 and COX-2 and investigated the molecular mechanism underlying those effects. METHODS HaCaT cells were treated with macelignan for the indicated times followed by irradiation with UVB. Secretion of MMP-9 was measured by gelatin zymography. Expression of COX-2, mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase/Akt (PI3K/Akt), c-Fos, c-Jun, and CREB were assayed by western analysis. RESULTS Macelignan at a concentration of 0.1-1 microM increased the viability of HaCaT cells following UVB irradiation and inhibited MMP-9 secretion and COX-2 expression in a concentration-dependent manner. An inhibitory effect was also seen in the signal transduction network, where macelignan treatment reduced the activation of UVB-induced MAPKs, PI3K/Akt, and their downstream transcription factors. CONCLUSION These results suggest that macelignan protects skin keratinocytes from UVB-induced damage and inhibits MMP-9 and COX-2 expression by attenuating the activation of MAPKs and PI3K/Akt.
Collapse
Affiliation(s)
- Anggakusuma
- Department of Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | | | | |
Collapse
|
74
|
Wang Z, Wang M, Kar S, Carr BI. Involvement of ATM-mediated Chk1/2 and JNK kinase signaling activation in HKH40A-induced cell growth inhibition. J Cell Physiol 2009; 221:213-20. [DOI: 10.1002/jcp.21844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
75
|
Cybulsky AV, Takano T, Guillemette J, Papillon J, Volpini RA, Di Battista JA. The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Am J Physiol Renal Physiol 2009; 297:F971-80. [DOI: 10.1152/ajprenal.00294.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression and activity of the germinal center SLK are increased during kidney development and recovery from renal ischemia-reperfusion injury. SLK promotes apoptosis, in part, via pathway(s) involving apoptosis signal-regulating kinase-1 and p38 mitogen-activated protein kinase. This study addresses the role of p53 as a potential effector of SLK. p53 transactivation was measured after transient transfection of a luciferase reporter plasmid that contains a p53 cis-acting enhancer element. Overexpression of SLK in COS-1 cells and cotransfection of SLK and p53-wild type (wt) cDNAs in glomerular epithelial cells (GECs) stimulated p53 transactivational activity, as measured by a p53 response element-driven luciferase reporter. In GECs, chemical anoxia followed by glucose reexposure (in vitro ischemia-reperfusion) increased p53 reporter activity, and this increase was amplified by overexpression of SLK. Expression of SLK induced p53 phosphorylation on serine (S)-33 and S315. In GECs, cotransfection of SLK with p53-wt, p53-S33A, p53-S315A, or p53-S33A+S315A mutants showed that only the double mutation abolished the SLK-induced increase in p53 reporter activity. SLK-induced stimulation of p53 reporter activity was attenuated by inhibition of JNK. Overexpression of SLK amplified apoptosis induced by subjecting cells to in vitro ischemia-reperfusion injury, while ectopic expression of a dominant negative SLK mutant attenuated the ischemia-reperfusion-induced apoptosis. The p53 transactivation inhibitor pifithrin-α significantly attenuated the amount of apoptosis after ischemia-reperfusion and SLK overexpression. Thus SLK induces p53 phosphorylation and transactivation, which enhances apoptosis after in vitro ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Rildo A. Volpini
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - John A. Di Battista
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
76
|
Jeong JH, Nakajima H, Magae J, Furukawa C, Taki K, Otsuka K, Tomita M, Lee IS, Kim CH, Chang HW, Min KS, Park KK, Park KK, Chang YC. Ascochlorin activates p53 in a manner distinct from DNA damaging agents. Int J Cancer 2009; 124:2797-2803. [PMID: 19253369 DOI: 10.1002/ijc.24259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ascochlorin, a prenylphenol antitumor antibiotic, profoundly increases the expression of endogenous p53 by increasing protein stability in the human osteosarcoma cells and human colon cancer cells. Ascochlorin also increases DNA binding activity to the p53 consensus sequence in nuclear extract and enhances transcription of p53 downstream targets. Ascochlorin specifically induces p53 phosphorylation at ser 392 without affecting ser 15 or 20, whereas DNA damaging agents typically phosphorylate these serines. Moreover, ascochlorin does not induce phosphorylation of ATM and CHK1, an established substrate of ATR that is activated by genotoxins, nor does it increase DNA strand break, as confirmed by comet assay. The structure-activity relationship suggests that p53 activation by ascochlorin is related to inhibition of mitochondrial respiration, which is further supported by the observation that respiratory inhibitors activate p53 in a manner similar to ascochlorin. These results suggest that ascochlorin, through the inhibition of mitochondrial respiration, activates p53 through a mechanism distinct from genotoxins.
Collapse
Affiliation(s)
- Ji-Hak Jeong
- Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection. J Virol 2009; 83:6039-47. [PMID: 19339353 DOI: 10.1128/jvi.00135-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infection with a wide variety of viruses often perturbs host cell signaling pathways including the Jun NH(2)-terminal kinase/stress-activated kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase (p38/MAPK), which are important components of cellular signal transduction pathways. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate JNK1/2 and p38 MAPK pathways in PCV2-infected PK15 cells. However, PCV2 at an early stage of infection, as well as UV-irradiated PCV2, failed to activate these two MAPK families, which demonstrated that PCV2 replication was necessary for their activation. We further found that PCV2 activated the phosphorylation of JNK1/2 and p38 MAPK downstream targets c-Jun and ATF-2 with virus replication in the cultured cells. The roles of these kinases in PCV2 infection were further evaluated using specific inhibitors: the JNK inhibitor 1 for JNK1/2 and SB202190 for p38. Inhibition of JNK1/2 and p38 kinases by these specific inhibitors did result in significant reduction of PCV2 viral mRNA transcription and protein synthesis, viral progeny release, and blockage of PCV2-induced apoptotic caspase-3 activation in the infected cells. Taken together, these data suggest that JNK/SAPK and p38 MAPK pathways play important roles in the PCV2 replication and contribute to virus-mediated changes in host cells.
Collapse
|
78
|
Chowdhury R, Chowdhury S, Roychoudhury P, Mandal C, Chaudhuri K. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis 2009; 14:108-23. [PMID: 19082730 DOI: 10.1007/s10495-008-0284-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Resistance to apoptosis is a prominent feature of melanoma. Pharmacological concentration of arsenic in combination with a widely known oxidant, menadione was explored in this study to synergistically sensitize malignant melanoma cells to apoptosis. The molecular mechanism of apoptosis and the signaling-pathways involved were thoroughly investigated. MATERIALS METHODS AND RESULTS: Menadione synergized NaAsO(2) to significantly increase ROS generation and facilitate the major apoptotic signaling events: alteration of mitochondrial membrane potential, cytochrome c release and anti-apoptotic protein Bcl-2 down-regulation and subsequent activation of caspase-9 and caspase-3 followed by poly-ADP-ribose polymerase-1 cleavage. Antioxidant N-acetyl-L: -cysteine antagonized these events. Investigation of the signaling-pathway revealed significant suppression of AP-1 activity but not NF-kappaB upon NaAsO(2) and menadione application. An increase in p38 phosphorylation and p53 protein expression did also dictate the apoptotic response. Suppression of p38 activation with SB203580 and inhibition of p53 expression by siRNA attenuated apoptosis. Transfection of p53, in p53 null HCT cells augmented the apoptotic events. Moreover, the treatment also led to tumor size reduction in BALB/c mice developed by intra-dermal B16 mouse melanoma cell injection; however, it had no detectable pro-proliferative or pro-apoptotic effect on non-tumor keratinocytes, normal fibroblasts or PBMC. CONCLUSION This study thus provides an insight into innovative mechanisms of melanoma sensitization, a proper cure against which is still elusive. Taken together, our data also provides the first evidence of arsenic activity accentuation by menadione through modulation of specific signaling-pathways.
Collapse
Affiliation(s)
- Rajdeep Chowdhury
- Molecular & Human Genetics Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
79
|
Thornton TM, Rincon M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 2008; 5:44-51. [PMID: 19159010 PMCID: PMC2610339 DOI: 10.7150/ijbs.5.44] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 12/11/2022] Open
Abstract
The p38 MAPK kinase pathway is activated in response to a wide range of cellular stress stimuli and cytokines. Our understanding of the important functions of p38 MAPK in the process of differentiation and cell death has grown considerably in the recent years and is now relatively established. Here we discuss the role of p38 MAPK in the mediation of cell cycle checkpoints and cell survival, processes that have received less attention. We describe how p38 MAPK regulates both the G2/M as well as a G1/S cell cycle checkpoint in response to cellular stress such as DNA damage. While p38 MAPK has classically been associated with the induction of apoptosis, we discuss that p38 MAPK can also mediate cell survival in specific situations, such as in response to DNA damage. It is important to recognize these less appreciated functions of p38 MAPK when considering the potential use of pharmacological inhibitors of p38 MAPK in therapeutic treatments for disease.
Collapse
Affiliation(s)
- Tina M Thornton
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, Vermont 05405-0068, USA
| | | |
Collapse
|
80
|
Guo X, Ma N, Wang J, Song J, Bu X, Cheng Y, Sun K, Xiong H, Jiang G, Zhang B, Wu M, Wei L. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BMC Cancer 2008; 8:375. [PMID: 19091131 PMCID: PMC2628930 DOI: 10.1186/1471-2407-8-375] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 12/18/2008] [Indexed: 12/12/2022] Open
Abstract
Background Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with Multidrug resistance (MDR). Many different mechanisms have been suggested to explain the development of an MDR phenotype in cancer cells. One of the most studied mechanisms is the overexpression of P-glycoprotein (P-gp), which is a product of the MDR1 gene. Tumor cells often acquire the drug-resistance phenotype due to upregulation of the MDR1 gene. Overexpression of MDR1 gene has often been reported in primary gastric adenocarcinoma. Methods This study investigated the role of p38-MAPK signal pathway in vincristine-resistant SGC7901/VCR cells. P-gp and MDR1 RNA were detected by Western blot analysis and RT-PCR amplification. Mitgen-activated protein kinases and function of P-gp were demonstrated by Western blot and FACS Aria cytometer analysis. Ap-1 activity and cell apoptosis were detected by Dual-Luciferase Reporter Assay and annexin V-PI dual staining. Results The vincristine-resistant SGC7901/VCR cells with increased expression of the multidrug-resistance 1 (MDR1) gene were resistant to P-gp-related drug and P-gp-unrelated drugs. Constitutive increases of phosphorylated p38-MAPK and AP-1 activities were also found in the drug-resistant cells. Inhibition of p38-MAPK by SB202190 reduced activator protein-1 (AP-1) activity and MDR1 expression levels and increased the sensitivity of SGC7901/VCR cells to chemotherapy. Conclusion Activation of the p38-MAPK pathway might be responsible for the modulation of P-glycoprotein-mediated and P-glycoprotein-unmediated multidrug resistance in the SGC7901/VCR cell line.
Collapse
Affiliation(s)
- Xianling Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Huang J, Wu L, Tashiro SI, Onodera S, Ikejima T. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J Pharmacol Sci 2008; 107:370-9. [PMID: 18719315 DOI: 10.1254/jphs.08044fp] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oridonin, a diterpenoid isolated from Rabdosia rubescences, could induce apoptosis through the generation of reactive oxygen species (ROS) in human hepatoma HepG2 cells. p53, a specific inhibitor of pifithrin alpha (PFT alpha), markedly inhibited ROS generation and apoptosis, showing that p53 was responsible for the cytotoxity of oridonin through mediation by ROS. Moreover, the ROS activated the p38 kinase, which in turn promoted the activation of p53, as verified by evidence showing that the ROS scavenger N-acetyl-cysteine (NAC) not only blocked the phosphorylation of p38 but also partially inhibited the activation of p53, and the p38 inhibitor SB203580 reduced the activation of p53 as well. Mitochondria were either the sources or the targets of ROS. This study showed that oridonin stimulated mitochondrial transmembrane permeabilization in a ROS-dependent manner because NAC almost thoroughly reversed the drop of mitochondrial transmembrane potential (Deltapsim) and the release of cytochrome c from the mitochondrial inter-membrane space into cytosol. Furthermore, as a result of mitochondrial permeability transition, procaspases-9 and -3 were cleaved into 37- and 17-kDa proteolytic products, respectively, which acted as executors of oridonin-induced apoptosis.
Collapse
Affiliation(s)
- Jian Huang
- Department of Phytochemistry, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | | | | | | | | |
Collapse
|
82
|
Rabi T, Banerjee S. Novel synthetic triterpenoid methyl 25-hydroxy-3-oxoolean-12-en-28-oate induces apoptosis through JNK and p38 MAPK pathways in human breast adenocarcinoma MCF-7 cells. Mol Carcinog 2008; 47:415-23. [PMID: 18058803 DOI: 10.1002/mc.20399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Breast cancer is the most common neoplasm in women and is the leading cause of cancer-related death for women. Therefore, new agents targeting prevention and treatment of breast cancer are urgently needed. The present study first investigates that a novel triterpenoid Methyl 25-Hydroxy-3-oxoolean-12-en-28-oate (AMR-Me) derived from 25-Hydroxy-3-oxoolean-12-en-28-oic acid (AMR) is a potent inhibitor of cell growth by inducing human breast cancer MCF-7 cells to undergo apoptosis. AMR-Me induced DNA fragmentation and PARP degradation which were preceded by changing Bax/Bcl-2 ratios, cytochrome c release, and subsequent induction of pro-caspase-9 and -7 processing in breast carcinoma MCF-7 cells, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8, suggesting AMR-Me triggered the mitochondrial apoptotic pathway. The general caspase blocking peptide VAD partially blocked AMR-Me induced apoptosis. AMR-Me stimulated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase (JNK), but not extracellular signal-regulated kinase activation during apoptosis. SP600125, a specific inhibitor for JNK and SB203580, a p38 MAPK-specific inhibitor suppressed AMR-Me induced apoptosis indicating that activation of JNK and p38 MAPKs involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that AMR-Me can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, is critical for both our understanding of cell death events and development of cancer preventive/therapeutic agents.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Department of Cancer Biology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | |
Collapse
|
83
|
Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA. The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 2008; 27:123-35. [PMID: 18265945 PMCID: PMC2362138 DOI: 10.1007/s10555-008-9127-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Wild-type p53-induced phosphatase 1, Wip1 (or PPM1D), is unusual in that it is a serine/threonine phosphatase with oncogenic activity. A member of the type 2C phosphatases (PP2Cδ), Wip1 has been shown to be amplified and overexpressed in multiple human cancer types, including breast and ovarian carcinomas. In rodent primary fibroblast transformation assays, Wip1 cooperates with known oncogenes to induce transformed foci. The recent identification of target proteins that are dephosphorylated by Wip1 has provided mechanistic insights into its oncogenic functions. Wip1 acts as a homeostatic regulator of the DNA damage response by dephosphorylating proteins that are substrates of both ATM and ATR, important DNA damage sensor kinases. Wip1 also suppresses the activity of multiple tumor suppressors, including p53, ATM, p16INK4a and ARF. We present evidence that the suppression of p53, p38 MAP kinase, and ATM/ATR signaling pathways by Wip1 are important components of its oncogenicity when it is amplified and overexpressed in human cancers.
Collapse
Affiliation(s)
- Xiongbin Lu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
84
|
Singer AJ, McClain SA, Taira BR, Guerriero JL, Zong W. Apoptosis and necrosis in the ischemic zone adjacent to third degree burns. Acad Emerg Med 2008; 15:549-54. [PMID: 18616442 DOI: 10.1111/j.1553-2712.2008.00115.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Burns are characterized by a central zone of necrosis surrounded by a zone of potentially reversible ischemia. The authors explored the contribution of necrosis and apoptosis to cell death in the zone of ischemia. METHODS A previously established rat contact thermal injury model that utilizes a brass comb to produce four distinctive burns sites separated by three "interspaces" of unburned skin was used. The interspaces represent the zone of stasis or ischemia while the burn sites represent the zone of coagulation. With this model, most unburned interspaces progress to necrosis over 2 to 3 days. Full-thickness 3-mm biopsies were obtained from the interspaces, burns, and normal skin controls at 30 minutes, 24 hours, and 48 hours after injury. Slides were stained with hematoxylin and eosin as well as activated cleaved caspase-3 (CC3a) for evidence of apoptosis and high-mobility group box 1 (HMGB1) for evidence of necrosis. RESULTS Necrosis was not seen at 30 minutes, but was found in a large number of cells within the epidermis, sebaceous glands, and follicles at 24 and 48 hours. Faint nuclear CC3a staining indicative of apoptosis was present in a minority of cells within the epidermis, dermal fibroblasts, dermal follicles, and dermal sebaceous glands at 30 minutes and to a lesser degree at 24 and 48 hours. CONCLUSIONS Both early apoptosis and delayed necrosis are present in the zone of ischemia, contributing to injury progression. Necrosis appears to play a larger role than apoptosis in injury progression in the comb burn model.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Stony Brook University, Stony Brook, NY, USA.
| | | | | | | | | |
Collapse
|
85
|
Lin T, Mak N, Yang M. MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: Involvement of p53 phosphorylation and acetylation. Toxicology 2008; 247:145-53. [DOI: 10.1016/j.tox.2008.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/17/2022]
|
86
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The primary method describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
87
|
Fujita-Yoshigaki J, Matsuki-Fukushima M, Sugiya H. Inhibition of Src and p38 MAP kinases suppresses the change of claudin expression induced on dedifferentiation of primary cultured parotid acinar cells. Am J Physiol Cell Physiol 2008; 294:C774-85. [DOI: 10.1152/ajpcell.00472.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sjögren's syndrome and therapeutic radiation for head and neck cancers result in irreversible changes in the parenchyma of salivary glands, loss of acinar cells, prominence of duct cells, and fibrosis. To clarify mechanisms of salivary gland dysfunction, we identified a signaling pathway involved in the dedifferentiation of primary cultures of parotid acinar cells. We reported previously that the expression pattern of claudins changes during culture, is related to the three-dimensional organization of the cells, and reflects their ability to function as acinar cells. In this study, we found that this change of claudin expression is a process of dedifferentiation, because expression of other differentiation markers also changes during culture. The expression levels of claudins-4 and -6, cytokeratin 14, and vimentin are increased, and those of claudin-10, aquaporin 5, and amylase are decreased. Inhibitors of Src and p38 MAP kinases suppress these changes and increase the expression of acinar marker proteins. Differences in extracellular matrix components have no effect. Activation of p38 MAP kinase occurs during cell isolation from the parotid glands and is retained up to 6 h after the isolation. In contrast, activation of Src kinases does not increase during the cell isolation. The Src inhibitor PP1 suppresses the activation of p38 MAP kinase. Therefore, cellular stresses induced during cell isolation cause dedifferentiation and transition to duct-like cells through activation of p38 MAP kinase and constitutively active Src kinases.
Collapse
|
88
|
Øster B, Bundgaard B, Hupp TR, Höllsberg P. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway. J Gen Virol 2008; 89:87-96. [PMID: 18089732 DOI: 10.1099/vir.0.83136-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although the signalling pathways leading to Ser392 phosphorylation are poorly understood, they seem to include casein kinase 2 (CK2), double-stranded RNA-activated protein kinase (PKR), p38 or cyclin-dependent kinase 9 (Cdk9). By using column chromatography and in vitro kinase assays, CK2 and p38, but not PKR or Cdk9, eluted in column fractions that phosphorylated p53 at Ser392. However, treatment of cells with neither the CK2 and Cdk9 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) nor p38 kinase inhibitors reduced HHV-6B-induced Ser392 phosphorylation significantly. Knockdown of the CK2beta subunit or p38alpha by small interfering RNA had no effect on HHV-6B-induced phosphorylation of p53 at Ser392. Thus, HHV-6B induces p53 Ser392 phosphorylation by an atypical pathway independent of CK2 and p38 kinases, whereas mitogen-activated protein (MAP) kinase signalling pathways are involved in viral replication.
Collapse
Affiliation(s)
- B Øster
- The University of Edinburgh, CRUK p53 Signal Transduction Group, Edinburgh, UK.,Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - B Bundgaard
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - T R Hupp
- The University of Edinburgh, CRUK p53 Signal Transduction Group, Edinburgh, UK
| | - P Höllsberg
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
89
|
Shaul Y, Seger R. The detection of MAPK signaling. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 14:Unit 14.3. [PMID: 18228462 DOI: 10.1002/0471143030.cb1403s28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The Basic Protocol describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
90
|
The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts. Mol Cell Biol 2008; 28:1974-87. [PMID: 18195040 DOI: 10.1128/mcb.01610-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53(-/-) mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53(-/-), possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53(-/-) but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.
Collapse
|
91
|
Rouget R, Auclair Y, Loignon M, Affar EB, Drobetsky EA. A sensitive flow cytometry-based nucleotide excision repair assay unexpectedly reveals that mitogen-activated protein kinase signaling does not regulate the removal of UV-induced DNA damage in human cells. J Biol Chem 2007; 283:5533-41. [PMID: 18093981 DOI: 10.1074/jbc.m706257200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In response to diverse genotoxic stimuli (e.g. UV and cisplatin), the mitogen-activated protein kinases ERK1/2, JNK1/2, and p38alpha/beta become rapidly phosphorylated and in turn activate multiple downstream effectors that modulate apoptosis and/or growth arrest. Furthermore, previous lines of evidence have strongly suggested that ERK1/2 and JNK1/2 participate in global-genomic nucleotide excision repair, a critical antineoplastic pathway that removes helix-distorting DNA adducts induced by a variety of mutagenic agents, including UV. To rigorously evaluate the potential role of mitogen-activated protein kinases in global-genomic nucleotide excision repair, various human cell strains (primary skin fibroblasts, primary lung fibroblasts, and HCT116 colon carcinoma cells) were treated with highly specific chemical inhibitors, which, following UV exposure, (i) abrogated the capacities of ERK1/2, JNK1/2, or p38alpha/beta to phosphorylate specific downstream effectors and (ii) characteristically modulated cellular proliferation, clonogenic survival, and/or apoptosis. A highly sensitive flow cytometry-based nucleotide excision repair assay recently optimized and validated in our laboratory was then employed to directly demonstrate that the kinetics of UV DNA photoadduct repair are highly similar in mock-treated versus mitogen-activated protein kinase inhibitor-treated cells. These data on primary and tumor cells treated with pharmacological inhibitors were fully corroborated by repair studies using (i) short hairpin RNA-mediated knockdown of ERK1/2 or JNK1/2 in human U2OS osteosarcoma cells and (ii) expression of a dominant negative p38alpha mutant in human primary lung fibroblasts. Our results provide solid evidence for the first time, in disaccord with a burgeoning perception, that mitogen-activated protein kinase signaling does not influence the efficiency of human global-genomic nucleotide excision repair.
Collapse
Affiliation(s)
- Raphael Rouget
- Department of Immunology/Oncology, Maisonneuve-Rosemont Hospital Research Center, Faculty of Medicine, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | | | | | | | | |
Collapse
|
92
|
Liao YH, Hsu SM, Huang PH. ARMS Depletion Facilitates UV Irradiation Induced Apoptotic Cell Death in Melanoma. Cancer Res 2007; 67:11547-56. [DOI: 10.1158/0008-5472.can-07-1930] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
93
|
Abstract
The p53 tumor suppressor protein is typically considered to be a sequence-specific DNA-binding transcription factor. However, reports over the last 15 years have described RNA binding by p53 in a variety of contexts, suggesting the possibility of new p53 functions. It is clear that p53-RNA interactions are mediated by a nucleic acid-binding domain of p53 independent of the sequence-specific core domain responsible for DNA recognition. Reports disagree on several aspects of the putative RNA interaction, including sequence specificity and biological relevance. Here we review the history and recent advances in the study of p53-RNA interactions. We argue that p53-RNA interactions are sequence nonspecific and depend on incomplete post-translational modification of the p53 C-terminal domain when the protein is expressed in heterologous systems. It is unknown what fraction of p53 protein exists in a state competent for RNA binding in vivo. Thus, potential physiological roles of p53-RNA interactions remain mysterious.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
94
|
Bragado P, Armesilla A, Silva A, Porras A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 2007; 12:1733-42. [PMID: 17505786 DOI: 10.1007/s10495-007-0082-8] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cisplatin is one of the major chemotherapeutic weapons used against different human cancers, although its mechanism to induce apoptosis is not fully understood. The presence of wild type p53 has been suggested to be important for cisplatin cytotoxicity, hence we found that cisplatin induced apoptosis in cell lines with functional p53. Using the HCT116 colon carcinoma derived cell line we have established that the apoptotic activity of cisplatin requires the onset of a p53-mediated p38alpha MAPK pathway through generation of reactive oxygen species (ROS). HCT116 p53-deficient cells were much less sensitive to apoptosis by cisplatin than their p53wt counterparts, where apoptosis was strongly inhibited by antioxidants. Moreover, the presence of pifithrin-alpha, an inhibitor of p53 transcriptional activity, blocked cisplatin-induced apoptosis, reduced the generation of ROS produced upon cisplatin treatment. In addition, we have identified p38alpha as the isoform necessary for cisplatin-induced apoptosis, upon activation by p53-mediated ROS production. p38alpha MAPK contributes to further activation of p53, which leads to a positive feedback loop, p38alpha MAPK/p53. We conclude that the p53/ROS/p38alpha MAPK cascade is essential for cisplatin-induced cell death in HCT116 cells and the subsequent p38alpha/p53 positive feedback loop strongly enhances the initial p53 activation.
Collapse
Affiliation(s)
- Paloma Bragado
- Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
95
|
Huang C, Zhang D, Li J, Tong Q, Stoner GD. Differential Inhibition of UV-Induced Activation of NFκ B and AP-1 by Extracts From Black Raspberries, Strawberries, and Blueberries. Nutr Cancer 2007; 58:205-12. [PMID: 17640167 DOI: 10.1080/01635580701328453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies from our laboratory have shown that the transactivation of nuclear factor kappa B (NF kappa B) and activator protein-1 (AP-1) plays an important mechanistic role in ultraviolet (UV)-induced skin carcinogenesis in mice. We also demonstrated that a methanol extract (ME) fraction from black raspberries (Rubus occidentalis) (RO; RO-ME) inhibits benzo[a]pyrene-7,8-diol-9,10-epoxide [B(a)PDE]-induced activation of NF kappa B and AP-1 in cultured mouse epidermal cells. In the present study, we determined if RO-ME might also inhibit the induction of NF kappa B and AP-1 in mouse epidermal cells exposed to mid UV radiation (UVB) and short UV radiation (UVC) and whether methanol fractions from strawberries and blueberries would also be effective. Our results showed that RO-ME inhibited UVB-induced activation of NF kappa B in mouse epidermal cells in a time- and dose-dependent manner; however, the methanol fractions from strawberries and blueberries were ineffective. Interestingly, none of the fractions from all 3 berry types inhibited UVB- or UVC-induced activation of AP-1, suggesting that inhibition of UV-induced signaling pathways is specific for black raspberries and NF kappa B. Cyanidin-3-rutinoside, an anthocyanin found in abundance in black raspberries and not in strawberries or high-bush blueberries, was found to contribute to the inhibition of UVB-induced activation of NF kappa B. These results suggest that berries differ in their ability to influence signaling pathways leading to activation of NF kappa B and AP-1 when using UV light as the inducer.
Collapse
Affiliation(s)
- Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10987, USA.
| | | | | | | | | |
Collapse
|
96
|
Shaham J, Fireman E, Korenstein-Ilan A, Lerman Y. Detection of p53 Protein in Induced Sputum After Occupational Exposure to Crystalline Silica. J Occup Environ Med 2007; 49:730-5. [PMID: 17622845 DOI: 10.1097/jom.0b013e31805d0be4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the possibility of detecting p53 protein in the supernatant of induced sputum (IS) of workers exposed to crystalline silica. METHODS Personal interviews were used to obtain demographic data, occupational and exposure histories, and health habits of the study participants. Sputum samples were collected from all subjects. RESULTS The all-male study cohort included 35 workers (mean age 43.8 years) exposed to silica and 7 unexposed workers (34.7 years, P < 0.05). The mean duration of exposure was 13.4 years, and the range of exposure levels to silica was 0.02 to 0.33 ppm. The mean level of p53 protein was higher in the exposed group compared with in the unexposed group (76.47 pg/mL and 62.43 pg/mL, respectively). CONCLUSIONS p53 may serve as a biomarker to identify workers at high risk for developing pulmonary malignancies. IS can detect p53 protein in sputum.
Collapse
Affiliation(s)
- Judith Shaham
- Medical Department of Civil Servants District Health Office, Tel Aviv Ministry of Health, Israel.
| | | | | | | |
Collapse
|
97
|
Cha H, Wang X, Li H, Fornace AJ. A functional role for p38 MAPK in modulating mitotic transit in the absence of stress. J Biol Chem 2007; 282:22984-92. [PMID: 17548358 DOI: 10.1074/jbc.m700735200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.
Collapse
Affiliation(s)
- Hyukjin Cha
- Department of Genetics and Complex Diseases, School of Public Health, and John B. Little Center for the Radiation Sciences and Environmental Health, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
98
|
Horikawa-Miura M, Matsuda N, Yoshida M, Okumura Y, Mori T, Watanabe M. The Greater Lethality of UVB Radiation to Cultured Human Cells is Associated with the Specific Activation of a DNA Damage-Independent Signaling Pathway. Radiat Res 2007; 167:655-62. [PMID: 17523842 DOI: 10.1667/rr0448.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 11/09/2006] [Indexed: 11/03/2022]
Abstract
UV radiation causes cell death through the activation of various intracellular signaling molecules in both DNA damage-dependent and -independent manners. The ability of middle-wavelength UV (UVB) radiation to form DNA photoproducts is less than that of short-wavelength UV (UVC) radiation; however, the differences between UVB and UVC radiation in the extent of DNA damage-independent signaling and its contribution to cell death have not been well characterized. When cells were irradiated with UVB or UVC radiation at doses that generated equivalent amounts of DNA photoproducts, UVB radiation induced more clonogenic cell death, apoptotic cells, mitochondrial cytochrome C release, and intracellular oxidative stress. Among the signaling molecules examined, levels of p53 phosphorylated at Ser-392 and p38 were higher in UVB-irradiated cells than in UVC-irradiated cells. Both phosphorylations were reduced by treating cells with an antioxidant. Furthermore, an inhibitor of p38 also blocked the phosphorylation of p53 at Ser-392. These results suggest that UVB radiation activates the p38 pathway through the generation of oxidative stress, which merges with the DNA p53 pathway by phosphorylation of p53 at ser392. This greater contribution of the DNA damage-independent pathway in UVB-irradiated cells may explain the greater lethality of UVB radiation.
Collapse
Affiliation(s)
- Miwa Horikawa-Miura
- Division of Radiation Biology and Protection, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Panse R, Dubertret L, Coulomb B. p38 Mitogen-activated Protein Kinase Activation by Ultraviolet A Radiation in Human Dermal Fibroblasts¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780168pmpkab2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
100
|
Long X, Goldenthal MJ, Marín-García J. Oxidative stress enhances phosphorylation of p53 in neonatal rat cardiomyocytes. Mol Cell Biochem 2007; 303:167-74. [PMID: 17457521 DOI: 10.1007/s11010-007-9470-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/30/2007] [Indexed: 12/31/2022]
Abstract
p53 is an important regulator of cell growth and apoptosis and its activity is regulated by phosphorylation. Accordingly, in neonatal rat cardiomyocytes we examined the involvement of p53 in H(2)O(2)-induced apoptosis. Treatment with 50-100 microM H(2)O(2) markedly induced apoptosis in cardiomyocytes, as assessed by gel electrophoresis of genomic DNA. To examine whether H(2)O(2) increases p53 phosphorylation in cardiomyocytes, we utilized an antibody that specifically recognizes phosphorylated p53 at serine-15. The level of phosphorylated p53 was markedly increased by 100 microM H(2)O(2) at 30 and 60 min. Using specific protein kinase inhibitors we examined the involvement of protein kinases in p53 phosphorylation in response to H(2)O(2) treatment. However, staurosporine, a broad spectrum inhibitor of protein kinases, SB202190, a specific p38 kinase inhibitor, PD98059, a MAP kinase inhibitor, wortmannin, an inhibitor of DNA-PK and PI3 kinase, SP600125, a JNK inhibitor and caffeine,an inhibitor of ATM and ATR, failed to prevent the H(2)O(2)-induced phosphorylation of p53. cDNA microarray revealed that H(2)O(2) markedly increased expression of several p53 upstream modifiers such as the p300 coactivator protein and several downstream effectors such as gadd45, but decreased the expression of MDM2, a negative regulator of p53. Our results suggest that phosphorylation of p53 at serine-15 may be an important signaling event in the H(2)O(2)-mediated apoptotic process.
Collapse
Affiliation(s)
- Xilin Long
- The Molecular Cardiology and Neuromuscular Institute, Highland Park, NJ 08904, USA
| | | | | |
Collapse
|