51
|
Sengle G, Kobbe B, Morgelin M, Paulsson M, Wagener R. Identification and characterization of AMACO, a new member of the von Willebrand factor A-like domain protein superfamily with a regulated expression in the kidney. J Biol Chem 2003; 278:50240-9. [PMID: 14506275 DOI: 10.1074/jbc.m307794200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes coding for human and mouse AMACO, an extracellular matrix protein containing VWA-like domains related to those in MAtrilins and COllagens, were detected in databases, the cDNAs were cloned, and the primary structures were deduced from the nucleotide sequences. The genes consist of 14 exons and have a similar exon/intron organization. The protein consists of a signal peptide sequence, an N-terminal VWA domain connected to two additional, tandem VWA domains by a cysteine-rich sequence and an epidermal growth factor (EGF)-like domain. The C terminus is made up of another EGF-like domain followed by a unique sequence present in mouse, but absent in human. The predicted molecular weight of the proteins is 79,485 in human and 83,024 in mouse. Full-length AMACO was expressed in 293-EBNA cells, purified by use of an affinity tag and subjected to biochemical characterization. Both monomers and aggregates of AMACO were recovered, as shown by electron microscopy and SDS-PAGE. AMACO was found in the media of a variety of established cell lines of both fibroblast and epithelial origin. In the matrix formed by 293-EBNA cells overexpressing the protein, AMACO was deposited in patchy structures that were often cell-associated. Affinity-purified antibodies detect expression in cartilage and expression associated with certain basement membranes. In the kidney of adult mice, a second promoter located in intron 4 is active. If the resulting transcript is translated it could not yield a secreted protein because of the lack of a signal peptide sequence. The developmental switch from an AMACO mRNA, expressed by the newborn kidney, to the truncated transcript found in the adult kidney indicates an unusual regulation of AMACO expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Basement Membrane/metabolism
- Biomarkers, Tumor
- Blotting, Northern
- Calcium-Binding Proteins
- Cartilage/metabolism
- Cell Line
- Chondrocytes/metabolism
- Cysteine/chemistry
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Epidermal Growth Factor/chemistry
- Epithelial Cells
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/chemistry
- Fibroblasts/metabolism
- Gene Expression Regulation
- Humans
- In Situ Hybridization
- Keratinocytes/metabolism
- Kidney/metabolism
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Oligonucleotides, Antisense/metabolism
- Peptides/chemistry
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors
- von Willebrand Factor/chemistry
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
52
|
Piecha D, Wiberg C, Mörgelin M, Reinhardt DP, Deák F, Maurer P, Paulsson M. Matrilin-2 interacts with itself and with other extracellular matrix proteins. Biochem J 2002; 367:715-21. [PMID: 12180907 PMCID: PMC1222949 DOI: 10.1042/bj20021069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Revised: 08/12/2002] [Accepted: 08/15/2002] [Indexed: 11/17/2022]
Abstract
Matrilin-2 is a component of extracellular filamentous networks. To study the interactions by which it can be integrated into such assemblies, full-length and truncated forms of matrilin-2 were recombinantly expressed in HEK-293 cells and purified from conditioned medium. The recombinant proteins, when used in interaction assays, showed affinity to matrilin-2 itself, but also to other collagenous and non-collagenous extracellular matrix proteins. The interaction between matrilin-2 and collagen I was studied in greater detail and could be shown to occur at distinct sites on the collagen I molecule and to have a K (D) of about 3 x 10(-8) M. Interactions with some non-collagenous protein ligands were even stronger, with matrilin-2 binding to fibrillin-2, fibronectin and laminin-1-nidogen-1 complexes, with K (D) values in the range of 10(-8)-10(-11) M. Co-localization of matrilin-2 with these ligands in the dermal-epidermal basement membrane, in the microfibrils extending from the basement membrane into the dermis, and in the dermal extracellular matrix, indicates a physiological relevance of the interactions in the assembly of supramolecular extracellular matrix structures.
Collapse
Affiliation(s)
- Dorothea Piecha
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Szabó E, Lódi C, Korpos E, Batmunkh E, Rottenberger Z, Deák F, Kiss I, Tokés AM, Lotz G, László V, Kiss A, Schaff Z, Nagy P. Comparative genetics and evolution of annexin A13 as the founder gene of vertebrate annexins. Mol Biol Evol 2002; 26:554-60. [PMID: 17513098 DOI: 10.1016/j.matbio.2007.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 03/28/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023] Open
Abstract
Annexin A13 (ANXA13) is believed to be the original founder gene of the 12-member vertebrate annexin A family, and it has acquired an intestine-specific expression associated with a highly differentiated intracellular transport function. Molecular characterization of this subfamily in a range of vertebrate species was undertaken to assess coding region conservation, gene organization, chromosomal linkage, and phylogenetic relationships relevant to its progenitor role in the structure-function evolution of the annexin gene superfamily. Protein diagnostic features peculiar to this subfamily include an alternate isoform containing a KGD motif, an elevated basic amino acid content with polyhistidine expansion in the 5'-translated region, and the conservation of 15% core tetrad residues specific to annexin A13 members. The 12 coding exons comprising the 58-kb human ANXA13 gene were deduced from BAC clone sequencing, whereas internal repetitive elements and neighboring genes in chromosome 8q24.12 were identified by contig analysis of the draft sequence from the human genome project. A unique exon splicing pattern in the annexin A13 gene was corroborated by coanalysis of mouse, rat, zebrafish, and pufferfish genomic DNA and determined to be the most distinct of all vertebrate annexins. The putative promoter region was identified by phylogenetic footprinting of potential binding sites for intestine-specific transcription factors. Mouse annexin A13 cDNA was used to map the gene to an orthologous linkage group in mouse chromosome 15 (between Sdc2 and Myc by backcross analysis), and the zebrafish cDNA permitted its localization to linkage group 24. Comparative analysis of annexin A13 from nine species traced this gene's speciation history and assessed coding region variation, whereas phylogenetic analysis showed it to be the deepest-branching vertebrate annexin, and computational analysis estimated the gene age and divergence rate. The unique, conserved aspects of annexin A13 primary structure, gene organization, and genetic maps identify it as the probable common ancestor of all vertebrate annexins, beginning with the sequential duplication to annexins A7 and A11 approximately 700 MYA, before the emergence of chordates.
Collapse
Affiliation(s)
- Erzsébet Szabó
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Piecha D, Hartmann K, Kobbe B, Haase I, Mauch C, Krieg T, Paulsson M. Expression of matrilin-2 in human skin. J Invest Dermatol 2002; 119:38-43. [PMID: 12164922 DOI: 10.1046/j.1523-1747.2002.01789.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extracellular matrix is composed of a large number of different modular proteins. Matrilin-2 is a newly described member of the protein superfamily with von Willebrand factor A-like modules. To examine the expression of matrilin-2 in human skin, the distribution of protein and mRNA was studied by immunohistochemistry and in situ hybridization. In addition, immunoblotting and real-time reverse transcription polymerase chain reaction were used to investigate the expression of matrilin-2 in keratinocyte and fibroblast cultures. In vivo, keratinocytes and fibroblasts were both found to express matrilin-2 mRNA and deposit the protein at the basal side of the dermal-epidermal basement membrane. Matrilin-2 molecules synthesized by the two cell types in vitro appeared to be processed differently by cell-associated proteases. Transcription of matrilin-2 mRNA in keratinocytes was enhanced by a diffusible factor produced by fibroblasts, suggesting a regulatory mechanism for the production of extracellular matrix at the dermal-epidermal junction. These findings demonstrate that matrilin-2 is expressed in normal skin by keratinocytes and fibroblasts and may thus contribute to cutaneous homeostasis.
Collapse
Affiliation(s)
- Dorothea Piecha
- Department of Dermatology, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 9, 50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
55
|
Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S, Sekimata M, Homma Y, Suzuki T. An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1973-80. [PMID: 12057902 PMCID: PMC1850839 DOI: 10.1016/s0002-9440(10)61147-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is generally believed that active invasion by cancer cells is essential to the metastatic process. In this report, we describe a murine mammary tumor (MCH66) model of metastasis that does not require invasion into the vascular wall of both the primary tumor and the target organ, in this case, the lung. The process involves intravasation of tumor nests surrounded by sinusoidal blood vessels, followed by intravascular tumor growth in the lung, without penetration of the vascular wall during the process. Comparative studies using a nonmetastatic MCH66 clone (MCH66C8) and another highly invasive metastatic cell line (MCH416) suggested that high angiogenic activity and sinusoidal remodeling of tumor blood vessels were prerequisites for MCH66 metastasis. Differential cDNA analysis identified several genes that were overexpressed by MCH66, including genes for the angiogenesis factor pleiotrophin, and extracellular matrix-associated molecules that may modulate the microenvironment toward neovascularization. Our analyses suggest that tumor angiogenesis plays a role in the induction of invasion-independent metastasis. This model should prove useful in screening and development of new therapeutic agents for cancer metastasis.
Collapse
Affiliation(s)
- Takashi Sugino
- Department of Pathology, School of Medicine, Fukushima Medical University, Fukushima City, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Frank S, Schulthess T, Landwehr R, Lustig A, Mini T, Jenö P, Engel J, Kammerer RA. Characterization of the matrilin coiled-coil domains reveals seven novel isoforms. J Biol Chem 2002; 277:19071-9. [PMID: 11896063 DOI: 10.1074/jbc.m202146200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrilins constitute a family of four oligomeric extracellular proteins that are involved in the development and homeostasis of cartilage and bone. To reveal their homo- and heterotypic oligomerization propensities, we analyzed the four human matrilin coiled-coil domains by biochemical and biophysical methods. These studies not only confirmed the homo- and heterotypic oligomerization states reported for the full-length proteins but revealed seven novel matrilin isoforms. Specific heterotrimeric interactions of variable chain stoichiometries were observed between matrilin-1 and matrilin-2, matrilin-1 and matrilin-4, and matrilin-2 and matrilin-4. In addition, matrilin-1 formed two different specific heterotetramers with matrilin-3. Interestingly, a distinct heterotrimer consisting of three different chains was formed between matrilin-1, matrilin-2, and matrilin-4. No interactions, however, were observed between matrilin-2 and matrilin-3 or between matrilin-3 and matrilin-4. Both homo- and heterotypic oligomers folded into parallel disulfide-linked structures, although coiled-coil formation was not dependent on disulfide bridge formation. Our results indicate that the heterotypic preferences seen for the matrilin coiled-coil domains are the result of the packing of the hydrophobic core rather than ionic interactions. Mass spectrometry revealed that the concentrations of the individual chains statistically determined the stoichiometry of the heteromers, suggesting that formation of the different matrillin chain combinations is controlled by expression levels.
Collapse
Affiliation(s)
- Sabine Frank
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The matrilins are a recently discovered family of non-collagenous extracellular matrix proteins. During embryogenesis, all matrilins are expressed in skeletal tissues. Additionally, matrilin-2 and -4 are expressed in the dermis and in connective tissues of internal organs, e.g. of the lung and kidney. After birth, the expression of matrilin-1 and -3 remains specific for cartilage and bone whereas matrilin-2 and -4 display a broader tissue distribution and could be detected in epithelial, muscle, and nervous tissue as well as in loose and dense connective tissue. In epiphyseal cartilage of growing long bones, matrilin-1 and -3 are present in all cartilage regions, in contrast to matrilin-2, which is expressed in the proliferative and the upper hypertrophic zones. Similarly matrilin-4 was detected all over the epiphyseal cartilage, with the weakest expression in the hypertrophic zone. Although it was shown that matrilin-1 and -3 can form hetero-oligomers and are often co-localized in tissue, clear differences in their spatial distribution could be demonstrated by double-immunolabelling. During joint development matrilin-2 and matrilin-4 are present at the developing joint surface, while in articular cartilage of 6-week-old mice all matrilins are only weakly expressed.
Collapse
Affiliation(s)
- Andreas R Klatt
- Institute for Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | |
Collapse
|
58
|
Mátés L, Korpos E, Déak F, Liu Z, Beier DR, Aszódi A, Kiss I. Comparative analysis of the mouse and human genes (Matn2 and MATN2) for matrilin-2, a filament-forming protein widely distributed in extracellular matrices. Matrix Biol 2002; 21:163-74. [PMID: 11852232 DOI: 10.1016/s0945-053x(01)00194-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously identified matrilin-2 (MATN2), the largest member of the novel family of matrilins. These filament-forming adapter proteins expressed in a distinct, but partially overlapping, pattern in all tissues were implicated in the organization of the extracellular matrix. Matrilin-2 functions in a great variety of tissues. Here, we present the genomic organization of the highly conserved mouse and human MATN2 loci, which cover >100 kb and 167.167 kb genomic regions, respectively, and are composed of 19 exons. RT-PCR analysis revealed that alternative transcripts with identical protein coding regions are transcribed from two promoters in both species. The upstream, housekeeping type promoter is functional in all tissues and cell types tested. The activity of the downstream, TATA-like promoter preceded with putative motifs for the homeobox transcription factor PRRX2 is restricted to embryonic fibroblasts and certain cell lines. The oligomerization module is split by an U12-type AT-AC intron found in conserved position in all four matrilin genes. We assigned Matn2 to mouse chromosome 15, linked to Trhr and Sntb1 in a region synthenic to human chromosome 8q22-24.
Collapse
Affiliation(s)
- Lajos Mátés
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
59
|
Affiliation(s)
- D Segat
- Institute for Biochemistry, Medical Faculty, University of Cologne, Germany
| | | | | |
Collapse
|
60
|
Klatt AR, Nitsche DP, Kobbe B, Macht M, Paulsson M, Wagener R. Molecular structure, processing, and tissue distribution of matrilin-4. J Biol Chem 2001; 276:17267-75. [PMID: 11279097 DOI: 10.1074/jbc.m100587200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrilin-4 is the most recently identified member of the matrilin family of von Willebrand factor A-like domain containing extracellular matrix adapter proteins. Full-length matrilin-4 was expressed in 293-EBNA cells, purified using affinity tags, and subjected to biochemical characterization. The largest oligomeric form of recombinantly expressed full-length matrilin-4 is a trimer as shown by electron microscopy, SDS-polyacrylamide gel electrophoresis, and mass spectrometry. Proteolytically processed matrilin-4 species were also detected. The cleavage occurs in the short linker region between the second von Willebrand factor A-like domain and the coiled-coil domain leading to the release of large fragments and the formation of dimers and monomers of intact subunits still containing a trimeric coiled-coil. In immunoblots of calvaria extracts similar degradation products could be detected, indicating that a related proteolytic processing occurs in vivo. Matrilin-4 was first observed at day 7.5 post-coitum in mouse embryos. Affinity-purified antibodies detect a broad expression in dense and loose connective tissue, bone, cartilage, central and peripheral nervous systems and in association with basement membranes. In the matrix formed by cultured primary embryonic fibroblasts, matrilin-4 is found in a filamentous network connecting individual cells.
Collapse
Affiliation(s)
- A R Klatt
- Institute for Biochemistry and the Center for Molecular Medicine Cologne Service Laboratory, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Muratoglu S, Krysan K, Balázs M, Sheng H, Zákány R, Módis L, Kiss I, Deák F. Primary structure of human matrilin-2, chromosome location of the MATN2 gene and conservation of an AT-AC intron in matrilin genes. CYTOGENETICS AND CELL GENETICS 2001; 90:323-7. [PMID: 11124542 DOI: 10.1159/000056797] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We isolated full-length cDNA clones for human matrilin-2, an oligomeric protein, which forms filamentous networks in the extracellular matrices of various tissues. The human matrilin-2 precursor is encoded by a 4.0-kb mRNA, it consists of 956 amino acids and shows 93% similarity to the mouse protein. Out of the two von Willebrand factor type A-like domains, the 10 epidermal growth factor-type modules, one unique sequence and the oligomerization module, the first A domain is the most conserved. RT-PCR demonstrated wide expression of the gene in human cell lines of fibroblastic or epithelial origin. Alternative splicing affected only 19 amino acids in a 75-moiety-long segment, unique to matrilin-2. Isolation and analysis of the 3' end of the gene revealed that the reason for alternative splicing is alternative 3' splice site selection. Further, we identified in the human matrilin-2 gene a U12 type AT-AC intron between the last two exons encoding the oligomerization domain. We mapped the matrilin-2 gene (MATN2) by fluorescence in situ hybridization at chromosome position 8q22.
Collapse
Affiliation(s)
- S Muratoglu
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Segat D, Frie C, Nitsche PD, Klatt AR, Piecha D, Korpos E, Deák F, Wagener R, Paulsson M, Smyth N. Expression of matrilin-1, -2 and -3 in developing mouse limbs and heart. Matrix Biol 2000; 19:649-55. [PMID: 11102754 DOI: 10.1016/s0945-053x(00)00112-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The expression of matrilin-1, -2 and -3 was studied in the heart and limb during mouse development. Matrilin-1 is transiently expressed in the heart between days 9.5 and 14.5 p.c. Matrilin-2 expression was detected in the heart from day 10.5 p.c. onwards. In the developing limb bud, both matrilin-1 and -3 were observed first at day 12.5 p.c. Throughout development matrilin-3 expression was strictly limited to cartilage, while matrilin-1 was also found in some other forms of connective tissue. Matrilin-2, albeit present around hypertrophic chondrocytes in the growth plate, was mainly expressed in non-skeletal structures. The complementary, but in part overlapping, expression of matrilins indicates the possibility for both redundant and unique functions among the members of this novel family of extracellular matrix proteins.
Collapse
Affiliation(s)
- D Segat
- Institute for Biochemistry, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Narouz-Ott L, Maurer P, Nitsche DP, Smyth N, Paulsson M. Thrombospondin-4 binds specifically to both collagenous and non-collagenous extracellular matrix proteins via its C-terminal domains. J Biol Chem 2000; 275:37110-7. [PMID: 10956668 DOI: 10.1074/jbc.m007223200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length and truncated forms of rat thrombospondin-4 (TSP-4) were expressed recombinantly in a mammalian cell line and purified to homogeneity. Biochemical analysis revealed a limited proteolytic processing, which detaches the N-terminal heparin-binding domain from the rest of the molecule and confirmed the importance of the heptad-repeat domain for pentamerization. In electron microscopy the uncleaved TSP-4 was seen as a large central particle to which five smaller globules are attached by elongated linker regions. Binding of TSP-4 to collagens and to non-collagenous proteins could be detected in enzyme-linked immunosorbent assay-style ligand binding assays, by surface plasmon resonance spectroscopy, and in rotary shadowing electron microscopy. Although the binding of TSP-4 to solid-phase collagens was enhanced by Zn(2+), that to non-collagenous proteins was not. The interactions of TSP-4 with both classes of proteins are mediated by C-terminal domains of the TSP-4 subunits but do not require an oligomeric structure. Major binding sites for TSP-4 are located in or close to the N- and C-terminal telopeptides in collagen I, but additional sites are detected in more central regions of the molecule.
Collapse
Affiliation(s)
- L Narouz-Ott
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne D-50931, Germany
| | | | | | | | | |
Collapse
|
64
|
Zhang Y, Chen Q. Changes of matrilin forms during endochondral ossification. Molecular basis of oligomeric assembly. J Biol Chem 2000; 275:32628-34. [PMID: 10930403 DOI: 10.1074/jbc.m002594200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the molecular properties of matrilin-3, a newly discovered member of the novel extracellular matrix protein family, we cloned a MAT-3 cDNA from developing chicken sterna. Real time quantitative reverse-transcription polymerase chain reaction indicates that MAT-3 mRNA is mainly expressed in the proliferation zone of a growth plate. It is also expressed in the maturation zone, overlapping with that of the mature chondrocyte-abundant matrilin-1 mRNA. This suggests that matrilin-3 may self-assemble in the proliferation zone, in addition to its co-assembly with matrilin-1 during endochondral ossification. Transfection of a MAT-3 cDNA into COS-7 cells shows that MAT-3 predominantly forms a homotetramer but also a trimer and a dimer. Co-transfection of both MAT-3 and MAT-1 cDNAs results in three major matrilins as follows: (MAT-1)(3), (MAT-3)(4), and (MAT-1)(2)(MAT-3)(2). Thus matrilin-3 may assemble into both homotypic and heterotypic oligomers. Our analysis shows that the assembly of MAT-3 does not depend on the number of epidermal growth factor repeats within the molecule, but the presence of Cys(412) and Cys(414) within the coiled-coil domain, which form covalent disulfide linkage responsible for both homo-oligomerization of MAT-3 and hetero-oligomerization of MAT-3 and MAT-1. Our data suggest that the varying synthetic levels of matrilins in different zones of a growth plate may result in a change of matrilin oligomeric forms during endochondral ossification.
Collapse
Affiliation(s)
- Y Zhang
- Musculoskeletal Research Laboratory, Departments of Orthopaedics and Rehabilitation and Cell and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
65
|
Klatt AR, Nitsche DP, Kobbe B, Mörgelin M, Paulsson M, Wagener R. Molecular structure and tissue distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal development. J Biol Chem 2000; 275:3999-4006. [PMID: 10660556 DOI: 10.1074/jbc.275.6.3999] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrilin-3 is a recently identified member of the superfamily of proteins containing von Willebrand factor A-like domains and is able to form hetero-oligomers with matrilin-1 (cartilage matrix protein) via a C-terminal coiled-coil domain. Full-length matrilin-3 and a fragment lacking the assembly domain were expressed in 293-EBNA cells, purified, and subjected to biochemical characterization. Recombinantly expressed full-length matrilin-3 occurs as monomers, dimers, trimers, and tetramers, as detected by electron microscopy and SDS-polyacrylamide gel electrophoresis, whereas matrilin-3, purified from fetal calf cartilage, forms homotetramers as well as hetero-oligomers of variable stoichiometry with matrilin-1. In the matrix formed by cultured chondrosarcoma cells, matrilin-3 is found in a filamentous, collagen-dependent network connecting cells and in a collagen-independent pericellular network. Affinity-purified antibodies detect matrilin-3 expression in a variety of mouse cartilaginous tissues, such as sternum, articular, and epiphyseal cartilage, and in the cartilage anlage of developing bones. It is found both inside the lacunae and in the interterritorial matrix of the resting, proliferating, hypertrophic, and calcified cartilage zones, whereas the expression is lower in the superficial articular cartilage. In trachea and in costal cartilage of adult mice, an expression was seen in the perichondrium. Furthermore, matrilin-3 is found in bone, and its expression is, therefore, not restricted to chondroblasts and chondrocytes.
Collapse
Affiliation(s)
- A R Klatt
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Aszódi A, Bateman JF, Hirsch E, Baranyi M, Hunziker EB, Hauser N, Bösze Z, Fässler R. Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage? Mol Cell Biol 1999; 19:7841-5. [PMID: 10523672 PMCID: PMC84857 DOI: 10.1128/mcb.19.11.7841] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrilin 1, or cartilage matrix protein, is a member of a novel family of extracellular matrix proteins. To date, four members of the family have been identified, but their biological role is unknown. Matrilin 1 and matrilin 3 are expressed in cartilage, while matrilin 2 and matrilin 4 are present in many tissues. Here we describe the generation and analysis of mice carrying a null mutation in the Crtm gene encoding matrilin 1. Anatomical and histological studies demonstrated normal development of homozygous mutant mice. Northern blot and biochemical analyses show no compensatory up-regulation of matrilin 2 or 3 in the cartilage of knockout mice. Although matrilin 1 interacts with the collagen II and aggrecan networks of cartilage, suggesting that it may play a role in cartilage tissue organization, studies of collagen extractability indicated that collagen fibril maturation and covalent cross-linking were unaffected by the absence of matrilin 1. Ultrastructural analysis did not reveal any abnormalities of matrix organization. These data suggest that matrilin 1 is not critically required for cartilage structure and function and that matrilin 1 and matrilin 3 may have functionally redundant roles.
Collapse
Affiliation(s)
- A Aszódi
- Department of Experimental Pathology, Lund University, 221 85 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|