51
|
Varki NM, Strobert E, Dick EJ, Benirschke K, Varki A. Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:365-93. [PMID: 21073341 DOI: 10.1146/annurev-pathol-011110-130315] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although humans are genetically very similar to the evolutionarily related nonhuman hominids (chimpanzees, bonobos, gorillas, and orangutans), comparative studies suggest a surprising number of uniquely human differences in the incidence and/or severity of biomedical conditions. Some differences are due to anatomical changes that occurred during human evolution. However, many cannot be explained either by these changes or by known environmental factors. Because chimpanzees were long considered models for human disease, it is important to be aware of these differences, which appear to have been deemphasized relative to similarities. We focus on the pathophysiology and pathobiology of biomedical conditions that appear unique to humans, including several speculative possibilities that require further study. We pay particular attention to the possible contributions of uniquely human changes in the biology of cell-surface sialic acids and the proteins that recognize them. We also discuss the metabolic incorporation of a diet-derived nonhuman sialic acid, which generates a novel xeno-autoantigen reaction, and chronic inflammation known as xenosialitis.
Collapse
Affiliation(s)
- Nissi M Varki
- Glycobiology Research and Training Center, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | | | | | | | |
Collapse
|
52
|
Kavaler S, Morinaga H, Jih A, Fan W, Hedlund M, Varki A, Kim JJ. Pancreatic beta-cell failure in obese mice with human-like CMP-Neu5Ac hydroxylase deficiency. FASEB J 2011; 25:1887-93. [PMID: 21350118 DOI: 10.1096/fj.10-175281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes is highly prevalent in human populations, particularly in obese individuals, and is characterized by progressive pancreatic β-cell dysfunction and insulin resistance. Most mammals, including Old World primates, express two major kinds of sialic acids, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), typically found at the distal ends of glycoconjugate chains at the cell surface. Humans are uniquely unable to produce endogenous Neu5Gc due to an inactivating mutation in the CMP-Neu5Ac hydroxylase (CMAH) gene. The CMAH enzyme catalyzes the generation of CMP-Neu5Gc by the transfer of a single oxygen atom to the acyl group of CMP-Neu5Ac. Here, we show that mice bearing a human-like deletion of the Cmah gene exhibit fasting hyperglycemia and glucose intolerance following a high-fat diet. This phenotype is caused not by worsened insulin resistance but by compromised pancreatic β-cell function associated with a 65% decrease in islet size and area and 50% decrease in islet number. Obese Cmah-null mice also show an ∼40% reduction in response to insulin secretagogues in vivo. These findings show that human evolution-like changes in sialic acid composition impair pancreatic β-cell function and exacerbate glucose intolerance in mice. This may lend insight into the pathogenesis of type 2 diabetes in obese humans.
Collapse
Affiliation(s)
- Sarah Kavaler
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0673, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Shahrokh Z, Royle L, Saldova R, Bones J, Abrahams JL, Artemenko NV, Flatman S, Davies M, Baycroft A, Sehgal S, Heartlein MW, Harvey DJ, Rudd PM. Erythropoietin Produced in a Human Cell Line (Dynepo) Has Significant Differences in Glycosylation Compared with Erythropoietins Produced in CHO Cell Lines. Mol Pharm 2010; 8:286-96. [DOI: 10.1021/mp100353a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zahra Shahrokh
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Louise Royle
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Radka Saldova
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Jonathan Bones
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Jodie L. Abrahams
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Natalia V. Artemenko
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Steve Flatman
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Mike Davies
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Alison Baycroft
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Surinder Sehgal
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Michael W. Heartlein
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - David J. Harvey
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| | - Pauline M. Rudd
- Shire Human Genetic Therapies, Cambridge, MA, USA, Lonza Biologics, plc, Slough, U.K., NIBRT Dublin Oxford Glycobiology Laboratory, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Glycobiology Institute, Department of Biochemistry, Oxford University, Oxford, U.K
| |
Collapse
|
54
|
Goto K, Fukuda K, Senda A, Saito T, Kimura K, Glander KE, Hinde K, Dittus W, Milligan LA, Power ML, Oftedal OT, Urashima T. Chemical characterization of oligosaccharides in the milk of six species of New and Old World monkeys. Glycoconj J 2010; 27:703-15. [PMID: 21127965 PMCID: PMC3002168 DOI: 10.1007/s10719-010-9315-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/11/2010] [Accepted: 11/11/2010] [Indexed: 11/17/2022]
Abstract
Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6–8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by 1H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3′-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk of rhesus macaque, hamadryas baboon and tufted capuchin, respectively. Further research is needed to determine the extent to which the milk oligosaccharide patterns observed among these taxa represent wider phylogenetic trends among primates and how much variation occurs among individuals or species.
Collapse
Affiliation(s)
- Kohta Goto
- Graduate School of Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Cohen M, Varki A. The sialome--far more than the sum of its parts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:455-64. [PMID: 20726801 DOI: 10.1089/omi.2009.0148] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The glycome is defined as the glycan repertoire of cells, tissues, and organisms, as found under specified conditions. The vastly diverse glycome is generated by a nontemplate driven biosynthesis, which is indirectly encoded in the genome, and very dynamic. Due to this overwhelming diversity, glycomic analysis must be approached at different hierarchical levels of complexity. In this review five such levels of complexity and the experimental approaches used for analysis at each level are discussed for a subclass of the glycome: the sialome. The sialome, in analogy to the canopy of a forest, covers the cell membrane with diverse array of complex sialylated structures. Sialome complexity includes modification of sialic acid core structure (the leaves and flowers), the linkage to the underlying sugar (the stems), the identity, and arrangement of the underlying glycans (the branches), the structural attributes of the underlying glycans (the trees), and finally, the spatial organization of the sialoglycans in relation to components of the intact cell surface (the forest). Understanding the full complexity of the sialome thus requires combined analyses at multiple levels, that is, the sialome is far more than the sum of its parts.
Collapse
Affiliation(s)
- Miriam Cohen
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| | | |
Collapse
|
56
|
SENDA A, HATAKEYAMA E, KOBAYASHI R, FUKUDA K, UEMURA Y, SAITO T, PACKER C, OFTEDAL OT, URASHIMA T. Chemical characterization of milk oligosaccharides of an African lion (Panthera leo) and a clouded leopard (Neofelis nebulosa). Anim Sci J 2010; 81:687-93. [DOI: 10.1111/j.1740-0929.2010.00787.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Markely LRA, Ong BT, Hoi KM, Teo G, Lu MY, Wang DIC. A high-throughput method for quantification of glycoprotein sialylation. Anal Biochem 2010; 407:128-33. [PMID: 20692221 DOI: 10.1016/j.ab.2010.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/23/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Sialic acid can improve qualities of therapeutic glycoproteins such as circulatory half-life, biological activity, and solubility. In production of therapeutic glycoproteins, a high-throughput method is required for process monitoring and optimization to ensure consistent and optimal sialic acid content. Current methods for quantifying sialic acid, however, require chromatographic separation that is time-consuming and cannot rapidly analyze many samples in parallel. Here we present a novel high-throughput method for quantifying glycoprotein sialylation. Using chemical reduction, enzymatic release of sialic acid, and chemical derivatization of the sialic acid, the method can accurately, rapidly (15 min), and specifically analyze many samples in parallel. It requires only 45 μl of sample and has a quantitation limit of 2 μM sialic acid. It has also been validated for monitoring sialylation of recombinant interferon gamma (IFN-γ) produced in Chinese hamster ovary (CHO) cell culture. This method is useful for various applications in upstream and downstream bioprocesses.
Collapse
Affiliation(s)
- Lam Raga A Markely
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
58
|
Du J, Yarema KJ. Carbohydrate engineered cells for regenerative medicine. Adv Drug Deliv Rev 2010; 62:671-82. [PMID: 20117158 PMCID: PMC3032398 DOI: 10.1016/j.addr.2010.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/12/2010] [Accepted: 01/24/2010] [Indexed: 12/16/2022]
Abstract
Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a "sugar code" that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering - a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx - is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins University
| |
Collapse
|
59
|
Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8939-46. [PMID: 20445087 DOI: 10.1073/pnas.0914634107] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Darwinian evolution of humans from our common ancestors with nonhuman primates involved many gene-environment interactions at the population level, and the resulting human-specific genetic changes must contribute to the "Human Condition." Recent data indicate that the biology of sialic acids (which directly involves less than 60 genes) shows more than 10 uniquely human genetic changes in comparison with our closest evolutionary relatives. Known outcomes are tissue-specific changes in abundant cell-surface glycans, changes in specificity and/or expression of multiple proteins that recognize these glycans, and novel pathogen regimes. Specific events include Alu-mediated inactivation of the CMAH gene, resulting in loss of synthesis of the Sia N-glycolylneuraminic acid (Neu5Gc) and increase in expression of the precursor N-acetylneuraminic acid (Neu5Ac); increased expression of alpha2-6-linked Sias (likely because of changed expression of ST6GALI); and multiple changes in SIGLEC genes encoding Sia-recognizing Ig-like lectins (Siglecs). The last includes binding specificity changes (in Siglecs -5, -7, -9, -11, and -12); expression pattern changes (in Siglecs -1, -5, -6, and -11); gene conversion (SIGLEC11); and deletion or pseudogenization (SIGLEC13, SIGLEC14, and SIGLEC16). A nongenetic outcome of the CMAH mutation is human metabolic incorporation of foreign dietary Neu5Gc, in the face of circulating anti-Neu5Gc antibodies, generating a novel "xeno-auto-antigen" situation. Taken together, these data suggest that both the genes associated with Sia biology and the related impacts of the environment comprise a relative "hot spot" of genetic and physiological changes in human evolution, with implications for uniquely human features both in health and disease.
Collapse
|
60
|
Binding to gangliosides containing N-acetylneuraminic acid is sufficient to mediate the immunomodulatory properties of the nontoxic mucosal adjuvant LT-IIb(T13I). CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:969-78. [PMID: 20392887 DOI: 10.1128/cvi.00076-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By use of a mouse mucosal immunization model, LT-IIb(T13I), a nontoxic mutant type II heat-labile enterotoxin, was shown to have potent mucosal and systemic adjuvant properties. In contrast to LT-IIb, which binds strongly to ganglioside receptors decorated with either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc), LT-IIb(T13I) binds NeuAc gangliosides much less well. Rather, LT-IIb(T13I) binds preferentially to NeuGc gangliosides. To determine if the adjuvant properties of LT-IIb(T13I) are altered in the absence of NeuGc ganglioside receptors, experiments were conducted using a Cmah-null mouse line which is deficient in the synthesis of NeuGc gangliosides. Several immunomodulatory properties of LT-IIb(T13I) were shown to be dependent on NeuGc gangliosides. LT-IIb(T13I) had reduced binding activity for NeuGc-deficient B cells and macrophages; binding to NeuGc-deficient T cells and dendritic cells (DC) was essentially undetectable. Treatment of Cmah-null macrophages with LT-IIb(T13I), however, upregulated the transcription of interleukin-4 (IL-4), IL-6, IL-17, and gamma interferon (IFN-gamma), four cytokines important for promoting immune responses. The production of mucosal IgA and serum IgG against an immunizing antigen was augmented in NeuGc-deficient mice administered LT-IIb(T13I) as a mucosal adjuvant. Notably, NeuGc gangliosides are not expressed in humans. Still, treatment of human monocytes with LT-IIb(T13I) induced the secretion of IL-6, an inflammatory cytokine that mediates differential control of leukocyte activation. These results suggested that NeuAc gangliosides are sufficient to mediate the immunomodulatory properties of LT-IIb(T13I) in mice and in human cells. The nontoxic mutant enterotoxin LT-IIb(T13I), therefore, is potentially a new and safe human mucosal adjuvant.
Collapse
|
61
|
Balogh A, Adori M, Török K, Matko J, László G. A closer look into the GL7 antigen: its spatio-temporally selective differential expression and localization in lymphoid cells and organs in human. Immunol Lett 2010; 130:89-96. [PMID: 20005896 DOI: 10.1016/j.imlet.2009.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 11/26/2009] [Accepted: 12/02/2009] [Indexed: 01/18/2023]
Abstract
The GL7 epitope was originally described as part of a late lymphocyte activation antigen expressed in mouse and widely used since then as a marker of germinal center. Here we report on its differential expression by rat and human immune cells and lymphoid organs. Expression pattern of the GL7 epitope in rats is similar to that described earlier in mice, namely that GL7 antigen appears only on lymphocytes after 48h activation. In humans lymphocytes, but not the differentiated cells of myeloid origin, express this epitope. The GL7 epitope is up-regulated upon in vitro activation of primary T cells, while a slightly decreased expression is found on B lymphocytes. Fluorescent immunohistochemistry shows discrete location of GL7(hi) cells in human tonsil. GL7 antibody intensely stains CD19(+), IgD(+), IgM(low) B lymphocytes found at the margin of B cell follicles. The GL7 epitope is constitutively and highly raft-associated in human lymphoid cells. Strong neuraminidase- and partial papain-sensitivity of the GL7 epitope on human lymphocytes indicates a sialic acid-containing epitope linked either to one (or more) membrane protein(s) or to lipids. The lymphocyte-restricted GL7 epitope expression and the activation-dependent bi-directional change in the amount of the epitope suggest a functional role for GL7 epitope linked to carbohydrate-based immunoregulation.
Collapse
Affiliation(s)
- Andrea Balogh
- Immunology Research Group of Hungarian Academy of Sciences at Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
62
|
Abstract
Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
63
|
Abstract
ABH(O) blood group polymorphisms are based on well-known intraspecies variations in structures of neutral blood cell surface glycans in humans and other primates. Whereas natural antibodies against these glycans can act as barriers to blood transfusion and transplantation, the normal functions of this long-standing evolutionary polymorphism remain largely unknown. Although microbial interactions have been suggested as a selective force, direct binding of lethal pathogens to ABH antigens has not been reported. We show in this study that ABH antigens found on human erythrocytes modulate the specific interactions of 3 sialic acid-recognizing proteins (human Siglec-2, 1918SC influenza hemagglutinin, and Sambucus nigra agglutinin) with sialylated glycans on the same cell surface. Using specific glycosidases that convert A and B glycans to the underlying H(O) structure, we show ABH antigens stabilize sialylated glycan clusters on erythrocyte membranes uniquely for each blood type, generating differential interactions of the 3 sialic acid-binding proteins with erythrocytes from each blood type. We further show that by stabilizing such structures ABH antigens can also modulate sialic acid-mediated interaction of pathogens such as Plasmodium falciparum malarial parasite. Thus, ABH antigens can noncovalently alter the presentation of other cell surface glycans to cognate-binding proteins, without themselves being a direct ligand.
Collapse
|
64
|
Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VDP, Yarema KJ. Metabolic glycoengineering: sialic acid and beyond. Glycobiology 2009; 19:1382-401. [PMID: 19675091 DOI: 10.1093/glycob/cwp115] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This report provides a perspective on metabolic glycoengineering methodology developed over the past two decades that allows natural sialic acids to be replaced with chemical variants in living cells and animals. Examples are given demonstrating how this technology provides the glycoscientist with chemical tools that are beginning to reproduce Mother Nature's control over complex biological systems - such as the human brain - through subtle modifications in sialic acid chemistry. Several metabolic substrates (e.g., ManNAc, Neu5Ac, and CMP-Neu5Ac analogs) can be used to feed flux into the sialic acid biosynthetic pathway resulting in numerous - and sometime quite unexpected - biological repercussions upon nonnatural sialoside display in cellular glycans. Once on the cell surface, ketone-, azide-, thiol-, or alkyne-modified glycans can be transformed with numerous ligands via bioorthogonal chemoselective ligation reactions, greatly increasing the versatility and potential application of this technology. Recently, sialic acid glycoengineering methodology has been extended to other pathways with analog incorporation now possible in surface-displayed GalNAc and fucose residues as well as nucleocytoplasmic O-GlcNAc-modified proteins. Finally, recent efforts to increase the "druggability" of sugar analogs used in metabolic glycoengineering, which have resulted in unanticipated "scaffold-dependent" activities, are summarized.
Collapse
Affiliation(s)
- Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
65
|
Urashima T, Odaka G, Asakuma S, Uemura Y, Goto K, Senda A, Saito T, Fukuda K, Messer M, Oftedal OT. Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan, and siamang milk or colostrum. Glycobiology 2009; 19:499-508. [PMID: 19164487 DOI: 10.1093/glycob/cwp006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neutral and acidic oligosaccharides were isolated from the milk or colostrum of four great ape species (chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus)) and one lesser ape species (siamang (Symphalangus syndactylus)), and their chemical structures were characterized by (1)H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(beta1-4)GlcNAc) were found exclusively (gorilla and siamang) or predominately (chimpanzee, bonobo, and orangutan) over those containing the type I unit (Gal(beta1-3)GlcNAc). In comparison, type I oligosaccharides predominate over type II oligosaccharides in human milk, whereas nonprimate milk almost always contains only type II oligosaccharides. The milk or colostrum of the great apes contained oligosaccharides bearing both N-glycolylneuraminic acid and N-acetylneuraminic acid, whereas human milk contains only the latter. Great ape milk, like that of humans, contained fucosylated oligosaccharides whereas siamang milk did not. Since these analyses are based on a limited number of individuals, further research on additional samples of great and lesser ape milk is needed to confirm phylogenetic patterns.
Collapse
Affiliation(s)
- Tadasu Urashima
- Graduate School of Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Cariappa A, Takematsu H, Liu H, Diaz S, Haider K, Boboila C, Kalloo G, Connole M, Shi HN, Varki N, Varki A, Pillai S. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. ACTA ACUST UNITED AC 2008; 206:125-38. [PMID: 19103880 PMCID: PMC2626685 DOI: 10.1084/jem.20081399] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of α2–6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage.
Collapse
Affiliation(s)
- Annaiah Cariappa
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J 2008; 26:231-45. [PMID: 18777136 PMCID: PMC7087641 DOI: 10.1007/s10719-008-9183-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 08/09/2008] [Accepted: 08/18/2008] [Indexed: 12/13/2022]
Abstract
Humans are genetically very similar to “great apes”, (chimpanzees, bonobos, gorillas and orangutans), our closest evolutionary relatives. We have discovered multiple genetic and biochemical differences between humans and these other hominids, in relation to sialic acids and in Siglecs (Sia-recognizing Ig superfamily lectins). An inactivating mutation in the CMAH gene eliminated human expression of N-glycolylneuraminic acid (Neu5Gc) a major sialic acid in “great apes”. Additional human-specific changes have been found, affecting at least 10 of the <60 genes known to be involved in the biology of sialic acids. There are potential implications for unique features of humans, as well as for human susceptibility or resistance to disease. Additionally, metabolic incorporation of Neu5Gc from animal-derived materials occurs into biotherapeutic molecules and cellular preparations - and into human tissues from dietary sources, particularly red meat and milk products. As humans also have varying and sometime high levels of circulating anti-Neu5Gc antibodies, there are implications for biotechnology products, and for some human diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ajit Varki
- Center for Academic Research and Training in Anthropogeny, Department of Medicine, University of California, San Diego, 9500 Gilman Dr MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
68
|
Llop E, Gutiérrez-Gallego R, Segura J, Mallorquí J, Pascual JA. Structural analysis of the glycosylation of gene-activated erythropoietin (epoetin delta, Dynepo). Anal Biochem 2008; 383:243-54. [PMID: 18804089 DOI: 10.1016/j.ab.2008.08.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/18/2008] [Accepted: 08/26/2008] [Indexed: 12/13/2022]
Abstract
Recently, a novel recombinant human erythropoietin (epoetin delta, Dynepo) has been marketed in the European Union for the treatment of chronic kidney disease, cancer patients receiving chemotherapy, and so forth. Epoetin delta is engineered in cultures of the human fibrosarcoma cell line HT-1080 by homologous recombination and "gene activation." Unlike recombinant erythropoietins produced in other mammalian cells, epoetin delta is supposed to have a human-type glycosylation profile. However, the isoelectric focusing profile of epoetin delta differs from that of endogenous erythropoietin (both urinary and plasmatic). In this work, structural and quantitative analysis of the O- and N-glycans of epoetin delta was performed and compared with glycosylation from recombinant erythropoietin produced in Chinese hamster ovary (CHO) cells. From the comparison, significant differences in the sialylation of O-glycans were found. Furthermore, the N-glycan analysis indicated a lower heterogeneity from epoetin delta when compared with its CHO homologue, being predominantly tetraantennary without N-acetyllactosamine repeats in the former. The sialic acid characterization revealed the absence of N-glycolylneuraminic acid. The overall sugar profiles of both glycoproteins appeared to be significantly different and could be useful for maintaining pharmaceutical quality control, detecting the misuse of erythropoietin in sports, and establishing new avenues to link glycosylation with biological activity of glycoproteins.
Collapse
Affiliation(s)
- Esther Llop
- Bioanalysis Research Group, Neuropsycho-pharmacology Program, IMIM-Hospital del Mar, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
69
|
Lin SY, Chen YY, Fan YY, Lin CW, Chen ST, Wang AHJ, Khoo KH. Precise Mapping of Increased Sialylation Pattern and the Expression of Acute Phase Proteins Accompanying Murine Tumor Progression in BALB/c Mouse by Integrated Sera Proteomics and Glycomics. J Proteome Res 2008; 7:3293-303. [DOI: 10.1021/pr800093b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shu-Yu Lin
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yi-Yun Chen
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yao-Yun Fan
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chia-Wei Lin
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Shui-Tsung Chen
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Andrew H.-J. Wang
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- NRPGM Core Facilities for Proteomic Research, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
70
|
O'Reilly MK, Collins BE, Han S, Liao L, Rillahan C, Kitov PI, Bundle DR, Paulson JC. Bifunctional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells. J Am Chem Soc 2008; 130:7736-45. [PMID: 18505252 DOI: 10.1021/ja802008q] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CD22 is a B cell-specific sialic acid-binding immunoglobulin-like lectin (Siglec) whose function as a regulator of B cell signaling is modulated by its interaction with glycan ligands bearing the sequence NeuAc alpha2-6Gal. To date, only highly multivalent polymeric ligands (n = 450) have achieved sufficient avidity to bind to CD22 on native B cells. Here we demonstrate that a synthetic bifunctional molecule comprising a ligand of CD22 linked to an antigen (nitrophenol; NP) can use a monoclonal anti-NP IgM as a decavalent protein scaffold to efficiently drive assembly of IgM-CD22 complexes on the surface of native B cells. Surprisingly, anti-NP antibodies of lower valency, IgA (n = 4) and IgG (n = 2), were also found to drive complex formation, though with lower avidity. Ligands bearing alternate linkers of variable length and structure were constructed to establish the importance of a minimal length requirement, and versatility in the structural requirement. We show that the ligand drives assembly of IgM complexes exclusively on the surface of B cells and not other classes of white blood cells that do not express CD22, which lends itself to the possibility of targeting B cells in certain hematopoietic malignancies.
Collapse
Affiliation(s)
- Mary K O'Reilly
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Varki A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008. [PMID: 11786991 PMCID: PMC7159735 DOI: 10.1002/ajpa.10018] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The surface of all mammalian cells is covered with a dense and complex array of sugar chains, which are frequently terminated by members of a family of molecules called sialic acids. One particular sialic acid called N‐glycolylneuraminic acid (Neu5Gc) is widely expressed on most mammalian tissues, but is not easily detectable on human cells. In fact, it provokes an immune response in adult humans. The human deficiency of Neu5Gc is explained by an inactivating mutation in the gene encoding CMP‐N‐acetylneuraminic acid hydroxylase, the rate‐limiting enzyme in generating Neu5Gc in cells of other mammals. This deficiency also results in an excess of the precursor sialic acid N‐acetylneuraminic acid (Neu5Ac) in humans. This mutation appears universal to modern humans, occurred sometime after our last common ancestor with the great apes, and happens to be one of the first known human‐great ape genetic differences with an obvious biochemical readout. While the original selection mechanisms and major biological consequences of this human‐specific mutation remain uncertain, several interesting clues are currently being pursued. First, there is evidence that the human condition can explain differences in susceptibility or resistance to certain microbial pathogens. Second, the functions of some endogenous receptors for sialic acids in the immune system may be altered by this difference. Third, despite the lack of any obvious alternate pathway for synthesis, Neu5Gc has been reported in human tumors and possibly in human fetal tissues, and traces have even been detected in normal human tissues. One possible explanation is that this represents accumulation of Neu5Gc from dietary sources of animal origin. Finally, a markedly reduced expression of hydroxylase in the brains of other mammals raises the possibility that the human‐specific mutation of this enzyme could have played a role in human brain evolution. Yrbk Phys Anthropol 44:54–69, 2001. © 2001 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- A Varki
- Glycobiology Research and Training Center and Department of Medicine and University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
73
|
Abstract
The genome consists of the entire DNA present in the nucleus of the fertilized embryo, which is then duplicated in every cell in the body. A draft sequence of the chimpanzee genome is now available, providing opportunities to better understand genetic contributions to human evolution, development, and disease. Sequence differences from the human genome were confirmed to be ∼1% in areas that can be precisely aligned, representing ∼35 million single base-pair differences. Some 45 million nucleotides of insertions and deletions unique to each lineage were also discovered, making the actual difference between the two genomes ∼4%. We discuss the opportunities and challenges that arise from this information and the need for comparison with additional species, as well as population genetic studies. Finally, we present a few examples of interesting findings resulting from genome-wide analyses, candidate gene studies, and combined approaches, emphasizing the pros and cons of each approach.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093-0687
| | - David L. Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
74
|
Abstract
All cells in nature are covered by a dense and complex array of carbohydrates. Given their prominence on cell surfaces, it is not surprising that these glycans mediate and/or modulate many cellular interactions. Proteins that bind sialic acid, a sugar that is found on the surface of the cell and on secreted proteins in vertebrates, are involved in a broad range of biological processes, including intercellular adhesion, signalling and microbial attachment. Studying the roles of such proteins in vertebrates has improved our understanding of normal physiology, disease and human evolution.
Collapse
Affiliation(s)
- Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California 92093-0687, USA.
| |
Collapse
|
75
|
Bishop JR, Gagneux P. Evolution of carbohydrate antigens--microbial forces shaping host glycomes? Glycobiology 2007; 17:23R-34R. [PMID: 17237137 DOI: 10.1093/glycob/cwm005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many glycans show remarkably discontinuous distribution across evolutionary lineages. These differences play major roles when organisms belonging to different lineages interact as host-pathogen or host-symbiont. Certain lineage-specific glycans have become important signals for multicellular host organisms, which use them as molecular signatures of their pathogens and symbionts through recognition by a toolkit of innate defense molecules. In turn, pathogens have evolved to exploit host lineage-specific glycans and are constantly shaping the glycomes of their hosts. These interactions take place in the face of numerous critical endogenous functions played by glycans within host organisms. Whether due to simple evolutionary divergence or adaptive changes under natural selection resulting from endogenous functional requirements, once different lineages elaborate on differential glycomes these mutual differences provide opportunities for host exploitation and/or pathogen defense between lineages. Such phylogenetic molecular recognition mechanisms will augment and likely contribute to the maintenance of lineage-specific differences in glycan repertoires.
Collapse
Affiliation(s)
- Joseph R Bishop
- Glycobiology Research and Training Center, Cellular and Molecular Medicine-East, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA
| | | |
Collapse
|
76
|
Campbell CT, Sampathkumar SG, Yarema KJ. Metabolic oligosaccharide engineering: perspectives, applications, and future directions. MOLECULAR BIOSYSTEMS 2007; 3:187-94. [PMID: 17308665 DOI: 10.1039/b614939c] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many adhesion and signaling molecules critical for development, as well as surface markers implicated in diseases ranging from cancer to influenza, contain oligosaccharides that modify their functions. Inside a cell, complex glycosylation pathways assemble these oligosaccharides and attach them to proteins and lipids as they traffic to the cell surface. Until recently, practical technologies to manipulate glycosylation have lagged unlike the molecular biologic and genetic methods available to intervene in nucleic acid and protein biochemistry; now, metabolic oligosaccharide engineering shows promise for manipulating glycosylation. In this methodology, exogenously-supplied non-natural sugars intercept biosynthetic pathways and exploit the remarkable ability of many of the enzymes involved in glycosylation to process metabolites with slightly altered chemical structures. To date, non-natural forms of sialic acid, GalNAc, GlcNAc, and fucose have been incorporated into glycoconjugates that appear on the cell surface; in addition O-GlcNAc protein modification involved in intracellular signaling has been tagged with modified forms of this sugar. Reactive functional groups, including ketones, azides, and thiols, have been incorporated into glycoconjugates and thereby provide chemical 'tags' that can be used for diverse purposes ranging from drug delivery to new modes of carbohydrate-based cell adhesion that can be used to control stem cell destiny. Finally, strategies for further engineering non-natural sugars to improve their pharmacological properties and provide complementary biological activities, such as addition of short chain fatty acids, are discussed in this article.
Collapse
Affiliation(s)
- Christopher T Campbell
- Department of Biomedical Engineering, The Johns Hopkins University, Clark Hall 106A, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
77
|
Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 2006; 20:1964-73. [PMID: 17012248 DOI: 10.1096/fj.06-5800com] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune receptors that show high mutual sequence similarity and have antagonizing signaling properties are called paired receptors, and are believed to fine-tune immune responses. Siglecs are sialic acid-recognizing receptors of the immunoglobulin (Ig) superfamily expressed on immune cells. Human Siglec-5, encoded by SIGLEC5 gene, has four extracellular Ig-like domains and a cytosolic inhibitory motif. We discovered human Siglec-14 with three Ig-like domains, encoded by the SIGLEC14 gene, adjacent to SIGLEC5. Human Siglec-14 has almost complete sequence identity with human Siglec-5 at the first two Ig-like domains, shows a glycan binding preference similar to that of human Siglec-5, and associates with the activating adapter protein DAP12. Thus, Siglec-14 and Siglec-5 appear to be the first glycan binding paired receptors. Near-complete sequence identity of the amino-terminal part of human Siglec-14 and Siglec-5 indicates partial gene conversion between SIGLEC14 and SIGLEC5. Remarkably, SIGLEC14 and SIGLEC5 in other primates also show evidence of gene conversions within each lineage. Evidently, balancing the interactions between Siglec-14, Siglec-5 and their common ligand(s) had selective advantage during the course of evolution. The "essential arginine" critical for sialic acid recognition in both Siglec-14 and Siglec-5 is present in humans but mutated in almost all great ape alleles.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Arginine/genetics
- Evolution, Molecular
- Gene Conversion
- Humans
- Lectins/genetics
- Lectins/metabolism
- Membrane Proteins
- Polysaccharides/metabolism
- Primates
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- Takashi Angata
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | | | |
Collapse
|
78
|
Collins BE, Blixt O, Han S, Duong B, Li H, Nathan JK, Bovin N, Paulson JC. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2994-3003. [PMID: 16920935 DOI: 10.4049/jimmunol.177.5.2994] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CD22 (Siglec-2) is a key regulator of B cell signaling whose function is modulated by interaction with extracellular glycan ligands mediated through its N-terminal Ig domain. Its preferred ligand is the sequence Sia alpha2-6Gal that is abundantly expressed on N-linked glycans of B cell glycoproteins, and by binding to CD22 in cis causes CD22 to appear "masked" from binding to synthetic sialoside probes. Yet, despite the presence of cis ligands, CD22 redistributes to sites of cell contact by binding to trans ligands on neighboring cells. In this study, we demonstrate the dynamic equilibrium that exists between CD22 and its cis and trans ligands, using a high-affinity multivalent sialoside probe that competes with cis ligands and binds to CD22 on native human and murine B cells. Consistent with the constitutive endocytosis reported for CD22, the probes are internalized once bound, demonstrating that CD22 is an endocytic receptor that can carry ligand-decorated "cargo" to intracellular compartments. Conjugation of the sialoside probes to the toxin saporin resulted in toxin uptake and toxin-mediated killing of B lymphoma cell lines, suggesting an alternative approach for targeting CD22 for treatment of B cell lymphomas.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92024, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Sialic acids are a family of acidic sugars with a 9-carbon backbone, prominently expressed in animals of deuterostome lineage. Siglecs are the largest family of vertebrate endogenous receptors that recognize glycoconjugates containing sialic acids. Although a few Siglecs are well-conserved throughout vertebrate evolution and show similar binding preference regardless of the species of origin, most others, particularly the CD33-related subfamily of Siglecs, show marked inter-species differences in repertoire, sequence, and binding preference. The diversification of CD33-related Siglecs may be driven by direct competition against pathogens, and/or by necessity to catch up with the changing landscape of endogenous glycans, which may in turn be changing to escape exploitation by other pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
80
|
Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A. Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci U S A 2006; 103:7765-70. [PMID: 16682635 PMCID: PMC1472519 DOI: 10.1073/pnas.0510484103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report here that human T cells give much stronger proliferative responses to specific activation via the T cell receptor (TCR) than those from chimpanzees, our closest evolutionary relatives. Nonspecific activation using phytohemagglutinin was robust in chimpanzee T cells, indicating that the much lower response to TCR simulation is not due to any intrinsic inability to respond to an activating stimulus. CD33-related Siglecs are inhibitory signaling molecules expressed on most immune cells and are thought to down-regulate cellular activation pathways via cytosolic immunoreceptor tyrosine-based inhibitory motifs. Among human immune cells, T lymphocytes are a striking exception, expressing little to none of these molecules. In stark contrast, we find that T lymphocytes from chimpanzees as well as the other closely related "great apes" (bonobos, gorillas, and orangutans) express several CD33-related Siglecs on their surfaces. Thus, human-specific loss of T cell Siglec expression occurred after our last common ancestor with great apes, potentially resulting in an evolutionary difference with regard to inhibitory signaling. We confirmed this by studying Siglec-5, which is prominently expressed on chimpanzee lymphocytes, including CD4 T cells. Ab-mediated clearance of Siglec-5 from chimpanzee T cells enhanced TCR-mediated activation. Conversely, primary human T cells and Jurkat cells transfected with Siglec-5 become less responsive; i.e., they behave more like chimpanzee T cells. This human-specific loss of T cell Siglec expression associated with T cell hyperactivity may help explain the strikingly disparate prevalence and severity of T cell-mediated diseases such as AIDS and chronic active hepatitis between humans and chimpanzees.
Collapse
Affiliation(s)
- Dzung H. Nguyen
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
| | - Nancy Hurtado-Ziola
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093
| | - Pascal Gagneux
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
| | - Ajit Varki
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Oetke C, Vinson MC, Jones C, Crocker PR. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 2006; 26:1549-57. [PMID: 16449664 PMCID: PMC1367192 DOI: 10.1128/mcb.26.4.1549-1557.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialoadhesin (Sn, also called Siglec-1 or CD169) is a transmembrane receptor and the prototypic member of the Siglec family of sialic acid binding immunoglobulin-like lectins. It is expressed on specialized subsets of resident macrophages in hematopoietic and lymphoid tissues and on inflammatory macrophages. In order to investigate its function, we generated Sn-deficient mice and confirmed that these mice are true nulls by fluorescence-activated cell sorter analysis and immunohistochemistry. Mice deficient in Sn were viable and fertile and showed no developmental abnormalities. Analysis of cell populations revealed no differences in bone marrow, peritoneal cavity, and thymus, but there was a small increase in CD8 T cells and a decrease in B220-positive cells in spleens and lymph nodes of Sn-deficient mice. Furthermore, in spleen there was a slight decrease in follicular B cells with an increase in numbers of marginal zone B cells. B- and T-cell maturation as well as responses to stimulation with thioglycolate were only slightly affected by Sn deficiency. Immunoglobulin titers in Sn-deficient mice were significantly decreased for immunoglobulin M (IgM) but similar for IgG subclasses. These results suggest a role for sialoadhesin in regulating cells of the immune system rather than in influencing steady-state hematopoiesis.
Collapse
Affiliation(s)
- Cornelia Oetke
- The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
82
|
Schauer R. Sialic acids: fascinating sugars in higher animals and man. ZOOLOGY 2006; 107:49-64. [PMID: 16351927 DOI: 10.1016/j.zool.2003.10.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 10/13/2003] [Indexed: 01/29/2023]
Abstract
Sialic acids are acidic monosaccharides, which are among the most important molecules of higher animals, and occur in some microorganisms. They are bound to complex carbohydrates and occupy prominent positions, especially in cell membranes. Their structural diversity is high and, correspondingly, the mechanisms for their biosynthesis are complex. Sialic acid substituents strongly influence the activity of catabolic enzymes, in particular the sialidases, and thus the turnover rate of glycoconjugates. These sugars are involved in manifold cell functions. Due to the surface location of the acidic molecules they shield macromolecules and cells from enzymatic and immunological attacks. But they also represent recognition sites for various physiological receptors as well as for toxins and microorganisms, and thus allow their colonization. Many viruses use sialic acids for the infection of cells. As sialic acids also play a decisive role in tumor biology they prove to be rather versatile molecules that modulate cell biological events in a sensitive way. It is discussed that their evolvement may have stimulated evolution and rendered organisms less vulnerable to environmental attacks. However, disturbance of their metabolism may cause diseases.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemical Institute, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
83
|
Mansour MH, Abdul-Salam F, Al-Shemary T. Distinct binding patterns of fucose-specific lectins from Biomphalaria alexandrina and Lotus tetragonolobus to murine lymphocyte subsets. Immunobiology 2005; 210:335-48. [PMID: 16164040 DOI: 10.1016/j.imbio.2005.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The putative expression of distinct terminally fucosylated glycoconjugates among murine lymphocyte subpopulations was sought using a Biomphalaria alexandrina-derived lectin (BaSI), of proven specificity to a fucosyllactose determinant, and the fucose-binding lectin from Lotus tetragonolobus seeds. Direct labeling of isolated lymphocyte subsets in suspension as well as immuno-histochemical and two-dimensional Western blotting assays demonstrated the exclusive expression of the BaSI-reactive ligand among multiple isoforms of two major 95 and 92 kDa and a minor 82 kDa acidic glycoproteins, selectively localized to the splenic marginal zone B lymphocytes of adult mice. The expression of the L. tetragonolobus lectin-reactive ligand was, on the other hand, restricted primarily to a single homogeneous 50 kDa acidic glycoprotein associated with a subset of the mature (PNA-) medullary thymocytes of adult mice as well as a minority of the immature (PNA +) thymocytes within the deep cortical region in newly born mice. The significance of these findings is discussed in relation to mechanisms that govern lymphocyte development and homing.
Collapse
Affiliation(s)
- Mohamed H Mansour
- Department of Biological Sciences, Faculty of Science, Kuwait University, PO Box 5969, Safat 13060, Kuwait.
| | | | | |
Collapse
|
84
|
Yarovaya N, Schot R, Fodero L, McMahon M, Mahoney A, Williams R, Verbeek E, de Bondt A, Hampson M, van der Spek P, Stubbs A, Masters CL, Verheijen FW, Mancini GMS, Venter DJ. Sialin, an anion transporter defective in sialic acid storage diseases, shows highly variable expression in adult mouse brain, and is developmentally regulated. Neurobiol Dis 2005; 19:351-65. [PMID: 16023578 DOI: 10.1016/j.nbd.2004.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/15/2004] [Accepted: 12/22/2004] [Indexed: 01/27/2023] Open
Abstract
Sialin is a lysosomal membrane protein encoded by the SLC17A5 gene, which is mutated in patients with sialic acid storage diseases (SASD). To further understand the role of sialin in normal CNS development and in the progressive neuronal atrophy and dysmyelination seen in SASD, we investigated its normal cellular distribution in adult and developing mice. Overall, sialin showed granular immunoreactivity, consistent with a vesicular protein. Adult mice showed widespread sialin expression, including in the brain, heart, lung, and liver. High-level immunoreactivity was seen in the neuropil of the hippocampus, striatum, and cerebral cortex, as well as in the perikarya of cerebellar Purkinje cells, globus pallidus, and certain thalamic and brainstem nuclei. In mouse embryos, the highest levels of expression were observed in the nervous system. We discuss the possible role of sialin in normal development and in SASD pathogenesis, as a framework for further investigation of its function in these contexts.
Collapse
Affiliation(s)
- Natalia Yarovaya
- Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
86
|
Collins BE, Blixt O, DeSieno AR, Bovin N, Marth JD, Paulson JC. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc Natl Acad Sci U S A 2004; 101:6104-9. [PMID: 15079087 PMCID: PMC395930 DOI: 10.1073/pnas.0400851101] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD22, a negative regulator of B cell signaling, is a member of the siglec family that binds to alpha2-6-linked sialic acids on glycoproteins. Previous reports demonstrated that binding of multivalent sialoside probes to CD22 is blocked, or "masked," by endogenous (cis) ligands, unless they are first destroyed by sialidase treatment. These results suggest that cis ligands on B cells make CD22 functionally unavailable for binding to ligands in trans. Through immunofluorescence microscopy, however, we observed that CD22 on resting B cells redistributes to the site of contact with other B or T lymphocytes. Redistribution is mediated by interaction with trans ligands on the opposing cell because it does not occur with ligand-deficient lymphocytes from ST6GalI-null mice. Surprisingly, CD45, proposed as both a cis and trans ligand of CD22, was not required for redistribution to sites of cell contact, given that redistribution of CD22 was independent of CD45 and was observed with lymphocytes from CD45-deficient mice. Furthermore, CD45 is not required for CD22 masking as similar levels of masking were observed in the WT and null mice. Comparison of the widely used sialoside-polyacrylamide probe with a sialoside-streptavidin probe revealed that the latter bound a subset of B cells without sialidase treatment, suggesting that cis ligands differentially impacted the binding of these two probes in trans. The combined results suggest that equilibrium binding to cis ligands does not preclude binding of CD22 to ligands in trans, and allows for its redistribution to sites of contact between lymphocytes.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
87
|
Finch CE, Stanford CB. Meat‐Adaptive Genes and the Evolution of Slower Aging in Humans. QUARTERLY REVIEW OF BIOLOGY 2004; 79:3-50. [PMID: 15101252 DOI: 10.1086/381662] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chimpanzee life span is shorter than that of humans, which is consistent with a faster schedule of aging. We consider aspects of diet that may have selected for genes that allowed the evolution of longer human life spans with slower aging. Diet has changed remarkably during human evolution. All direct human ancestors are believed to have been largely herbivorous. Chimpanzees eat more meat than other great apes, but in captivity are sensitive to hypercholesterolemia and vascular disease. We argue that this dietary shift to increased regular consumption of fatty animal tissues in the course of hominid evolution was mediated by selection for "meat-adaptive" genes. This selection conferred resistance to disease risks associated with meat eating also increased life expectancy. One candidate gene is apolipoprotein E (apoE), with the E3 allele evolved in the genus Homo that reduces the risks for Alzheimer's and vascular disease, as well as influencing inflammation, infection, and neuronal growth. Other evolved genes mediate lipid metabolism and host defense. The timing of the evolution of apoE and other candidates for meat-adaptive genes is discussed in relation to key events in human evolution.
Collapse
Affiliation(s)
- Caleb E Finch
- Andrus Gerontology Center, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.
| | | |
Collapse
|
88
|
Chefalo P, Pan Y, Nagy N, Harding C, Guo Z. Preparation and immunological studies of protein conjugates of N -acylneuraminic acids. Glycoconj J 2004; 20:407-14. [PMID: 15238705 PMCID: PMC3178808 DOI: 10.1023/b:glyc.0000033997.01760.b9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The overexpression of N -acetylneuraminic acid (Neu5Ac) is closely correlated with malignant transformations. Thus, Neu5Ac is an important target in the design of cancer vaccines. To study the influence of chemical modifications of Neu5Ac on its immunological properties, the alpha-allyl glycosides of five differently N -acylated neuraminic acid derivatives were prepared. Following selective ozonolysis of their allyl group to form an aldehyde functionality, they were coupled to keyhole limpet hemocyanin (KLH) via reductive amination. Resultant glycoconjugates were studied in C57BL/6 mice. The N -propionyl, N - iso- butanoyl and N -phenylacetyl derivatives of neuraminic acid provoked robust immune responses of various antibody isotypes, including IgM, IgG1, IgG2a and IgG3, whereas N -trifluoropropionylneuraminic acid and natural Neu5Ac were essentially nonimmunogenic. Moreover, the N -phenylacetyl and N - iso- butanoyl derivatives mainly induced IgG responses that are desirable for antitumor applications. These results raise the promise of formulating effective glycoconjugate cancer vaccines via derivatizing sialic acid residues of sialooligosaccharides.
Collapse
Affiliation(s)
- Peter Chefalo
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Yanbin Pan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Nancy Nagy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Clifford Harding
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Zhongwu Guo
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
89
|
Gagneux P, Cheriyan M, Hurtado-Ziola N, van der Linden ECMB, Anderson D, McClure H, Varki A, Varki NM. Human-specific regulation of alpha 2-6-linked sialic acids. J Biol Chem 2003; 278:48245-50. [PMID: 14500706 DOI: 10.1074/jbc.m309813200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many microbial pathogens and toxins recognize animal cells via cell surface sialic acids (Sias) that are alpha 2-3- or alpha 2-8-linked to the underlying glycan chain. Human influenza A/B viruses are unusual in preferring alpha 2-6-linked Sias, undergoing a switch from alpha 2-3 linkage preference during adaptation from animals to humans. This correlates with the expression of alpha 2-6-linked Sias on ciliated human airway epithelial target cells and of alpha 2-3-linked Sias on secreted soluble airway mucins, which are unable to inhibit virus binding. Given several known differences in Sia biology between humans and apes, we asked whether this pattern of airway epithelial Sia linkages is also human-specific. Indeed, we show that since the last common ancestor with apes, humans underwent a concerted bidirectional switch in alpha 2-6-linked Sia expression between airway epithelial cell surfaces and secreted mucins. This can explain why the chimpanzee appears relatively resistant to experimental infection with human Influenza viruses. Other tissues showed additional examples of human-specific increases or decreases in alpha 2-6-linked Sia expression and only one example of a change specific to certain great apes. Furthermore, while human and great ape leukocytes both express alpha 2-6-linked Sias, only human erythrocytes have markedly up-regulated expression. These cell type-specific changes in alpha 2-6-Sia expression during human evolution represent another example of a human-specific change in Sia biology. Because the data set involves multiple great apes, we can also conclude that Sia linkage expression patterns can be conserved during millions of years of evolution within some vertebrate taxa while undergoing sudden major changes in other closely related ones.
Collapse
Affiliation(s)
- Pascal Gagneux
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 2003; 278:31007-19. [PMID: 12773526 DOI: 10.1074/jbc.m304331200] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ten of the 11 known human siglecs or their murine orthologs have been evaluated for their specificity for over 25 synthetic sialosides representing most of the major sequences terminating carbohydrate groups of glycoproteins and glycolipids. Analysis has been performed using a novel multivalent platform comprising biotinylated sialosides bound to a streptavidin-alkaline phosphatase conjugate. Each siglec was found to have a unique specificity for binding 16 different sialoside-streptavidin-alkaline phosphatase probes. The relative affinities of monovalent sialosides were assessed for each siglec in competitive inhibition studies. The quantitative data obtained allows a detailed analysis of each siglec for the relative importance of sialic acid and the penultimate oligosaccharide sequence on binding affinity and specificity. Most remarkable was the finding that myelin-associated glycoprotein (Siglec-4) binds with 500-10,000-fold higher affinity to a series of mono- and di-sialylated derivatives of the O-linked T-antigen (Galbeta(1-3)-GalNAc(alpha)OThr) as compared with alpha-methyl-NeuAc.
Collapse
MESH Headings
- Alkaline Phosphatase
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- CHO Cells
- Carbohydrate Sequence
- Cell Adhesion Molecules
- Chimera
- Cricetinae
- Enzyme-Linked Immunosorbent Assay
- Galactosides/chemical synthesis
- Galactosides/metabolism
- Glycolipids/chemical synthesis
- Glycolipids/metabolism
- Glycoproteins/chemical synthesis
- Glycoproteins/metabolism
- Humans
- Lectins/genetics
- Lectins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- N-Acetylneuraminic Acid/metabolism
- Protein Binding
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sialic Acid Binding Ig-like Lectin 1
- Sialic Acid Binding Ig-like Lectin 2
- Sialic Acid Binding Immunoglobulin-like Lectins
- Streptavidin
Collapse
Affiliation(s)
- Ola Blixt
- Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
91
|
Satake H, Chen HY, Varki A. Genes modulated by expression of GD3 synthase in Chinese hamster ovary cells. Evidence that the Tis21 gene is involved in the induction of GD3 9-O-acetylation. J Biol Chem 2003; 278:7942-8. [PMID: 12493756 DOI: 10.1074/jbc.m210565200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation is a common sialic acid modification, expressed in a developmentally regulated and tissue/cell type-specific manner. The relevant 9-O-acetyltransferase(s) have not been isolated or cloned; nor have mechanisms for their regulation been elucidated. We previously showed that transfection of the GD3 synthase (ST8Sia-I) gene into Chinese hamster ovary (CHO)-K1 cells gave expression of not only the disialoganglioside GD3 but also 9-O-acetyl-GD3. We now use differential display PCR between wild type CHO-K1 cells and clones stably expressing GD3 synthase (CHO-GD3 cells) to detect any increased expression of other genes and explore the possible induction of a 9-O-acetyltransferase. The four CHO mRNAs showing major up-regulation were homologous to VCAM-1, Tis21, the KC-protein-like protein, and a functionally unknown type II transmembrane protein. A moderate increase in expression of the FxC1 and SPR-1 genes was also seen. Interestingly, these are different from genes observed by others to be up-regulated after transfection of GD3 synthase into a neuroblastoma cell line. We also isolated a CHO-GD3 mutant lacking 9-O-acetyl-GD3 following chemical mutagenesis (CHO-GD3-OAc(-)). Analysis of the above differential display PCR-derived genes in these cells showed that expression of Tis21 was selectively reduced. Transfection of a mouse Tis21 cDNA into the CHO-GD3-OAc(-) mutant cells restored 9-O-acetyl-GD3 expression. Since the only major gangliosides expressed by CHO-GD3 cells are GD3 and 9-O-acetyl-GD3 (in addition to GM3, the predominant ganglioside type in wild-type CHO-K1 cells), we conclude that GD3 enhances its own 9-O-acetylation via induction of Tis21. This is the first known nuclear inducible factor for 9-O-acetylation and also the first proof that 9-O-acetylation can be directly regulated by GD3 synthase. Finally, transfection of CHO-GD3-OAc(-) mutant cells with ST6Gal-I induced 9-O-acetylation specifically on sialylated N-glycans, in a manner similar to wild-type cells. This indicates separate machineries for 9-O-acetylation on alpha2-8-linked sialic acids of gangliosides and on alpha2-6-linked sialic acids on N-glycans.
Collapse
Affiliation(s)
- Honoo Satake
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla 92093-0687, USA
| | | | | |
Collapse
|
92
|
Alphey MS, Attrill H, Crocker PR, van Aalten DMF. High resolution crystal structures of Siglec-7. Insights into ligand specificity in the Siglec family. J Biol Chem 2003; 278:3372-7. [PMID: 12438315 DOI: 10.1074/jbc.m210602200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) recognize sialylated glycoconjugates and play a role in cell-cell recognition. Siglec-7 is expressed on natural killer cells and displays unique ligand binding properties different from other members of the Siglec family. Here we describe the high resolution structures of the N-terminal V-set Ig-like domain of Siglec-7 in two crystal forms, at 1.75 and 1.9 A. The latter crystal form reveals the full structure of this domain and allows us to speculate on the differential ligand binding properties displayed by members of the Siglec family. A fully ordered N-linked glycan is observed, tethered by tight interactions with symmetry-related protein molecules in the crystal. Comparison of the structure with that of sialoadhesin and a model of Siglec-9 shows that the unique preference of Siglec-7 for alpha(2,8)-linked disialic acid is likely to reside in the C-C' loop, which is variable in the Siglec family. In the Siglec-7 structure, the ligand-binding pocket is occupied by a loop of a symmetry-related molecule, mimicking the interactions with sialic acid.
Collapse
Affiliation(s)
- Magnus S Alphey
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
93
|
Chou HH, Hayakawa T, Diaz S, Krings M, Indriati E, Leakey M, Paabo S, Satta Y, Takahata N, Varki A. Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci U S A 2002; 99:11736-41. [PMID: 12192086 PMCID: PMC129338 DOI: 10.1073/pnas.182257399] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Humans are genetically deficient in the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an Alu-mediated inactivating mutation of the gene encoding the enzyme CMP-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase (CMAH). This mutation occurred after our last common ancestor with bonobos and chimpanzees, and before the origin of present-day humans. Here, we take multiple approaches to estimate the timing of this mutation in relationship to human evolutionary history. First, we have developed a method to extract and identify sialic acids from bones and bony fossils. Two Neanderthal fossils studied had clearly detectable Neu5Ac but no Neu5Gc, indicating that the CMAH mutation predated the common ancestor of humans and the Neanderthal, approximately 0.5-0.6 million years ago (mya). Second, we date the insertion event of the inactivating human-specific sahAluY element that replaced the ancestral AluSq element found adjacent to exon 6 of the CMAH gene in the chimpanzee genome. Assuming Alu source genes based on a phylogenetic tree of human-specific Alu elements, we estimate the sahAluY insertion time at approximately 2.7 mya. Third, we apply molecular clock analysis to chimpanzee and other great ape CMAH genes and the corresponding human pseudogene to estimate an inactivation time of approximately 2.8 mya. Taken together, these studies indicate that the CMAH gene was inactivated shortly before the time when brain expansion began in humankind's ancestry, approximately 2.1-2.2 mya. In this regard, it is of interest that although Neu5Gc is the major sialic acid in most organs of the chimpanzee, its expression is selectively down-regulated in the brain, for as yet unknown reasons.
Collapse
Affiliation(s)
- Hsun-Hua Chou
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0687, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Collins BE, Blixt O, Bovin NV, Danzer CP, Chui D, Marth JD, Nitschke L, Paulson JC. Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 2002; 12:563-71. [PMID: 12213789 DOI: 10.1093/glycob/cwf067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction of CD22 with glycoprotein ligands bearing the Siaalpha2,6Gal-R sequence is believed to modulate its function as a regulator of B cell signaling. Although a commercial sialoside-polyacrylamide (PAA) probe, NeuAc- alpha2,6Gal-PAA, has facilitated studies on ligand binding by human CD22, murine CD22 binds instead with high affinity to NeuGcalpha2,6Gal-R. A multivalent probe with this sequence was constructed to facilitate investigations of ligand binding in CD22 function using genetically defined murine models. The probe is based on the sialoside-PAA platform, which is then biotinylated for easy detection. A series of sialoside probes were constructed with two different length linker arms between the sialoside and the backbone and three different sialoside to PAA molar ratios. The NeuGcalpha2,6Gal-PAA probe is specific for CD22: it binds to sialidase-treated B cells of wild-type mice but not B cells of CD22-null mice. Additionally, because the probe only binds to sialidase-treated wild-type cells, it confirms that CD22 is constitutively "masked" on most B cells from wild-type mice by binding to ligands in cis. In contrast, the probe bound equally well to native or sialidase-treated B cells from the immunocompromised ligand-deficient ST6Gal I knockout mice, demonstrating that CD22 is constitutively "unmasked" in these cells.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., MEM-L71, La Jolla, CA 92075, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Atemezem A, Mbemba E, Marfaing R, Vaysse J, Pontet M, Saffar L, Charnaux N, Gattegno L. Human alpha-fetoprotein binds to primary macrophages. Biochem Biophys Res Commun 2002; 296:507-14. [PMID: 12176010 DOI: 10.1016/s0006-291x(02)00909-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously reported that alpha-fetoprotein (AFP) inhibits infection of human monocyte-derived macrophages (MDM) by R5-HIV-1 strains and that a peptide mimicking the clade B HIV-1 gp120 consensus V3 domain (V3Cs) binds to CCR5. We demonstrate here that AFP binds high- and low-affinity binding sites of MDM, characterized, respectively, by 5.15 and 100nM K(d) values. Heat denaturation or neuraminidase treatment of AFP inhibits this binding, suggesting the involvement of protein-protein and lectin-carbohydrate interactions. Moreover, AFP displaces V3Cs binding to MDM. In addition, MIP-1beta, the most specific CCR5 ligand, displaces AFP binding to MDM (IC(50)=4.3nM). Finally, we demonstrate that AFP binds to a ligand of HIV-gp120 V3Cs domain, CCR5, expressed by MDM and by HeLa cells expressing CCR5. Such binding is not observed in the presence of HeLa cells lacking CCR5. The present results provide strong evidence that AFP directly binds to CCR5 expressed by human primary macrophages and by transfected CCR5+ HeLa cells.
Collapse
Affiliation(s)
- Aurélie Atemezem
- UPRES 3410, Biothérapies, Bénéfices et Risques, UFR-SMBH, Université Paris XIII, Bobigny et Hôpital Jean Verdier, Bondy 93017, France
| | | | | | | | | | | | | | | |
Collapse
|
96
|
McCauley TC, Kurth BE, Norton EJ, Klotz KL, Westbrook VA, Rao AJ, Herr JC, Diekman AB. Analysis of a human sperm CD52 glycoform in primates: identification of an animal model for immunocontraceptive vaccine development. Biol Reprod 2002; 66:1681-8. [PMID: 12021047 DOI: 10.1095/biolreprod66.6.1681] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sperm agglutination antigen-1 (SAGA-1) is a human male reproductive tract glycoform of CD52. Unique modification of CD52 N-linked oligosaccharide chains in the epididymis and vas deferens results in the appearance of a carbohydrate epitope that is localized over the entire surface of human spermatozoa. SAGA-1 was characterized by the sperm-inhibitory murine monoclonal antibody (mAb) S19, and it is the target antigen of a human mAb (H6-3C4) associated with antibody-mediated infertility. Collectively, sperm surface localization, antibody inhibition of sperm function, and potential reproductive-tissue specificity identify SAGA-1 as an attractive candidate contraceptive immunogen. To establish an animal model for the study of SAGA-1 in immunologic infertility and immunocontraceptive development, we investigated the appearance of the S19 carbohydrate epitope in nonhuman primates. The S19 mAb demonstrated little to no immunoreactivity by Western blot analysis with protein extracts of spermatozoa from the baboon, marmoset, bonnet, cynomolgus, and pigtailed macaques. Immunohistochemical analysis identified CD52 in the bonnet monkey epididymis; however, the N-linked carbohydrate moiety recognized by the S19 mAb, and unique to SAGA-1, was absent. In contrast, the S19 carbohydrate epitope was identified in chimpanzee sperm extracts by Western blot analysis and in chimpanzee epididymal tissue sections by immunohistochemical analysis, indicating that it is conserved in this close relative of the human. Chimpanzee testis, seminal vesicle, and prostate do not express the S19 epitope. Although anti-CD52 immunoreactivity was identified in the spleen, the carbohydrate moiety recognized by the S19 mAb was absent, corroborating data in the human that demonstrated tissue-specific glycosylation of sperm CD52. Immunofluorescent analysis indicated that the chimpanzee homologue of sperm CD52 was present over the entire spermatozoon. In addition, the S19 mAb agglutinated chimpanzee spermatozoa in a manner similar to the effect observed on human spermatozoa. These data indicate that the distinctive carbohydrate moiety of human sperm CD52 is present in the chimpanzee, and they identify the chimpanzee as the most appropriate primate model to study the potential of this unique CD52 glycoform as a contraceptive immunogen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/analysis
- Antigens, Neoplasm/analysis
- Antigens, Surface/analysis
- Antigens, Surface/immunology
- Biological Evolution
- Blotting, Western
- CD52 Antigen
- Callithrix/immunology
- Contraception, Immunologic
- Epididymis/immunology
- Epitopes/analysis
- Epitopes/chemistry
- Epitopes/immunology
- Fluorescent Antibody Technique
- Glycoproteins/analysis
- Glycoproteins/immunology
- Glycosylation
- Humans
- Immunohistochemistry
- Immunosorbent Techniques
- Macaca fascicularis/immunology
- Macaca nemestrina/immunology
- Macaca radiata/immunology
- Male
- Models, Animal
- Pan troglodytes/immunology
- Papio/immunology
- Species Specificity
- Spermatozoa/immunology
- Spermatozoa/physiology
- Vaccines, Contraceptive
Collapse
Affiliation(s)
- Tod C McCauley
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Brinkman-Van der Linden ECM, Sonnenburg JL, Varki A. Effects of sialic acid substitutions on recognition by Sambucus nigra agglutinin and Maackia amurensis hemagglutinin. Anal Biochem 2002; 303:98-104. [PMID: 11906157 DOI: 10.1006/abio.2001.5539] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
98
|
Oetke C, Brossmer R, Mantey LR, Hinderlich S, Isecke R, Reutter W, Keppler OT, Pawlita M. Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J Biol Chem 2002; 277:6688-95. [PMID: 11751912 DOI: 10.1074/jbc.m109973200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acids are critical components of many glycoconjugates involved in biologically important ligand-receptor interactions. Quantitative and structural variations of sialic acid residues can profoundly affect specific cell-cell, pathogen-cell, or drug-cell interactions, but manipulation of sialic acids in mammalian cells has been technically limited. We describe the finding of a previously unrecognized and efficient uptake and incorporation of sialic acid analogues in mammalian cells. We added 16 synthetic sialic acid analogues carrying distinct C-1, C-5, or C-9 substitutions individually to cell cultures of which 10 were readily taken up and incorporated. Uptake of C-5- and C-9-substituted sialic acids resulted in the structural modification of up to 95% of sialic acids on the cell surface. Functionally, binding of murine sialic acid-binding immunoglobulin-like lectin-2 (Siglec-2, CD22) to cells increased after N-glycolylneuraminic acid treatment, whereas 9-iodo-N-acetylneuraminic acid abolished binding. Furthermore, susceptibility to infection by the B-lymphotropic papovavirus via a sialylated receptor was markedly enhanced following pretreatment of host cells with selected sialic acid analogues including 9-iodo-N-acetylneuraminic acid. This novel experimental strategy allows for an efficient biosynthetic engineering of surface sialylation in living cells. It is versatile, extending the repertoire of modification sites at least to C-9 and enables detailed structure-function studies of sialic acid-dependent ligand-receptor interactions in their native context.
Collapse
Affiliation(s)
- Cornelia Oetke
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
The Human Genome Project has generated both the information and technological infrastructure needed to accelerate genetic comparisons between humans and the African great apes (chimpanzees and gorillas). Sequence and chromosomal organization differences between these highly related genomes will provide clues to the genetic basis for recently evolved, specifically human traits such as bipedal gait and advanced cognitive function. Recent studies comparing the primate genomes have the potential to affect many aspects of human biomedical research and could benefit primate conservation efforts.
Collapse
Affiliation(s)
- J G Hacia
- The Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA 90089, USA.
| |
Collapse
|
100
|
Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N. Alu-mediated inactivation of the human CMP- N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci U S A 2001; 98:11399-404. [PMID: 11562455 PMCID: PMC58741 DOI: 10.1073/pnas.191268198] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inactivation of the CMP-N-acetylneuraminic acid hydroxylase gene has provided an example of human-specific genomic mutation that results in a widespread biochemical difference between human and nonhuman primates. We have found that, although a region containing a 92-bp exon and an AluSq element in the hydroxylase gene is intact in all nonhuman primates examined, the same region in the human genome is replaced by an AluY element that was disseminated at least one million years ago. We propose a mechanistic model for this Alu-mediated replacement event, which deleted the 92-bp exon and thus inactivated the human hydroxylase gene. It is suggested that Alu elements have played potentially important roles in genotypic and phenotypic evolution in the hominid lineage.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | |
Collapse
|