51
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
52
|
Reiffurth C, Alam M, Zahedi-Khorasani M, Major S, Dreier JP. Na +/K +-ATPase α isoform deficiency results in distinct spreading depolarization phenotypes. J Cereb Blood Flow Metab 2020; 40:622-638. [PMID: 30819023 PMCID: PMC7025397 DOI: 10.1177/0271678x19833757] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compromised Na+/K+-ATPase function is associated with the occurrence of spreading depolarization (SD). Mutations in ATP1A2, the gene encoding the α2 isoform of the Na+/K+-ATPase, were identified in patients with familial hemiplegic migraine type 2 (FHM2), a Mendelian model disease for SD. This suggests a distinct role for the α2 isoform in modulating SD susceptibility and raises questions about underlying mechanisms including the roles of other Na+/K+-ATPase α isoforms. Here, we investigated the effects of genetic ablation and pharmacological inhibition of α1, α2, and α3 on SD using heterozygous knock-out mice. We found that only α2 heterozygous mice displayed higher SD susceptibility when challenged with prolonged extracellular high potassium concentration ([K+]o), a pronounced post SD oligemia and higher SD speed in-vivo. By contrast, under physiological [K+]o, α2 heterozygous mice showed similar SD susceptibility compared to wild-type littermates. Deficiency of α3 resulted in increased resistance against electrically induced SD in-vivo, whereas α1 deficiency did not affect SD. The results support important roles of the α2 isoform in SD. Moreover, they suggest that specific experimental conditions can be necessary to reveal an inherent SD phenotype by driving a (meta-) stable system into decompensation, reminiscent of the episodic nature of SDs in various diseases.
Collapse
Affiliation(s)
- Clemens Reiffurth
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany.,Center for Stroke Research, Charité-University Medicine Berlin, Berlin, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Mahdi Zahedi-Khorasani
- Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sebastian Major
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany.,Center for Stroke Research, Charité-University Medicine Berlin, Berlin, Germany.,Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jens P Dreier
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany.,Center for Stroke Research, Charité-University Medicine Berlin, Berlin, Germany.,Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
53
|
Pavlovic D. Endogenous cardiotonic steroids and cardiovascular disease, where to next? Cell Calcium 2019; 86:102156. [PMID: 31896530 PMCID: PMC7031694 DOI: 10.1016/j.ceca.2019.102156] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
Ever since British Physician William Withering first described the use of foxglove extract for treatment of patients with congestive heart failure in 1785, cardiotonic steroids have been used clinically to treat heart failure and more recently atrial fibrillation. Due to their ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na+ concentration in every living cell, they are also an essential tool for research into the sodium potassium pump structure and function. Exogenous CTS have been clearly demonstrated to affect cardiovascular system through modulation of vagal tone, cardiac contraction (via ionic changes) and altered natriuresis. Reports of a number of endogenous CTS, since the 1980s, have intensified research into their physiologic and pathophysiologic roles and opened up novel therapeutic targets. Substantive evidence pointing to the role of endogenous ouabain and marinobufagenin, the two most prominent CTS, in development of cardiovascular disease has accumulated. Nevertheless, their presence, structure, biosynthesis pathways and even mechanism of action remain unclear or controversial. In this review the current state-of-the-art, the controversies and the remaining questions surrounding the role of endogenous cardiotonic steroids in health and disease are discussed.
Collapse
Affiliation(s)
- Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
54
|
“Reversed polarization” of Na/K-ATPase—a sign of inverted transport in the human endolymphatic sac: a super-resolution structured illumination microscopy (SR-SIM) study. Cell Tissue Res 2019; 379:445-457. [DOI: 10.1007/s00441-019-03106-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
AbstractThe human endolymphatic sac (ES) is believed to regulate inner ear fluid homeostasis and to be associated with Meniere’s disease (MD). We analyzed the ion transport protein sodium/potassium-ATPase (Na/K-ATPase) and its isoforms in the human ES using super-resolution structured illumination microscopy (SR-SIM). Human vestibular aqueducts were collected during trans-labyrinthine vestibular schwannoma surgery after obtaining ethical permission. Antibodies against various isoforms of Na/K-ATPase and additional solute-transporting proteins, believed to be essential for ion and fluid transport, were used for immunohistochemistry. A population of epithelial cells of the human ES strongly expressed Na/K-ATPase α1, β1, and β3 subunit isoforms in either the lateral/basolateral or apical plasma membrane domains. The β1 isoform was expressed in the lateral/basolateral plasma membranes in mostly large cylindrical cells, while β3 and α1 both were expressed with “reversed polarity” in the apical cell membrane in lower epithelial cells. The heterogeneous expression of Na/K-ATPase subunits substantiates earlier notions that the ES is a dynamic structure where epithelial cells show inverted epithelial transport. Dual absorption and secretion processes may regulate and maintain inner ear fluid homeostasis. These findings may shed new light on the etiology of endolymphatic hydrops and MD.
Collapse
|
55
|
Lou F, Gao T, Han Z. Effect of salinity fluctuation on the transcriptome of the Japanese mantis shrimp Oratosquilla oratoria. Int J Biol Macromol 2019; 140:1202-1213. [PMID: 31470058 DOI: 10.1016/j.ijbiomac.2019.08.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Salinity fluctuation may detrimentally affect the composition and biological processes of crustaceans. As a euryhaline crustacean, Oratosquilla oratoria can survive at salinities ranging from 20 psu to 40 psu. Therefore, we designed five salinity gradients (20, 25, 30, 35, and 40 psu) and 66.39 Gb clean transcriptome data were obtained after O. oratorias were exposed to each gradient for 24 h. All clean data were spliced into 50,482 unigenes and 17,035 unigenes were annotated in at least one database. Compared with 30 psu, 1010, 851, 1733 and 2188 differentially expressed genes were obtained at 20, 25, 35 and 40 psu, respectively. Results also showed that the osmoregulation of O. oratoria is primarily regulated by lipid and amino acid metabolism, amongst others. No significant up-regulated pathways were enriched at 25 psu and 35 psu, although more significant down-regulated pathways were obtained at 35 psu. Therefore, we assumed that the optimum survival salinity of O. oratoria may range from 25 psu to 35 psu. However, 35 psu may be more suitable for O. oratoria. In addition, 55 unigenes that encode putative inorganic ion exchanges were identified. This study aims to provide fundamental information for understanding the osmoregulation mechanisms of crustaceans.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Fishery College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
56
|
Zhang X, Wen H, Qi X, Zhang K, Liu Y, Fan H, Yu P, Tian Y, Li Y. Na+-K+-ATPase and nka genes in spotted sea bass (Lateolabrax maculatus) and their involvement in salinity adaptation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:69-81. [DOI: 10.1016/j.cbpa.2019.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/28/2022]
|
57
|
Liu W, Luque M, Glueckert R, Danckwardt-Lillieström N, Nordström CK, Schrott-Fischer A, Rask-Andersen H. Expression of Na/K-ATPase subunits in the human cochlea: a confocal and super-resolution microscopy study with special reference to auditory nerve excitation and cochlear implantation. Ups J Med Sci 2019; 124:168-179. [PMID: 31460814 PMCID: PMC6758701 DOI: 10.1080/03009734.2019.1653408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: For the first time the expression of the ion transport protein sodium/potassium-ATPase and its isoforms was analyzed in the human cochlea using light- and confocal microscopy as well as super-resolution structured illumination microscopy. It may increase our understanding of its role in the propagation and processing of action potentials in the human auditory nerve and how electric nerve responses are elicited from auditory prostheses. Material and methods: Archival human cochlear sections were obtained from trans-cochlear surgeries. Antibodies against the Na/K-ATPase β1 isoform together with α1 and α3 were used for immunohistochemistry. An algorithm was applied to assess the expression in various domains. Results: Na/K ATPase β1 subunit was expressed, mostly combined with the α1 isoform. Neurons expressed the β1 subunit combined with α3, while satellite glial cells expressed the α1 isoform without recognized association with β1. Types I and II spiral ganglion neurons and efferent fibers expressed the Na/K-ATPase α3 subunit. Inner hair cells, nerve fibers underneath, and efferent and afferent fibers in the organ of Corti also expressed α1. The highest activity of Na/K-ATPase β1 was at the inner hair cell/nerve junction and spiral prominence. Conclusion: The human auditory nerve displays distinct morphologic features represented in its molecular expression. It was found that electric signals generated via hair cells may not go uninterrupted across the spiral ganglion, but are locally processed. This may be related to particular filtering properties in the human acoustic pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- Wei Liu
| | - Maria Luque
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Charlotta Kämpfe Nordström
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| |
Collapse
|
58
|
DiNuzzo M. How glycogen sustains brain function: A plausible allosteric signaling pathway mediated by glucose phosphates. J Cereb Blood Flow Metab 2019; 39:1452-1459. [PMID: 31208240 PMCID: PMC6681540 DOI: 10.1177/0271678x19856713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Astrocytic glycogen is the sole glucose reserve of the brain. Both glycogen and glucose are necessary for basic neurophysiology and in turn for higher brain functions. In spite of low concentration, turnover and stimulation-induced degradation, any interference with normal glycogen metabolism in the brain severely affects neuronal excitability and disrupts memory formation. Here, I briefly discuss the glycogenolysis-induced glucose-sparing effect, which involves glucose phosphates as key allosteric effectors in the modulation of astrocytic and neuronal glucose uptake and phosphorylation. I further advance a novel and thus far unexplored effect of glycogenolysis that might be mediated by glucose phosphates.
Collapse
|
59
|
Staehr C, Hangaard L, Bouzinova EV, Kim S, Rajanathan R, Boegh Jessen P, Luque N, Xie Z, Lykke-Hartmann K, Sandow SL, Aalkjaer C, Matchkov VV. Smooth muscle Ca 2+ sensitization causes hypercontractility of middle cerebral arteries in mice bearing the familial hemiplegic migraine type 2 associated mutation. J Cereb Blood Flow Metab 2019; 39. [PMID: 29513112 PMCID: PMC6681533 DOI: 10.1177/0271678x18761712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.
Collapse
Affiliation(s)
| | - Lise Hangaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Sukhan Kim
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Nathan Luque
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Zijian Xie
- 3 Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | | | - Shaun L Sandow
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | | | | |
Collapse
|
60
|
Litan A, Li Z, Tokhtaeva E, Kelly P, Vagin O, Langhans SA. A Functional Interaction Between Na,K-ATPase β 2-Subunit/AMOG and NF2/Merlin Regulates Growth Factor Signaling in Cerebellar Granule Cells. Mol Neurobiol 2019; 56:7557-7571. [PMID: 31062247 DOI: 10.1007/s12035-019-1592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Abstract
The Na,K-ATPase, consisting of a catalytic α-subunit and a regulatory β-subunit, is a ubiquitously expressed ion pump that carries out the transport of Na+ and K+ across the plasma membranes of most animal cells. In addition to its pump function, Na,K-ATPase serves as a signaling scaffold and a cell adhesion molecule. Of the three β-subunit isoforms, β1 is found in almost all tissues, while β2 expression is mostly restricted to brain and muscle. In cerebellar granule cells, the β2-subunit, also known as adhesion molecule on glia (AMOG), has been linked to neuron-astrocyte adhesion and granule cell migration, suggesting its role in cerebellar development. Nevertheless, little is known about molecular pathways that link the β2-subunit to its cellular functions. Using cerebellar granule precursor cells, we found that the β2-subunit, but not the β1-subunit, negatively regulates the expression of a key activator of the Hippo/YAP signaling pathway, Merlin/neurofibromin-2 (NF2). The knockdown of the β2-subunit resulted in increased Merlin/NF2 expression and affected downstream targets of Hippo signaling, i.e., increased YAP phosphorylation and decreased expression of N-Ras. Further, the β2-subunit knockdown altered the kinetics of epidermal growth factor receptor (EGFR) signaling in a Merlin-dependent mode and impaired EGF-induced reorganization of the actin cytoskeleton. Therefore, our studies for the first time provide a functional link between the Na,K-ATPase β2-subunit and Merlin/NF2 and suggest a role for the β2-subunit in regulating cytoskeletal dynamics and Hippo/YAP signaling during neuronal differentiation.
Collapse
Affiliation(s)
- Alisa Litan
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Zhiqin Li
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Elmira Tokhtaeva
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Patience Kelly
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Olga Vagin
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
| |
Collapse
|
61
|
Identification of the retinoschisin-binding site on the retinal Na/K-ATPase. PLoS One 2019; 14:e0216320. [PMID: 31048931 PMCID: PMC6497308 DOI: 10.1371/journal.pone.0216320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/19/2019] [Indexed: 01/11/2023] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy, caused by mutations in the RS1 gene which encodes the secreted protein retinoschisin. In recent years, several molecules have been proposed to interact with retinoschisin, including the retinal Na/K-ATPase, L-voltage gated Ca2+ channels, and specific sugars. We recently showed that the retinal Na/K-ATPase consisting of subunits ATP1A3 and ATP1B2 is essential for anchoring retinoschisin to plasma membranes and identified the glycosylated ATP1B2 subunit as the direct interaction partner for retinoschisin. We now aimed to precisely map the retinoschisin binding domain(s) in ATP1B2. In general, retinoschisin binding was not affected after selective elimination of individual glycosylation sites via site-directed mutagenesis as well as after full enzymatic deglycosylation of ATP1B2. Applying the interface prediction tool PresCont, two putative protein-protein interaction patches (“patch I” and “patch II”) consisting each of four hydrophobic amino acid stretches on the ATP1B2 surface were identified. These were consecutively altered by site-directed mutagenesis. Functional assays with the ATP1B2 patch mutants identified patch II and, specifically, the associated amino acid at position 240 (harboring a threonine in ATP1B2) as crucial for retinoschisin binding to ATP1B2. These and previous results led us to suggest an induced-fit binding mechanism for the interaction between retinoschisin and the Na/K-ATPase, which is dependent on threonine 240 in ATP1B2 allowing the accommodation of hyperflexible retinoschisin spikes by the associated protein-protein interaction patch on ATP1B2.
Collapse
|
62
|
Vilchis-Nestor CA, Roldán ML, Leonardi A, Navea JG, Padilla-Benavides T, Shoshani L. Ouabain Enhances Cell-Cell Adhesion Mediated by β 1 Subunits of the Na +,K +-ATPase in CHO Fibroblasts. Int J Mol Sci 2019; 20:E2111. [PMID: 31035668 PMCID: PMC6539428 DOI: 10.3390/ijms20092111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Adhesion is a crucial characteristic of epithelial cells to form barriers to pathogens and toxic substances from the environment. Epithelial cells attach to each other using intercellular junctions on the lateral membrane, including tight and adherent junctions, as well as the Na+,K+-ATPase. Our group has shown that non-adherent chinese hamster ovary (CHO) cells transfected with the canine β1 subunit become adhesive, and those homotypic interactions amongst β1 subunits of the Na+,K+-ATPase occur between neighboring epithelial cells. Ouabain, a cardiotonic steroid, binds to the α subunit of the Na+,K+-ATPase, inhibits the pump activity and induces the detachment of epithelial cells when used at concentrations above 300 nM. At nanomolar non-inhibiting concentrations, ouabain affects the adhesive properties of epithelial cells by inducing the expression of cell adhesion molecules through the activation of signaling pathways associated with the α subunit. In this study, we investigated whether the adhesion between β1 subunits was also affected by ouabain. We used CHO fibroblasts stably expressing the β1 subunit of the Na+,K+-ATPase (CHO β1), and studied the effect of ouabain on cell adhesion. Aggregation assays showed that ouabain increased the adhesion between CHO β1 cells. Immunofluorescence and biotinylation assays showed that ouabain (50 nM) increases the expression of the β1 subunit of the Na+,K+-ATPase at the cell membrane. We also examined the effect of ouabain on the activation of signaling pathways in CHO β1 cells, and their subsequent effect on cell adhesion. We found that cSrc is activated by ouabain and, therefore, that it likely regulates the adhesive properties of CHO β1 cells. Collectively, our findings suggest that the β1 subunit adhesion is modulated by the expression levels of the Na+,K+-ATPase at the plasma membrane, which is regulated by ouabain.
Collapse
Affiliation(s)
- Claudia Andrea Vilchis-Nestor
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - María Luisa Roldán
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| | - Angelina Leonardi
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Liora Shoshani
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| |
Collapse
|
63
|
Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur J Med Chem 2019; 167:546-561. [DOI: 10.1016/j.ejmech.2019.01.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022]
|
64
|
Amarelle L, Katzen J, Shigemura M, Welch LC, Cajigas H, Peteranderl C, Celli D, Herold S, Lecuona E, Sznajder JI. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1094-L1106. [PMID: 30892074 DOI: 10.1152/ajplung.00173.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac glycosides (CGs) are used primarily for cardiac failure and have been reported to have other effects, including inhibition of viral replication. Here we set out to study mechanisms by which CGs as inhibitors of the Na-K-ATPase decrease influenza A virus (IAV) replication in the lungs. We found that CGs inhibit influenza virus replication in alveolar epithelial cells by decreasing intracellular potassium, which in turn inhibits protein translation, independently of viral entry, mRNA transcription, and protein degradation. These effects were independent of the Src signaling pathway and intracellular calcium concentration changes. We found that short-term treatment with ouabain prevented IAV replication without cytotoxicity. Rodents express a Na-K-ATPase-α1 resistant to CGs. Thus we utilized Na-K-ATPase-α1-sensitive mice, infected them with high doses of influenza virus, and observed a modest survival benefit when treated with ouabain. In summary, we provide evidence that the inhibition of the Na-K-ATPase by CGs decreases influenza A viral replication by modulating the cell protein translational machinery and results in a modest survival benefit in mice.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| | - Jeremy Katzen
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Héctor Cajigas
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Diego Celli
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Susanne Herold
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
65
|
Meyer DJ, Gatto C, Artigas P. Na/K Pump Mutations Associated with Primary Hyperaldosteronism Cause Loss of Function. Biochemistry 2019; 58:1774-1785. [PMID: 30811176 DOI: 10.1021/acs.biochem.9b00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary hyperaldosteronism (Conn's syndrome), a common cause of secondary hypertension, is frequently produced by unilateral aldosterone-producing adenomas that carry mutations in ion-transporting genes, including ATP1A1, encoding the Na/K pump's α1 subunit. Whether Na/K pump mutant-mediated inward currents are required to depolarize the cell and increase aldosterone production remains unclear, as such currents were observed in four out of five mutants described so far. Here, we use electrophysiology and uptake of the K+ congener 86Rb+, to characterize the effects of eight additional Na/K pump mutations in transmembrane segments TM1 (delM102-L103, delL103-L104, and delM102-I106), TM4 (delI322-I325 and I327S), and TM9 (delF956-E961, delF959-E961, and delE960-L964), expressed in Xenopus oocytes. All deletion mutants induced abnormal inward currents of different amplitudes at physiological voltages, while I327S lacked such currents. A detailed functional characterization revealed that I327S significantly reduces intracellular Na+ affinity without altering affinity for external K+. 86Rb+-uptake experiments show that I327S dramatically impairs function under physiological concentrations of Na+ and K+. Since Na/K pumps in the adrenal cortex may be formed by association of α1 with β3 instead of β1 subunits, we evaluated whether G99R (another mutant without inward currents when associated with β1) would show inward currents when associated with β3. We found that the kinetic characteristics of either mutant or wild-type α1β3 pumps expressed in Xenopus oocytes to be indistinguishable from those of α1β1 pumps. The observed functional consequences of each hyperaldosteronism mutant point to the loss of Na/K pump function as the common feature of all mutants, which is sufficient to induce hyperaldosteronism.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Craig Gatto
- School of Biological Sciences , Illinois State University , Normal , Illinois 61790 , United States
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| |
Collapse
|
66
|
Hormonal regulation of Na +-K +-ATPase from the evolutionary perspective. CURRENT TOPICS IN MEMBRANES 2019; 83:315-351. [PMID: 31196608 DOI: 10.1016/bs.ctm.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Na+-K+-ATPase, an α/β heterodimer, is an ancient enzyme that maintains Na+ and K+ gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na+-K+-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion. During vertebrate evolution, three key developments contributed to diversification and integration of Na+-K+-ATPase functions. Generation of novel α- and β-subunits led to formation of multiple Na+-K+-ATPase isoenyzmes with distinct functional characteristics. Development of a complex endocrine system enabled efficient coordination of diverse Na+-K+-ATPase functions. Emergence of FXYDs, small transmembrane proteins that regulate Na+-K+-ATPase, opened new ways to modulate its function. FXYDs are a vertebrate innovation and an important site of hormonal action, suggesting they played an especially prominent role in evolving interaction between Na+-K+-ATPase and the endocrine system in vertebrates.
Collapse
|
67
|
Lykke K, Assentoft M, Hørlyck S, Helms HC, Stoica A, Toft-Bertelsen TL, Tritsaris K, Vilhardt F, Brodin B, MacAulay N. Evaluating the involvement of cerebral microvascular endothelial Na +/K +-ATPase and Na +-K +-2Cl - co-transporter in electrolyte fluxes in an in vitro blood-brain barrier model of dehydration. J Cereb Blood Flow Metab 2019; 39:497-512. [PMID: 28994331 PMCID: PMC6421245 DOI: 10.1177/0271678x17736715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The blood-brain barrier (BBB) is involved in brain water and salt homeostasis. Blood osmolarity increases during dehydration and water is osmotically extracted from the brain. The loss of water is less than expected from pure osmotic forces, due to brain electrolyte accumulation. Although the underlying molecular mechanisms are unresolved, the current model suggests the luminally expressed Na+-K+-2Cl- co-transporter 1 (NKCC1) as a key component, while the role of the Na+/K+-ATPase remains uninvestigated. To test the involvement of these proteins in brain electrolyte flux under mimicked dehydration, we employed a tight in vitro co-culture BBB model with primary cultures of brain endothelial cells and astrocytes. The Na+/K+-ATPase and the NKCC1 were both functionally dominant in the abluminal membrane. Exposure of the in vitro BBB model to conditions mimicking systemic dehydration, i.e. hyperosmotic conditions, vasopressin, or increased [K+]o illustrated that NKCC1 activity was unaffected by exposure to vasopressin and to hyperosmotic conditions. Hyperosmotic conditions and increased K+ concentrations enhanced the Na+/K+-ATPase activity, here determined to consist of the α1 β1 and α1 β3 isozymes. Abluminally expressed endothelial Na+/K+-ATPase, and not NKCC1, may therefore counteract osmotic brain water loss during systemic dehydration by promoting brain Na+ accumulation.
Collapse
Affiliation(s)
- Kasper Lykke
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Hørlyck
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Cc Helms
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anca Stoica
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Tritsaris
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Vilhardt
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birger Brodin
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
68
|
Lauf PK, Sharma N, Adragna NC. Kinetic studies of K-Cl cotransport in cultured rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C274-C284. [PMID: 30649919 DOI: 10.1152/ajpcell.00002.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During aging, and development of atherosclerosis and cardiovascular disease (CVD), aortic vascular smooth muscle cells (VSMCs) transition from healthy contractile to diseased synthetic phenotypes. K-Cl cotransport (KCC) maintains cell volume and ion homeostasis in growth and differentiation, and hence is important for VSMC proliferation and migration. Therefore, KCC activity may play a role in the contractile-to-synthetic VSMC phenotypic transition. Early, medium, and late synthetic passage VSMCs were tested for specific cytoskeletal protein expression. KCC-mediated ouabain- and bumetanide-insensitive Rb+ (a K+ congener) influx was determined as Cl--dependent Rb+ influx at different external Rb+ and Cl- ion concentrations, [Rb+]o and [Cl-]o. Expressions of the cytoskeletal proteins α-actin, vimentin, and desmin fell from early through late synthetic VSMCs. KCC kinetic parameters, such as maximum velocity ( Vm), and apparent Cl- and Rb+ affinities ( Km), were calculated with Lineweaver-Burk, Hanes-Woolf, and Hill approximations. Vm values of both Rb+- and Cl--dependent influxes were of equal magnitude, commensurate with a KCC stoichiometry of unity, and rose threefold from early to late synthetic VSMCs. Hill coefficients for Rb+ and Cl- correlated with cell passage number, suggesting increased KCC ligand cooperativity. However, Km values for [Cl-]o were strikingly bimodal with 60-80 mM in early, ~20-30 mM in medium, and 60 mM in late passage cells. In contrast, Km values for [Rb+]o remained steady at ~17 mM. Since total KCC isoform expression was similar with cell passage, structure/function changes of the KCC signalosome may accompany the transition of aortic VSMCs from a healthy to a diseased phenotype.
Collapse
Affiliation(s)
- Peter K Lauf
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Department of Pathology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Neelima Sharma
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Norma C Adragna
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| |
Collapse
|
69
|
Shrivastava AN, Triller A, Melki R. Cell biology and dynamics of Neuronal Na +/K +-ATPase in health and diseases. Neuropharmacology 2018; 169:107461. [PMID: 30550795 DOI: 10.1016/j.neuropharm.2018.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-β, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL, Research University, 46 Rue d'Ulm, 75005 Paris, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
70
|
Roest G, Hesemans E, Welkenhuyzen K, Luyten T, Engedal N, Bultynck G, Parys JB. The ER Stress Inducer l-Azetidine-2-Carboxylic Acid Elevates the Levels of Phospho-eIF2α and of LC3-II in a Ca 2+-Dependent Manner. Cells 2018; 7:E239. [PMID: 30513588 PMCID: PMC6316609 DOI: 10.3390/cells7120239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to reduce protein load and restore homeostasis, including via induction of autophagy. We used the proline analogue l-azetidine-2-carboxylic acid (AZC) to induce ER stress, and assessed its effect on autophagy and Ca2+ homeostasis. Treatment with 5 mM AZC did not induce poly adenosine diphosphate ribose polymerase (PARP) cleavage while levels of binding immunoglobulin protein (BiP) and phosphorylated eukaryotic translation initiation factor 2α (eIF2α) increased and those of activating transcription factor 6 (ATF6) decreased, indicating activation of the protein kinase RNA-like ER kinase (PERK) and the ATF6 arms of the UPR but not of apoptosis. AZC treatment in combination with bafilomycin A1 (Baf A1) led to elevated levels of the lipidated form of the autophagy marker microtubule-associated protein light chain 3 (LC3), pointing to activation of autophagy. Using the specific PERK inhibitor AMG PERK 44, we could deduce that activation of the PERK branch is required for the AZC-induced lipidation of LC3. Moreover, both the levels of phospho-eIF2α and of lipidated LC3 were strongly reduced when cells were co-treated with the intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid tetra(acetoxy-methyl) ester (BAPTA-AM) but not when co-treated with the Na⁺/K⁺ ATPase inhibitor ouabain, suggesting an essential role of Ca2+ in AZC-induced activation of the PERK arm of the UPR and LC3 lipidation. Finally, AZC did not trigger Ca2+ release from the ER though appeared to decrease the cytosolic Ca2+ rise induced by thapsigargin while also decreasing the time constant for Ca2+ clearance. The ER Ca2+ store content and mitochondrial Ca2+ uptake however remained unaffected.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Evelien Hesemans
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Kirsten Welkenhuyzen
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Tomas Luyten
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137 Blindern, N-0318 Oslo, Norway.
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
71
|
Wang H, Wei H, Tang L, Lu J, Mu C, Wang C. A proteomics of gills approach to understanding salinity adaptation of Scylla paramamosain. Gene 2018; 677:119-131. [DOI: 10.1016/j.gene.2018.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
|
72
|
Noël F, Azalim P, do Monte FM, Quintas LEM, Katz A, Karlish SJ. Revisiting the binding kinetics and inhibitory potency of cardiac glycosides on Na+,K+-ATPase (α1β1): Methodological considerations. J Pharmacol Toxicol Methods 2018; 94:64-72. [DOI: 10.1016/j.vascn.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
|
73
|
K⁺ and Rb⁺ Affinities of the Na,K-ATPase α₁ and α₂ Isozymes: An Application of ICP-MS for Quantification of Na⁺ Pump Kinetics in Myofibers. Int J Mol Sci 2018; 19:ijms19092725. [PMID: 30213059 PMCID: PMC6165224 DOI: 10.3390/ijms19092725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
The potassium affinities of Na,K-ATPase isozymes are important determinants of their physiological roles in skeletal muscle. This study measured the apparent K+ and Rb+ affinities of the Na,K-ATPase α1 and α2 isozymes in intact, dissociated myofibers obtained from WT and genetically altered mice (α1S/Sα2R/R and skα2−/−). It also validates a new method to quantify cations in intact, dissociated myofibers, using inductively coupled plasma mass spectrometry (ICP-MS). Our findings were that: (1) The extracellular substrate sites of Na,K-ATPase bind Rb+ and K+ with comparable apparent affinities; however; turnover rate is reduced when Rb+ is the transported ion; (2) The rate of Rb+ uptake by the Na,K-ATPase is not constant but declines with a half-time of approximately 1.5 min; (3) The apparent K+ affinity of the α2 isozymes for K+ is significantly lower than α1. When measured in intact fibers of WT and α1S/Sα2R/R mice in the presence of 10 µM ouabain; the K1/2,K of α1 and α2 isozymes are 1.3 and 4 mM, respectively. Collectively, these results validate the single fiber model for studies of Na,K-ATPase transport and kinetic constants, and they imply the existence of mechanisms that dynamically limit pump activity during periods of active transport.
Collapse
|
74
|
Effect of polygodial and its direct derivatives on the mammalian Na +/K +-ATPase activity. Eur J Pharmacol 2018; 831:1-8. [PMID: 29715454 DOI: 10.1016/j.ejphar.2018.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022]
Abstract
The sesquiterpene polygodial is an agonist of the transient receptor potential vanilloid 1 (TRPV1). Our group recently reported the synthesis and anticancer effects of polygodial and its derivatives, and showed that these compounds retain activity against apoptosis- and multidrug-resistant cancer cells. Herein, we tested the inhibitory effect of these compounds on the activity of the enzyme Na+/K+-ATPase (NKA) from kidney (α1 isoform) and brain (α2 and α3 isoforms) guinea pig extracts. Polygodial (1) displayed a dose-dependent inhibition of both kidney and brain purified NKA preparations, with higher sensitivity for the cerebral isoforms. Polygo-11,12-diol (2) and C11,C12-pyridazine derivative (3) proved to be poor inhibitors. Unsaturated ester (4) and 9-epipolygodial (5) inhibited NKA preparations from brain and kidney, with the same inhibitory potency. Nevertheless, they did not achieve maximum inhibition even at higher concentration. Comparing the inhibitory potency in crude homogenates and purified preparations of NKA, compounds 4 and 5 revealed a degree of selectivity toward the renal enzyme. Kinetic studies showed a non-competitive inhibition for Na+ and K+ by compounds 1, 4 and 5 and for ATP by 1 and 4. However, compound 5 presented a competitive inhibition type. Furthermore, K+-activated p-nitrophenylphosphatase activity of these purified preparations was not inhibited by 1, 4 and 5, suggesting that these compounds acted in the initial phase of the enzyme's catalytic cycle. These findings suggest that the antitumor action of polygodial and its analogues may be linked to their NKA inhibitory properties and reinforce that NKA may be an important target for cancer therapy.
Collapse
|
75
|
Ding B, Walton JP, Zhu X, Frisina RD. Age-related changes in Na, K-ATPase expression, subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea. Hear Res 2018; 367:59-73. [PMID: 30029086 DOI: 10.1016/j.heares.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Due to the critical role of cochlear ion channels for hearing, the focus of the present study was to examine age-related changes of Na, K-ATPase (NKA) subunits in the lateral wall of mouse cochlea. We combined qRT-PCR, western blot and immunocytochemistry methodologies in order to determine gene and protein expression levels in the lateral wall of young and aged CBA/CaJ mice. Of the seven NKA subunits, only the mRNA expressions of α1, β1 and β2 subunit isoforms were detected in the lateral wall of CBA/CaJ mice. Aging was accompanied by dys-regulation of gene and protein expression of all three subunits detected. Hematoxylin and eosin (H&E) staining revealed atrophy of the cochlear stria vascularis (SV). The SV atrophy rate (20%) was much less than the ∼80% decline in expression of all three NKA isoforms, indicating lateral wall atrophy and NKA dys-regulation are independent factors and that there is a combination of changes involving the morphology of SV and NKA expression in the aging cochlea which may concomitantly affect cochlear function. Immunoprecipitation assays showed that the α1-β1 heterodimer is the selective preferential heterodimer over the α1-β2 heterodimer in cochlea lateral wall. Interestingly, in vitro pathway experiments utilizing cultured mouse cochlear marginal cells from the SV (SV-K1 cells) indicated that decreased mRNA and protein expressions of α1, β1 and β2 subunit isoforms are not associated with reduction of NKA activity following in vitro application of ouabain, but ouabain did disrupt the α1-β1 heterodimer interaction. Lastly, the association between the α1 and β1 subunit isoforms was present in the cochlear lateral wall of young adult mice, but this interaction could not be detected in old mice. Taken together, these data suggest that in the young adult mouse there is a specific, functional selection and assembly of NKA subunit isoforms in the SV lateral wall, which is disrupted and dys-regulated with age. Interventions for this age-linked ion channel disruption may have the potential to help diagnose, prevent, or treat age-related hearing loss.
Collapse
Affiliation(s)
- Bo Ding
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.
| | - Xiaoxia Zhu
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Robert D Frisina
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
76
|
Rosling JEO, Ridgway MC, Summers RL, Kirk K, Lehane AM. Biochemical characterization and chemical inhibition of PfATP4-associated Na +-ATPase activity in Plasmodium falciparum membranes. J Biol Chem 2018; 293:13327-13337. [PMID: 29986883 DOI: 10.1074/jbc.ra118.003640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The antimalarial activity of chemically diverse compounds, including the clinical candidate cipargamin, has been linked to the ATPase PfATP4 in the malaria-causing parasite Plasmodium falciparum The characterization of PfATP4 has been hampered by the inability thus far to achieve its functional expression in a heterologous system. Here, we optimized a membrane ATPase assay to probe the function of PfATP4 and its chemical sensitivity. We found that cipargamin inhibited the Na+-dependent ATPase activity present in P. falciparum membranes from WT parasites and that its potency was reduced in cipargamin-resistant PfATP4-mutant parasites. The cipargamin-sensitive fraction of membrane ATPase activity was inhibited by all 28 of the compounds in the "Malaria Box" shown previously to disrupt ion regulation in P. falciparum in a cipargamin-like manner. This is consistent with PfATP4 being the direct target of these compounds. Characterization of the cipargamin-sensitive ATPase activity yielded data consistent with PfATP4 being a Na+ transporter that is sensitive to physiologically relevant perturbations of pH, but not of [K+] or [Ca2+]. With an apparent Km for ATP of 0.2 mm and an apparent Km for Na+ of 16-17 mm, the protein is predicted to operate at below its half-maximal rate under normal physiological conditions, allowing the rate of Na+ efflux to increase in response to an increase in cytosolic [Na+]. In membranes from a cipargamin-resistant PfATP4-mutant line, the apparent Km for Na+ is slightly elevated. Our study provides new insights into the biochemical properties and chemical sensitivity of an important new antimalarial drug target.
Collapse
Affiliation(s)
- James E O Rosling
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Melanie C Ridgway
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Robert L Summers
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kiaran Kirk
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Adele M Lehane
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
77
|
Wang H, Tang L, Wei H, Lu J, Mu C, Wang C. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genomics 2018; 19:421. [PMID: 29855258 PMCID: PMC5984308 DOI: 10.1186/s12864-018-4803-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Background Scylla paramamosain (Crustacea: Decapoda: Portunidae: Syclla De Hann) is a commercially important mud crab distributed along the coast of southern China and other Indo-Pacific countries (Lin Z, Hao M, Zhu D, et al, Comp Biochem Physiol B Biochem Mol Biol 208-209:29–37, 2017; Walton ME, Vay LL, Lebata JH, et al, Estuar Coast Shelf Sci 66(3–4):493–500, 2006; Wang Z, Sun B, Zhu F, Fish Shellfish Immunol 67:612–9, 2017). While S. paramamosain is a euryhaline species, a sudden drop in salinity induces a negative impact on growth, molting, and reproduction, and may even cause death. The mechanism of osmotic regulation of marine crustaceans has been recently under investigation. However, the mechanism of adapting to a sudden drop in salinity has not been reported. Methods In this study, transcriptomics analysis was conducted on the gills of S. paramamosain to test its adaptive capabilities over 120 h with a sudden drop in salinity from 23 ‰ to 3 ‰. Results At the level of transcription, 135 DEGs (108 up-regulated and 27 down-regulated) annotated by NCBI non-redundant (nr) protein database were screened. GO analysis showed that the catalytic activity category showed the most participating genes in the 24 s-tier GO terms, indicating that intracellular metabolic activities in S. paramamosain were enhanced. Of the 164 mapped KEGG pathways, seven of the top 20 pathways were closely related to regulation of the Na+ / K+ -ATPase. Seven additional amino acid metabolism-related pathways were also found, along with other important signaling pathways. Conclusion Ion transport and amino acid metabolism were key factors in regulating the salinity adaptation of S. paramamosain in addition to several important signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12864-018-4803-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Junkai Lu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
78
|
Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca 2+ -activated K + channels and Na + /K + -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018; 28:338-357. [PMID: 29431274 PMCID: PMC5947627 DOI: 10.1002/hipo.22836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
In many types of CNS neurons, repetitive spiking produces a slow afterhyperpolarization (sAHP), providing sustained, intrinsically generated negative feedback to neuronal excitation. Changes in the sAHP have been implicated in learning behaviors, in cognitive decline in aging, and in epileptogenesis. Despite its importance in brain function, the mechanisms generating the sAHP are still controversial. Here we have addressed the roles of M-type K+ current (IM ), Ca2+ -gated K+ currents (ICa(K) 's) and Na+ /K+ -ATPases (NKAs) current to sAHP generation in adult rat CA1 pyramidal cells maintained at near-physiological temperature (35 °C). No evidence for IM contribution to the sAHP was found in these neurons. Both ICa(K) 's and NKA current contributed to sAHP generation, the latter being the predominant generator of the sAHP, particularly when evoked with short trains of spikes. Of the different NKA isoenzymes, α1 -NKA played the key role, endowing the sAHP a steep voltage-dependence. Thus normal and pathological changes in α1 -NKA expression or function may affect cognitive processes by modulating the inhibitory efficacy of the sAHP.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Sandesh Mohan
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoav Biala
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoel Yaari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| |
Collapse
|
79
|
Srisomboon Y, Zaidman NA, Maniak PJ, Deachapunya C, O'Grady SM. P2Y receptor regulation of K2P channels that facilitate K + secretion by human mammary epithelial cells. Am J Physiol Cell Physiol 2018; 314:C627-C639. [PMID: 29365273 PMCID: PMC6008065 DOI: 10.1152/ajpcell.00342.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to determine the molecular identity of ion channels involved in K+ secretion by the mammary epithelium and to examine their regulation by purinoceptor agonists. Apical membrane voltage-clamp experiments were performed on human mammary epithelial cells where the basolateral membrane was exposed to the pore-forming antibiotic amphotericin B dissolved in a solution with intracellular-like ionic composition. Addition of the Na+ channel inhibitor benzamil reduced the basal current, consistent with inhibition of Na+ uptake across the apical membrane, whereas the KCa3.1 channel blocker TRAM-34 produced an increase in current resulting from inhibition of basal K+ efflux. Treatment with two-pore potassium (K2P) channel blockers quinidine, bupivacaine and a selective TASK1/TASK3 inhibitor (PK-THPP) all produced concentration-dependent inhibition of apical K+ efflux. qRT-PCR experiments detected mRNA expression for nine K2P channel subtypes. Western blot analysis of biotinylated apical membranes and confocal immunocytochemistry revealed that at least five K2P subtypes (TWIK1, TREK1, TREK2, TASK1, and TASK3) are expressed in the apical membrane. Apical UTP also increased the current, but pretreatment with the PKC inhibitor GF109203X blocked the response. Similarly, direct activation of PKC with phorbol 12-myristate 13-acetate produced a similar increase in current as observed with UTP. These results support the conclusion that the basal level of K+ secretion involves constitutive activity of apical KCa3.1 channels and multiple K2P channel subtypes. Apical UTP evoked a transient increase in KCa3.1 channel activity, but over time caused persistent inhibition of K2P channel function leading to an overall decrease in K+ secretion.
Collapse
Affiliation(s)
| | - Nathan A Zaidman
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota , St. Paul, Minnesota
| | - Peter J Maniak
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota , St. Paul, Minnesota
| | | | - Scott M O'Grady
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
80
|
Hammann J, Bassetti D, White R, Luhmann HJ, Kirischuk S. α2 isoform of Na +,K +-ATPase via Na +,Ca 2+ exchanger modulates myelin basic protein synthesis in oligodendrocyte lineage cells in vitro. Cell Calcium 2018; 73:1-10. [PMID: 29880193 DOI: 10.1016/j.ceca.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/05/2018] [Accepted: 03/25/2018] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes in the CNS myelinate neuronal axons, facilitating rapid propagation of action potentials. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination. In oligodendrocyte lineage cell (OLC) monocultures MBP synthesis starts at DIV4. Ouabain (10 nM), a Na+,K+-ATPase (NKA) blocker, stimulates MBP synthesis. As OLCs express the α2 isoform of NKA (α2-NKA) that has a high affinity for ouabain, we hypothesized that α2-NKA mediates this effect. Knockdown of α2-NKA with small interfering (si)RNA (α2-siRNA) significantly potentiated MBP synthesis at DIV4 and 5. This effect was completely blocked by KB-R7943 (1 μM), a Na+,Ca2+ exchanger (NCX) antagonist. α2-NKA ablation increased the frequency of NCX-mediated spontaneous Ca2+ transients ([Ca2+]t) at DIV4, whereas in control OLC cultures comparable frequency of [Ca2+]t was observed at DIV5. At DIV6 almost no [Ca2+]t were observed either in control or in α2-siRNA-treated cultures. Immunocytochemical analyses showed that α2-NKA co-localizes with MBP in proximal processes of immature OLCs but is only weakly present in MBP-enriched membrane sheets. Knockdown of α2-NKA in cortical slice cultures did not change MBP levels but reduced co-localization of neurofilament- and MBP-positive compartments. We conclude that α2-NKA activity in OLCs affects NCX-mediated [Ca2+]t and the onset of MBP synthesis. We suggest therefore that neuronal activity, presumably in form of local extracellular [K+] changes, might locally influence NCX-mediated [Ca2+]t in OLC processes thus triggering local MBP synthesis in the vicinity of an active axon.
Collapse
Affiliation(s)
- Jens Hammann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
81
|
Howie J, Wypijewski KJ, Plain F, Tulloch LB, Fraser NJ, Fuller W. Greasing the wheels or a spanner in the works? Regulation of the cardiac sodium pump by palmitoylation. Crit Rev Biochem Mol Biol 2018; 53:175-191. [PMID: 29424237 DOI: 10.1080/10409238.2018.1432560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ubiquitous sodium/potassium ATPase (Na pump) is the most abundant primary active transporter at the cell surface of multiple cell types, including ventricular myocytes in the heart. The activity of the Na pump establishes transmembrane ion gradients that control numerous events at the cell surface, positioning it as a key regulator of the contractile and metabolic state of the myocardium. Defects in Na pump activity and regulation elevate intracellular Na in cardiac muscle, playing a causal role in the development of cardiac hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific protein cysteine residues; all subunits of the cardiac Na pump are palmitoylated. Palmitoylation of the pump's accessory subunit phospholemman (PLM) by the cell surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by altering the relationship between the pump catalytic α subunit and specifically bound membrane lipids. In this review, we discuss the functional impact of PLM palmitoylation on the cardiac Na pump and the molecular basis of recognition of PLM by its palmitoylating enzyme DHHC5, as well as effects of palmitoylation on Na pump cell surface abundance in the cardiac muscle. We also highlight the numerous unanswered questions regarding the cellular control of this fundamentally important regulatory process.
Collapse
Affiliation(s)
- Jacqueline Howie
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | | | - Fiona Plain
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Lindsay B Tulloch
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Niall J Fraser
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - William Fuller
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
82
|
Syeda SS, Sánchez G, Hong KH, Hawkinson JE, Georg GI, Blanco G. Design, Synthesis, and in Vitro and in Vivo Evaluation of Ouabain Analogues as Potent and Selective Na,K-ATPase α4 Isoform Inhibitors for Male Contraception. J Med Chem 2018; 61:1800-1820. [PMID: 29291372 PMCID: PMC5846083 DOI: 10.1021/acs.jmedchem.7b00925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Na,K-ATPase α4 is a testis-specific
plasma membrane Na+ and K+ transporter expressed
in sperm flagellum.
Deletion of Na,K-ATPase α4 in male mice results in complete
infertility, making it an attractive target for male contraception.
Na,K-ATPase α4 is characterized by a high affinity for the cardiac
glycoside ouabain. With the goal of discovering selective inhibitors
of the Na,K-ATPase α4 and of sperm function, ouabain derivatives
were modified at the glycone (C3) and the lactone (C17) domains. Ouabagenin
analogue 25, carrying a benzyltriazole moiety at C17,
is a picomolar inhibitor of Na,K-ATPase α4, with an outstanding
α4 isoform selectivity profile. Moreover, compound 25 decreased sperm motility in vitro and in vivo and affected sperm
membrane potential, intracellular Ca2+, pH, and hypermotility.
These results proved that the new ouabagenin triazole analogue is
an effective and selective inhibitor of Na,K-ATPase α4 and sperm
function.
Collapse
Affiliation(s)
- Shameem Sultana Syeda
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55414 , United States
| | - Gladis Sánchez
- Department of Molecular and Integrative Physiology , University of Kansas Medical Center , Kansas City , Kansas 66160 , United States
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55414 , United States
| | - Jon E Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55414 , United States
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55414 , United States
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology , University of Kansas Medical Center , Kansas City , Kansas 66160 , United States
| |
Collapse
|
83
|
Peter MS, Simi S. Hypoxia Stress Modifies Na +/K +-ATPase, H +/K +-ATPase, [Formula: see text], and nkaα1 Isoform Expression in the Brain of Immune-Challenged Air-Breathing Fish. J Exp Neurosci 2017; 11:1179069517733732. [PMID: 29238219 PMCID: PMC5721975 DOI: 10.1177/1179069517733732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022] Open
Abstract
Fishes are equipped to sense stressful stimuli and are able to respond to environmental stressor such as hypoxia with varying pattern of stress response. The functional attributes of brain to hypoxia stress in relation to ion transport and its interaction during immune challenge have not yet delineated in fish. We, therefore, explored the pattern of ion transporter functions and messenger RNA (mRNA) expression of α1-subunit isoforms of Na+/K+-ATPase (NKA) in the brain segments, namely, prosencephalon (PC), mesencephalon (MC), and metencephalon (MeC) in an obligate air-breathing fish exposed either to hypoxia stress (30 minutes forced immersion in water) or challenged with zymosan treatment (25-200 ng g−1 for 24 hours) or both. Zymosan that produced nonspecific immune responses evoked differential regulation of NKA, H+/K+-ATPase (HKA), and Na+/NH4+-ATPase (NNA) in the varied brain segments. On the contrary, hypoxia stress that demanded activation of NKA in PC and MeC showed a reversed NKA activity pattern in MeC of immune-challenged fish. A compromised HKA and NNA regulation during hypoxia stress was found in immune-challenged fish, indicating the role of these brain ion transporters to hypoxia stress and immune challenges. The differential mRNA expression of α1-subunit isoforms of NKA, nkaα1a, nkaα1b, and nkaα1c, in hypoxia-stressed brain showed a shift in its expression pattern during hypoxia stress-immune interaction in PC and MC. Evidence is thus presented for the first time that ion transporters such as HKA and NNA along with NKA act as functional brain markers which respond differentially to both hypoxia stress and immune challenges. Taken together, the data further provide evidence for a differential Na+, K+, H+, and NH4+ ion signaling that exists in brain neuronal clusters during hypoxia stress-immune interaction as a result of modified regulations of NKA, HKA, and NNA transporter functions and nkaα1 isoform regulation.
Collapse
Affiliation(s)
- Mc Subhash Peter
- Department of Zoology, University of Kerala, Thiruvananthapuram, India.,Inter-University Centre for Evolutionary and Integrative Biology, University of Kerala, Thiruvananthapuram, India
| | - Satheesan Simi
- Department of Zoology, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
84
|
Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na +,K +-ATPase Membrane Diffusion. Biophys J 2017; 113:2249-2260. [PMID: 28988699 DOI: 10.1016/j.bpj.2017.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
The Na+,K+-ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na+,K+-ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na+,K+-ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na+,K+-ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na+,K+-ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na+,K+-ATPase mutations and provide information about the interaction of Na+,K+-ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes.
Collapse
|
85
|
Stoica A, Larsen BR, Assentoft M, Holm R, Holt LM, Vilhardt F, Vilsen B, Lykke-Hartmann K, Olsen ML, MacAulay N. The α2β2 isoform combination dominates the astrocytic Na + /K + -ATPase activity and is rendered nonfunctional by the α2.G301R familial hemiplegic migraine type 2-associated mutation. Glia 2017; 65:1777-1793. [PMID: 28787093 DOI: 10.1002/glia.23194] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 11/11/2022]
Abstract
Synaptic activity results in transient elevations in extracellular K+ , clearance of which is critical for sustained function of the nervous system. The K+ clearance is, in part, accomplished by the neighboring astrocytes by mechanisms involving the Na+ /K+ -ATPase. The Na+ /K+ -ATPase consists of an α and a β subunit, each with several isoforms present in the central nervous system, of which the α2β2 and α2β1 isoform combinations are kinetically geared for astrocytic K+ clearance. While transcript analysis data designate α2β2 as predominantly astrocytic, the relative quantitative protein distribution and isoform pairing remain unknown. As cultured astrocytes altered their isoform expression in vitro, we isolated a pure astrocytic fraction from rat brain by a novel immunomagnetic separation approach in order to determine the expression levels of α and β isoforms by immunoblotting. In order to compare the abundance of isoforms in astrocytic samples, semi-quantification was carried out with polyhistidine-tagged Na+ /K+ -ATPase subunit isoforms expressed in Xenopus laevis oocytes as standards to obtain an efficiency factor for each antibody. Proximity ligation assay illustrated that α2 paired efficiently with both β1 and β2 and the semi-quantification of the astrocytic fraction indicated that the astrocytic Na+ /K+ -ATPase is dominated by α2, paired with β1 or β2 (in a 1:9 ratio). We demonstrate that while the familial hemiplegic migraine-associated α2.G301R mutant was not functionally expressed at the plasma membrane in a heterologous expression system, α2+/G301R mice displayed normal protein levels of α2 and glutamate transporters and that the one functional allele suffices to manage the general K+ dynamics.
Collapse
Affiliation(s)
- Anca Stoica
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Leanne Melissa Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michelle Lynne Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Nanna MacAulay
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
86
|
Homareda H, Otsu M, Yamamoto S, Ushimaru M, Ito S, Fukutomi T, Jo T, Eishi Y, Hara Y. A possible mechanism for low affinity of silkworm Na +/K +-ATPase for K . J Bioenerg Biomembr 2017; 49:463-472. [PMID: 29047027 DOI: 10.1007/s10863-017-9729-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
The affinity for K+ of silkworm nerve Na+/K+-ATPase is markedly lower than that of mammalian Na+/K+-ATPase (Homareda 2010). In order to obtain clues on the molecular basis of the difference in K+ affinities, we cloned cDNAs of silkworm (Bombyx mori) nerve Na+/K+-ATPase α and β subunits, and analyzed the deduced amino acid sequences. The molecular masses of the α and β subunits were presumed to be 111.5 kDa with ten transmembrane segments and 37.7 kDa with a single transmembrane segment, respectively. The α subunit showed 75% identity and 93% homology with the pig Na+/K+-ATPase α1 subunit. On the other hand, the amino acid identity of the β subunit with mammalian counterparts was as low as 30%. Cloned α and β cDNAs were co-expressed in cultured silkworm ovary-derived cells, BM-N cells, which lack endogenous Na+/K+-ATPase. Na+/K+-ATPase expressed in the cultured cells showed a low affinity for K+ and a high affinity for Na+, characteristic of the silkworm nerve Na+/K+-ATPase. These results suggest that the β subunit is responsible for the affinity for K+ of Na+/K+-ATPase.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Masahiro Otsu
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sachiko Yamamoto
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sayaka Ito
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Taeho Jo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshinobu Eishi
- Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukichi Hara
- Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
87
|
Meyer DJ, Gatto C, Artigas P. On the effect of hyperaldosteronism-inducing mutations in Na/K pumps. J Gen Physiol 2017; 149:1009-1028. [PMID: 29030398 PMCID: PMC5677107 DOI: 10.1085/jgp.201711827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mutated Na/K pumps in adrenal adenomas are thought to cause hyperaldosteronism via a gain-of-function effect involving a depolarizing inward current. The findings of Meyer et al. suggest instead that the common mechanism by which Na/K pump mutants lead to hyperaldosteronism is a loss-of-function. Primary aldosteronism, a condition in which too much aldosterone is produced and that leads to hypertension, is often initiated by an aldosterone-producing adenoma within the zona glomerulosa of the adrenal cortex. Somatic mutations of ATP1A1, encoding the Na/K pump α1 subunit, have been found in these adenomas. It has been proposed that a passive inward current transported by several of these mutant pumps is a "gain-of-function" activity that produces membrane depolarization and concomitant increases in aldosterone production. Here, we investigate whether the inward current through mutant Na/K pumps is large enough to induce depolarization of the cells that harbor them. We first investigate inward currents induced by these mutations in Xenopus Na/K pumps expressed in Xenopus oocytes and find that these inward currents are similar in amplitude to wild-type outward Na/K pump currents. Subsequently, we perform a detailed functional evaluation of the human Na/K pump mutants L104R, delF100-L104, V332G, and EETA963S expressed in Xenopus oocytes. By combining two-electrode voltage clamp with [3H]ouabain binding, we measure the turnover rate of these inward currents and compare it to the turnover rate for outward current through wild-type pumps. We find that the turnover rate of the inward current through two of these mutants (EETA963S and L104R) is too small to induce significant cell depolarization. Electrophysiological characterization of another hyperaldosteronism-inducing mutation, G99R, reveals the absence of inward currents under many different conditions, including in the presence of the regulator FXYD1 as well as with mammalian ionic concentrations and body temperatures. Instead, we observe robust outward currents, but with significantly reduced affinities for intracellular Na+ and extracellular K+. Collectively, our results point to loss-of-function as the common mechanism for the hyperaldosteronism induced by these Na/K pump mutants.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX.,School of Biological Sciences, Illinois State University, Normal, IL
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
88
|
Li L, Feng R, Xu Q, Zhang F, Liu T, Cao J, Fei S. Expression of the β3 subunit of Na +/K +-ATPase is increased in gastric cancer and regulates gastric cancer cell progression and prognosis via the PI3/AKT pathway. Oncotarget 2017; 8:84285-84299. [PMID: 29137423 PMCID: PMC5663595 DOI: 10.18632/oncotarget.20894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
ATP1B3 encodes the β3 subunit of Na+/K+-ATPase and is located in the q22-23 region of chromosome 3. Na+/K+-ATPase participates in normal cellular activities but also plays a crucial role in carcinogenesis. In the present study, we found that expression of the β3 subunit of Na+/K+-ATPase was increased in human gastric cancer tissues compared with that in normal matched tissues and that this increased expression predicted a poor outcome. ATP1B3 expression was elevated at both the mRNA and protein levels in gastric cancer cell lines relative to those in a normal gastric epithelial cell line. Interestingly, ATP1B3 knockdown significantly inhibited cell proliferation, colony-formation ability, migration, and invasion and increased apoptosis in human gastric carcinoma cell lines. Additionally, knockdown induced cell cycle arrest at the G2/M phase. Furthermore, we demonstrated that ATP1B3 silencing decreased the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phosphorylated AKT (p-AKT), indicating that ATP1B3 regulates gastric cancer cell progression via the PI3K/AKT signalling pathway. Hence, the β3 subunit of Na+/K+-ATPase plays an essential role in the tumourigenesis of gastric cancer and may be a potential prognostic and therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Ru Feng
- Department of Gastroenterology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Qian Xu
- Department of Gastroenterology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Feiyue Zhang
- Department of Gastroenterology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Tong Liu
- Department of Gastroenterology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
89
|
Antunes CD, Lucena MN, Garçon DP, Leone FA, McNamara JC. Low salinity-induced alterations in epithelial ultrastructure, Na+/K+-ATPase immunolocalization and enzyme kinetic characteristics in the gills of the thinstripe hermit crab,Clibanarius vittatus(Anomura, Diogenidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:380-397. [DOI: 10.1002/jez.2109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Claudia Doi Antunes
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
- Centro de Biologia Marinha; Universidade de São Paulo; São Sebastião SP Brazil
| | - Malson Neilson Lucena
- Departamento de Química; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Daniela Pereira Garçon
- Campus Universitário de Iturama; Universidade Federal do Triângulo Mineiro; Iturama MG Brazil
| | - Francisco Assis Leone
- Departamento de Química; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - John Campbell McNamara
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
- Centro de Biologia Marinha; Universidade de São Paulo; São Sebastião SP Brazil
| |
Collapse
|
90
|
Rojas M, Díaz P, León P, Gonzalez AA, González M, Barrientos V, Pestov NB, Alzamora R, Michea L. Mineralocorticoids modulate the expression of the β-3 subunit of the Na +, K +-ATPase in the renal collecting duct. Channels (Austin) 2017. [PMID: 28636485 DOI: 10.1080/19336950.2017.1344800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Renal sodium reabsorption depends on the activity of the Na+,K+-ATPase α/β heterodimer. Four α (α1-4) and 3 β (β1-3) subunit isoforms have been described. It is accepted that renal tubule cells express α1/β1 dimers. Aldosterone stimulates Na+,K+-ATPase activity and may modulate α1/β1 expression. However, some studies suggest the presence of β3 in the kidney. We hypothesized that the β3 isoform of the Na+,K+-ATPase is expressed in tubular cells of the distal nephron, and modulated by mineralocorticoids. We found that β3 is highly expressed in collecting duct of rodents, and that mineralocorticoids decreased the expression of β3. Thus, we describe a novel molecular mechanism of sodium pump modulation that may contribute to the effects of mineralocorticoids on sodium reabsorption.
Collapse
Affiliation(s)
- Macarena Rojas
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Pablo Díaz
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Pablo León
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Alexis A Gonzalez
- b Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Magdalena González
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Víctor Barrientos
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Nikolay B Pestov
- c Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry , Moscow , Russia.,d Department of Physiology and Pharmacology and Center for Diabetes and Endocrine Research , University of Toledo College of Medicine , Toledo , OH , USA
| | - Rodrigo Alzamora
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,e Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Santiago , Chile
| | - Luis Michea
- a Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,f Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| |
Collapse
|
91
|
Gable M, Ellis L, Fedorova OV, Bagrov AY, Askari A. Comparison of Digitalis Sensitivities of Na +/K +-ATPases from Human and Pig Kidneys. ACS OMEGA 2017; 2:3610-3615. [PMID: 28782051 PMCID: PMC5537699 DOI: 10.1021/acsomega.7b00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 05/16/2023]
Abstract
Digitalis drugs are selective inhibitors of the plasma membrane Na+/K+-ATPase. There are many studies on molecular mechanisms of digitalis interaction with purified pig kidney enzyme, with the tacit assumption that it is a good model of human kidney enzyme. However, previous studies on crude or recombinant human kidney enzymes are limited, and have not resulted in consistent findings on their digitalis sensitivities. Hence, we prepared comparably purified enzymes from human and pig kidneys and determined inhibitory constants of digoxin, ouabain, ouabagenin, bufalin, and marinobufagenin (MBG) on enzyme activity under optimal turnover conditions. We found that each compound had the same potency against the two enzymes, indicating that (i) the pig enzyme is an appropriate model of the human enzyme, and (ii) prior discrepant findings on human kidney enzymes were either due to structural differences between the natural and recombinant enzymes or because potencies were determined using binding constants of digitalis for enzymes under nonphysiological conditions. In conjunction with previous findings, our newly determined inhibitory constants of digitalis compounds for human kidney enzymes indicate that (i) of the compounds that have long been advocated to be endogenous hormones, only bufalin and MBG may act as such at kidney tubules, and (ii) beneficial effects of digoxin, the only digitalis with extensive clinical use, does not involve its inhibitory effect on renal tubular Na+/K+-ATPase.
Collapse
Affiliation(s)
- Marjorie
E. Gable
- Department
Biochemistry & Cancer Biology, College of Medicine & Life
Sciences, University of Toledo, 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
| | - Linda Ellis
- Department
Biochemistry & Cancer Biology, College of Medicine & Life
Sciences, University of Toledo, 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
| | - Olga V. Fedorova
- Laboratory
of Cardiovascular Science, National Institute of Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Alexei Y. Bagrov
- Laboratory
of Cardiovascular Science, National Institute of Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Sechenov
Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Amir Askari
- Department
Biochemistry & Cancer Biology, College of Medicine & Life
Sciences, University of Toledo, 3000 Arlington Avenue, MS 1010, Toledo, Ohio 43614, United States
- E-mail: . Phone: 419-383-3982
| |
Collapse
|
92
|
Abstract
The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.
Collapse
Affiliation(s)
- Michael V Clausen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Florian Hilbers
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
93
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
94
|
Wan F, Zhu Y, Han C, Xu Q, Wu J, Dai B, Zhang H, Shi G, Gu W, Ye D. Identification and validation of an eight-gene expression signature for predicting high Fuhrman grade renal cell carcinoma. Int J Cancer 2017; 140:1199-1208. [DOI: 10.1002/ijc.30535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Fangning Wan
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Yao Zhu
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Chengtao Han
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Qinghua Xu
- Canhelp Genomics Co. Ltd.; Hangzhou China
| | - Junlong Wu
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Bo Dai
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Hailiang Zhang
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Guohai Shi
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Weijie Gu
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| | - Dingwei Ye
- Department of Urology; Fudan University Shanghai Cancer Center; Shanghai People's Republic of China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai People's Republic of China
| |
Collapse
|
95
|
Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 2016; 71:484-505. [DOI: 10.1016/j.neubiorev.2016.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
96
|
Habeck M, Tokhtaeva E, Nadav Y, Ben Zeev E, Ferris SP, Kaufman RJ, Bab-Dinitz E, Kaplan JH, Dada LA, Farfel Z, Tal DM, Katz A, Sachs G, Vagin O, Karlish SJD. Selective Assembly of Na,K-ATPase α2β2 Heterodimers in the Heart: DISTINCT FUNCTIONAL PROPERTIES AND ISOFORM-SELECTIVE INHIBITORS. J Biol Chem 2016; 291:23159-23174. [PMID: 27624940 DOI: 10.1074/jbc.m116.751735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 12/31/2022] Open
Abstract
The Na,K-ATPase α2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca2+, whereas α1 has a more conventional role of maintaining ion homeostasis. The β subunit differentially regulates maturation, trafficking, and activity of α-β heterodimers. It is not known whether the distinct role of α2 in the heart is related to selective assembly with a particular one of the three β isoforms. We show here by immunofluorescence and co-immunoprecipitation that α2 is preferentially expressed with β2 in T-tubules of cardiac myocytes, forming α2β2 heterodimers. We have expressed human α1β1, α2β1, α2β2, and α2β3 in Pichia pastoris, purified the complexes, and compared their functional properties. α2β2 and α2β3 differ significantly from both α2β1 and α1β1 in having a higher K0.5K+ and lower K0.5Na+ for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K+ and shift of the E1P-E2P conformational equilibrium toward E1P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α2β2 and α2β3 over α1β1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K+ affinity of α2β2 could allow an acute response to raised ambient K+ concentrations in physiological conditions and explain the importance of α2β2 for cardiac muscle contractility. The high sensitivity of α2β2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α2β2-selective digoxin derivatives for reducing cardiotoxicity.
Collapse
Affiliation(s)
| | - Elmira Tokhtaeva
- the Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Yotam Nadav
- From the Department of Biomolecular Sciences and
| | - Efrat Ben Zeev
- Israel National Centre for Personalized Medicine, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Sean P Ferris
- the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Randal J Kaufman
- the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | | | - Jack H Kaplan
- the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607, and
| | - Laura A Dada
- the Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Zvi Farfel
- From the Department of Biomolecular Sciences and.,the School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel M Tal
- From the Department of Biomolecular Sciences and
| | - Adriana Katz
- From the Department of Biomolecular Sciences and
| | - George Sachs
- the Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Olga Vagin
- the Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073,
| | | |
Collapse
|
97
|
|
98
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
99
|
Holm TH, Isaksen TJ, Glerup S, Heuck A, Bøttger P, Füchtbauer EM, Nedergaard S, Nyengaard JR, Andreasen M, Nissen P, Lykke-Hartmann K. Cognitive deficits caused by a disease-mutation in the α3 Na(+)/K(+)-ATPase isoform. Sci Rep 2016; 6:31972. [PMID: 27549929 PMCID: PMC4994072 DOI: 10.1038/srep31972] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022] Open
Abstract
The Na+/K+-ATPases maintain Na+ and K+ electrochemical gradients across the plasma membrane, a prerequisite for electrical excitability and secondary transport in neurons. Autosomal dominant mutations in the human ATP1A3 gene encoding the neuron-specific Na+/K+-ATPase α3 isoform cause different neurological diseases, including rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC) with overlapping symptoms, including hemiplegia, dystonia, ataxia, hyperactivity, epileptic seizures, and cognitive deficits. Position D801 in the α3 isoform is a mutational hotspot, with the D801N, D801E and D801V mutations causing AHC and the D801Y mutation causing RDP or mild AHC. Despite intensive research, mechanisms underlying these disorders remain largely unknown. To study the genotype-to-phenotype relationship, a heterozygous knock-in mouse harboring the D801Y mutation (α3+/D801Y) was generated. The α3+/D801Y mice displayed hyperactivity, increased sensitivity to chemically induced epileptic seizures and cognitive deficits. Interestingly, no change in the excitability of CA1 pyramidal neurons in the α3+/D801Y mice was observed. The cognitive deficits were rescued by administration of the benzodiazepine, clonazepam, a GABA positive allosteric modulator. Our findings reveal the functional significance of the Na+/K+-ATPase α3 isoform in the control of spatial learning and memory and suggest a link to GABA transmission.
Collapse
Affiliation(s)
- Thomas Hellesøe Holm
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Toke Jost Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | | | - Steen Nedergaard
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, DK-8000 Aarhus, Denmark
| | - Mogens Andreasen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
100
|
Stanley CM, Gagnon DG, Bernal A, Meyer DJ, Rosenthal JJ, Artigas P. Importance of the Voltage Dependence of Cardiac Na/K ATPase Isozymes. Biophys J 2016; 109:1852-62. [PMID: 26536262 DOI: 10.1016/j.bpj.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022] Open
Abstract
Cardiac cells express more than one isoform of the Na, K-ATPase (NKA), the heteromeric enzyme that creates the Na(+) and K(+) gradients across the plasmalemma. Cardiac isozymes contain one catalytic α-subunit isoform (α1, α2, or α3) associated with an auxiliary β-subunit isoform (β1 or β2). Past studies using biochemical approaches have revealed minor kinetic differences between isozymes formed by different α-β isoform combinations; these results make it difficult to understand the physiological requirement for multiple isoforms. In intact cells, however, NKA enzymes operate in a more complex environment, which includes a substantial transmembrane potential. We evaluated the voltage dependence of human cardiac NKA isozymes expressed in Xenopus oocytes, and of native NKA isozymes in rat ventricular myocytes, using normal mammalian physiological concentrations of Na(+)o and K(+)o. We demonstrate that although α1 and α3 pumps are functional at all physiologically relevant voltages, α2β1 pumps and α2β2 pumps are inhibited by ∼75% and ∼95%, respectively, at resting membrane potentials, and only activate appreciably upon depolarization. Furthermore, phospholemman (FXYD1) inhibits pump function without significantly altering the pump's voltage dependence. Our observations provide a simple explanation for the physiological relevance of the α2 subunit (∼20% of total α subunits in rat ventricle): they act as a reserve and are recruited into action for extra pumping during the long-lasting cardiac action potential, where most of the Na(+) entry occurs. This strong voltage dependence of α2 pumps also helps explain how cardiotonic steroids, which block NKA pumps, can be a beneficial treatment for heart failure: by only inhibiting the α2 pumps, they selectively reduce NKA activity during the cardiac action potential, leading to an increase in systolic Ca(2+), due to reduced extrusion through the Na/Ca exchanger, without affecting resting Na(+) and Ca(2+) concentrations.
Collapse
Affiliation(s)
- Christopher M Stanley
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Dominique G Gagnon
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas; Department of Physics, Texas Tech University, Lubbock, Texas
| | - Adam Bernal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joshua J Rosenthal
- Universidad de Puerto Rico, Recinto de Ciencias Médicas, Instituto de Neurobiología, San Juan, Puerto Rico
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|