51
|
Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J. New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 2005; 14:45-54. [PMID: 16343907 DOI: 10.1016/j.tim.2005.11.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/25/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
A hyperphosphorylated guanosine nucleotide, (p)ppGpp, was initially identified as the effector molecule responsible for the stringent response in Escherichia coli. However, a rapidly growing number of reports proves that (p)ppGpp-mediated regulation is conserved in many bacteria and even in plants. It is now clear that (p)ppGpp acts as a global regulator during physiological adaptation of the organism to a plethora of environmental conditions. Adaptation is not only essential for surviving periods of stress and nutrient exhaustion but also for the interaction of bacteria with their eukaryotic host, as observed during pathogenesis and symbiosis, and for bacterial multicellular behaviour. Recently, there have been several new discoveries about the effects of (p)ppGpp levels, balanced by RelA-SpoT homologue proteins, in diverse organisms.
Collapse
Affiliation(s)
- Kristien Braeken
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
52
|
Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine 2005; 24:2027-34. [PMID: 16356600 DOI: 10.1016/j.vaccine.2005.11.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/09/2005] [Accepted: 11/15/2005] [Indexed: 11/24/2022]
Abstract
Systemic infection by Salmonella typhimurium requires coordinated expression of virulence genes found primarily in Salmonella Pathogenecity Islands (SPIs). We have previously reported that the intracellular signal that induces these virulence genes is a stringent signal molecule, ppGpp [Song et al. J Biol Chem 2003;279:34183]. In this study, we found that relA and spoT double mutant Salmonella (DeltappGpp strain), which is defective in ppGpp synthesis, was virtually avirulent in BALB/c mice. Subsequently, the live vaccine potential of the avirulent DeltappGpp Salmonella strain was determined. A single immunization with live DeltappGpp Salmonella efficiently protected mice from challenge with wild-type Salmonella at a dose 10(6)-fold above the LD50 30 days after immunization. Various assays revealed that immunization of mice with the DeltappGpp strain elicited both systemic and mucosal antibody responses, in addition to cell-mediated immunity.
Collapse
Affiliation(s)
- Hee Sam Na
- Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection, South Korea
| | | | | | | | | | | |
Collapse
|
53
|
|
54
|
Moris M, Braeken K, Schoeters E, Verreth C, Beullens S, Vanderleyden J, Michiels J. Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J Bacteriol 2005; 187:5460-9. [PMID: 16030240 PMCID: PMC1196010 DOI: 10.1128/jb.187.15.5460-5469.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.
Collapse
Affiliation(s)
- Martine Moris
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
55
|
Nyström T. Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 2005; 54:855-62. [PMID: 15522072 DOI: 10.1111/j.1365-2958.2004.04342.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulatory design of higher organisms is proposed to comprise a trade-off between activities devoted to reproduction and those devoted to cellular maintenance and repair. Excessive reproduction will inevitably limit the organism's ability to resist stress whereas excessively devoted stress defence systems may increase lifespan but reduce Darwinian fitness. The trade-off is arguably a consequence of limited resources in any one organism but the nature and identity of such limiting resources are ambiguous. Analysis of global control of gene expression in Escherichia coli suggests that reproduction and maintenance activities are also at odds in bacteria and that this antagonism may be a consequence of a battle between transcription factors for limiting RNA polymerase. The outcome of this battle is regulated and depends on the nutritional status of the environment, the levels of the alarmone ppGpp, and RNA polymerase availability. This paper reviews how the concentration of RNA polymerase available for transcription initiation may vary upon shifts between growth and growth-arrest conditions and how this adjustment may differentially affect genes whose functions relate to reproduction and maintenance.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology - Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden.
| |
Collapse
|
56
|
Abstract
The small nucleotide ppGpp acts as a global regulator of gene expression in bacteria. Proteomic analysis of cells lacking ppGpp has shown that this nucleotide might affect many more genes than previously anticipated. These findings and others suggest that ppGpp causes a redirection of transcription so that genes important for starvation survival and virulence are favoured at the expense of those required for growth and proliferation. In addition, new insights into the mechanism by which ppGpp affects gene expression have been achieved owing to in vitro studies of ppGpp function, complemented by structural studies of the ppGpp-RNA polymerase complex.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
57
|
Fernandes AP, Fladvad M, Berndt C, Andrésen C, Lillig CH, Neubauer P, Sunnerhagen M, Holmgren A, Vlamis-Gardikas A. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem 2005; 280:24544-52. [PMID: 15833738 DOI: 10.1074/jbc.m500678200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.
Collapse
Affiliation(s)
- Aristi Potamitou Fernandes
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Taschner NP, Yagil E, Spira B. A differential effect of sigmaS on the expression of the PHO regulon genes of Escherichia coli. MICROBIOLOGY-SGM 2005; 150:2985-2992. [PMID: 15347756 DOI: 10.1099/mic.0.27124-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RNA polymerase core associated with sigma(S) transcribes many genes related to stress or to the stationary phase. When cells enter a phase of phosphate starvation, the transcription of several genes and operons, collectively known as the PHO regulon, is strongly induced. The promoters of the PHO genes hitherto analysed are recognized by sigma(D)-associated RNA polymerase. A mutation in the gene that encodes sigma(S), rpoS, significantly increases the level of alkaline phosphatase activity and the overproduction of sigma(S) inhibits it. Other PHO genes such as phoE and ugpB are likewise affected by sigma(S). In contrast, pstS, which encodes a periplasmic phosphate-binding protein and is a negative regulator of PHO, is stimulated by sigma(S). The effect of sigma(S) on the PHO genes is at the transcriptional level. It is shown that a cytosine residue at position -13 is important for the positive effect of sigma(S) on pst. The interpretation of these observations is based on the competition between sigma(S) and sigma(D) for the binding to the core RNA polymerase.
Collapse
Affiliation(s)
- Natalia Pasternak Taschner
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, São Paulo-SP CEP:05508-900, Brazil
| | - Ezra Yagil
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, São Paulo-SP CEP:05508-900, Brazil
| |
Collapse
|
59
|
Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569:3-11. [PMID: 15603749 PMCID: PMC2729700 DOI: 10.1016/j.mrfmmm.2004.07.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/30/2004] [Accepted: 07/20/2004] [Indexed: 11/28/2022]
Abstract
Under stressful conditions mechanisms that increase genetic variation can bestow a selective advantage. Bacteria have several stress responses that provide ways in which mutation rates can be increased. These include the SOS response, the general stress response, the heat-shock response, and the stringent response, all of which impact the regulation of error-prone polymerases. Adaptive mutation appears to be process by which cells can respond to selective pressure specifically by producing mutations. In Escherichia coli strain FC40 adaptive mutation involves the following inducible components: (i) a recombination pathway that generates mutations; (ii) a DNA polymerase that synthesizes error-containing DNA; and (iii) stress responses that regulate cellular processes. In addition, a subpopulation of cells enters into a state of hypermutation, giving rise to about 10% of the single mutants and virtually all of the mutants with multiple mutations. These bacterial responses have implications for the development of cancer and other genetic disorders in higher organisms.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
60
|
Pizarro-Cerdá J, Tedin K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 2005; 52:1827-44. [PMID: 15186428 DOI: 10.1111/j.1365-2958.2004.04122.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous, overlapping global regulatory systems mediate the environmental signalling controlling the virulence of Salmonella typhimurium. With both extra- and intracellular lifestyles, unravelling the mechanisms involved in regulating Salmonella pathogenesis has been complex. Here, we report a factor co-ordinating environmental signals with global regulators involved in pathogenesis. An S. typhimuriumDeltarelADeltaspoT strain deficient in guanosine tetraphosphate (ppGpp) synthesis was found to be highly attenuated in vivo and non-invasive in vitro. The DeltarelADeltaspoT strain exhibited severely reduced expression of hilA and invF, encoding major transcriptional activators required for Salmonella pathogenicity island 1 (SPI-1) gene expression and at least two other pathogenicity islands. None of the growth conditions intended to mimic the intestinal milieu was capable of inducing hilA expression in the absence of ppGpp. However, the expression of global regulators of Salmonella virulence, RpoS and PhoP/Q, and RpoS- and PhoP/Q-dependent, non-virulence-related genes was not significantly different from the wild-type strain. The results indicate that ppGpp plays a central role as a regulator of virulence gene expression in S. typhimurium and implicates ppGpp as a major factor in the environmental and host-dependent regulation of Salmonella pathogenesis.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité Interactions Bactéries-Cellules, 28 Rue du Docteur Roux, F-75724 Cedex 15 Paris, France
| | | |
Collapse
|
61
|
Abstract
Bacteria enjoy an infinite capacity for reproduction as long as they reside in an environment supporting growth. However, their rapid growth and efficient metabolism ultimately results in depletion of growth-supporting substrates and the population of cells enters a phase defined as the stationary phase of growth. In this phase, their reproductive ability is gradually lost. The molecular mechanism underlying this cellular degeneration has not been fully deciphered. Still, recent analysis of the physiology and molecular biology of stationary-phase E. coli cells has revealed interesting similarities to the aging process of higher organisms. The similarities include increased oxidation of cellular constituents and its target specificity, the role of antioxidants and oxygen tension in determining life span, and an apparent trade-off between activities related to reproduction and survival.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology, Microbiology, Göteborg University, Box 462, 405 30 Göteborg , Sweden.
| |
Collapse
|
62
|
Lacour S, Leroy O, Kolb A, Landini P. Substitutions in Region 2.4 of σ70 Allow Recognition of the σS-Dependent aidB Promoter. J Biol Chem 2004; 279:55255-61. [PMID: 15507429 DOI: 10.1074/jbc.m410855200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strict dependence of transcription from the aidB promoter (PaidB) on the Esigma(S) form of RNA polymerase is because of the presence of a C nucleotide as the first residue of the -10 promoter sequence (-12C), which does not allow an open complex formation by Esigma(70). In this report, sigma(70) mutants carrying either the Q437H or the T440I single amino acid substitutions, which allow -12C recognition by sigma(70), were tested for their ability to carry out transcription from PaidB. The Gln-437 and Thr-440 residues are located in region 2.4 of sigma(70) and correspond to Gln-152 and Glu-155 in sigma(S). Interestingly, the Q437H mutant of sigma(70), but not T440I, was able to promote an open complex formation and to initiate transcription at PaidB. In contrast to T440I, a T440E mutant was proficient in carrying out transcription from PaidB. No sigma(70) mutant displayed significantly increased interaction with a PaidB mutant in which the -12C was substituted by a T (PaidB((C12T))), which is also efficiently recognized by wild type sigma(70). The effect of the T440E mutation suggests that the corresponding Glu-155 residue in sigma(S) might be involved in -12C recognition. However, substitution to alanine of the Glu-155 residue, as well as of Gln-152, in the sigma(S) protein did not significantly affect Esigma(S) interaction with PaidB. Our results reiterate the importance of the -12C residue for sigma(S)-specific promoter recognition and strongly suggest that interaction with the -10 sequence and open complex formation are carried out by different determinants in the two sigma factors.
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
63
|
Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 2004; 186:7186-95. [PMID: 15489429 PMCID: PMC523212 DOI: 10.1128/jb.186.21.7186-7195.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(S) subunit of RNA polymerase, the product of the rpoS gene, controls the expression of genes responding to starvation and cellular stresses. Using gene array technology, we investigated rpoS-dependent expression at the onset of stationary phase in Escherichia coli grown in rich medium. Forty-one genes were expressed at significantly lower levels in an rpoS mutant derived from the MG1655 strain; for 10 of these, we also confirmed rpoS and stationary-phase dependence by reverse transcription-PCR. Only seven genes (dps, osmE, osmY, sodC, rpsV, wrbA, and yahO) had previously been recognized as rpoS dependent. Several newly identified rpoS-dependent genes are involved in the uptake and metabolism of amino acids, sugars, and iron. Indeed, the rpoS mutant strain shows severely impaired growth on some sugars such as fructose and N-acetylglucosamine. The rpoS gene controls the production of indole, which acts as a signal molecule in stationary-phase cells, via regulation of the tnaA-encoded tryptophanase enzyme. Genes involved in protein biosynthesis, encoding the ribosome-associated protein RpsV (sra) and the initiation factor IF-1 (infA), were also induced in an rpoS-dependent fashion. Using primer extension, we determined the promoter sequences of a selection of rpoS-regulated genes representative of different functional classes. Significant fractions of these promoters carry sequence features specific for Esigma(S) recognition of the -10 region, such as cytosines at positions -13 (70%) and -12 (30%) as well as a TG motif located upstream of the -10 region (50%), thus supporting the TGN(0-2)C(C/T)ATA(C/A)T consensus sequence recently proposed for sigma(S).
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
64
|
Mergulhão FJM, Taipa MA, Cabral JMS, Monteiro GA. Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 2004; 109:31-43. [PMID: 15063612 DOI: 10.1016/j.jbiotec.2003.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Revised: 09/08/2003] [Accepted: 10/14/2003] [Indexed: 10/26/2022]
Abstract
This work evaluates three potential bottlenecks in recombinant human proinsulin secretion by Escherichia coli: protein stability, secretion capacity and the effect of molecular size on secretion efficiency. A maximum secretion level of 7.2 mg g(-1) dry cell weight was obtained in the periplasm of E. coli JM109(DE3) host cells. This value probably represents an upper limit in the transport capacity of E. coli cells secreting ZZ-proinsulin and similar proteins with the protein A signal peptide. A selective deletion study was performed in the fusion partner and no effect of the molecular size (17-24 kDa) was detected on secretion efficiency. The protective effect against proteolysis provided by the ZZ domain was thoroughly demonstrated in the periplasm of E. coli and it was also shown that a single Z domain is able to provide the same protection level without compromising the downstream processing. The use of this shorter fusion partner enables a 1.6-fold increase in the recovery of the target protein after cleavage of the affinity handle.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
65
|
Erickson DL, Lines JL, Pesci EC, Venturi V, Storey DG. Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun 2004; 72:5638-45. [PMID: 15385461 PMCID: PMC517598 DOI: 10.1128/iai.72.10.5638-5645.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response is a mechanism by which bacteria adapt to nutritional deficiencies through the production of the guanine nucleotides ppGpp and pppGpp, produced by the RelA enzyme. We investigated the role of the relA gene in the ability of an extracellular pathogen, Pseudomonas aeruginosa, to cause infection. Strains lacking the relA gene were created from the prototypical laboratory strain PAO1 as well as the mucoid cystic fibrosis isolate 6106, which lacks functional quorum-sensing systems. The absence of relA abolished the production of ppGpp and pppGpp under conditions of amino acid starvation. We found that strains lacking relA exhibited reduced virulence in a D. melanogaster feeding assay. In conditions of low magnesium, the relA gene enhanced production of the cell-cell signal N-[3-oxododecanoyl]-l-homoserine lactone, whereas relA reduced the production of the 2-heptyl-3-hydroxy-4-quinolone signal during serine hydroxamate induction of the stringent response. In the relA mutant, alterations in the Pseudomonas quinolone system pathways seemed to increase the production of pyocyanin and decrease the production of elastase. Deletion of relA also resulted in reduced levels of the RpoS sigma factor. These results suggest that adjustment of cellular ppGpp and pppGpp levels could be an important regulatory mechanism in P. aeruginosa adaptation in pathogenic relationships.
Collapse
Affiliation(s)
- David L Erickson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
66
|
Silva AJ, Benitez JA. Transcriptional regulation of Vibrio cholerae hemagglutinin/protease by the cyclic AMP receptor protein and RpoS. J Bacteriol 2004; 186:6374-82. [PMID: 15375117 PMCID: PMC516606 DOI: 10.1128/jb.186.19.6374-6382.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae secretes a Zn-dependent metalloprotease, hemagglutinin/protease (HA/protease), which is encoded by hapA and displays a broad range of potentially pathogenic activities. Production of HA/protease requires transcriptional activation by the quorum-sensing regulator HapR. In this study we demonstrate that transcription of hapA is growth phase dependent and specifically activated in the deceleration and stationary growth phases. Addition of glucose in these phases repressed hapA transcription by inducing V. cholerae to resume exponential growth, which in turn diminished the expression of a rpoS-lacZ transcriptional fusion. Contrary to a previous observation, we demonstrate that transcription of hapA requires the rpoS-encoded sigma(s) factor. The cyclic AMP (cAMP) receptor protein (CRP) strongly enhanced hapA transcription in the deceleration phase. Analysis of rpoS and hapR mRNA in isogenic CRP+ and CRP- strains suggested that CRP enhances the transcription of rpoS and hapR. Analysis of strains containing hapR-lacZ and hapA-lacZ fusions confirmed that hapA is transcribed in response to concurrent quorum-sensing and nutrient limitation stimuli. Mutations inactivating the stringent response regulator RelA and the HapR-controlled AphA regulator did not affect HA/protease expression. Electrophoretic mobility shift experiments showed that pure cAMP-CRP and HapR alone do not bind the hapA promoter. This result suggests that HapR activation of hapA differs from its interaction with the aphA promoter and could involve additional factors.
Collapse
Affiliation(s)
- Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry & Immunology, Atlanta, Georgia 30310-1495, USA
| | | |
Collapse
|
67
|
Zhang HB, Wang C, Zhang LH. The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol 2004; 52:1389-401. [PMID: 15165241 DOI: 10.1111/j.1365-2958.2004.04061.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A unique signal degradation system has recently been discovered in Agrobacterium tumefaciens. Upon entering stationary phase, A. tumefaciens terminates quorum sensing-dependent Ti-plasmid conjugation by degradation of acyl homoserine lactone (AHL) quormone via the enzyme AttM (AHL-lactonase). attM, together with attK and attL, constitute one transcriptional unit subjected to the control of a common promoter. AttJ, the other member of the signal degradation system, is an IclR-like negative transcriptional factor, which tightly represses the expression of AttM at the early stage of bacterial growth. In this study, we found that this quormone degradation system is activated by either carbon or nitrogen starvation. Quormone degradation was significantly delayed when bacterial culture was supplemented with extra carbon or nitrogen source in the nutrient-limited minimal medium before the onset of stationary phase. To identify the signalling pathway and regulatory mechanisms that mediate quormone degradation, we constructed a reporter strain A6(attKLM::lacZ) in which the promoterless lacZ was transcriptionally fused to the attKLM promoter. Transposon mutagenesis of strain A6(attKLM::lacZ) led to identification of the relA gene, which encodes the stress alarmone (p)ppGpp synthetase. Tn5 knock-out of relA abolished the stationary phase-dependent expression of attM. We concluded that the A. tumefaciens quormone degradation system is coupled to and regulated by the generic (p)ppGpp stress response machinery.
Collapse
Affiliation(s)
- Hai-Bao Zhang
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | |
Collapse
|
68
|
Bachman MA, Swanson MS. Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 2004; 72:2468-76. [PMID: 15102753 PMCID: PMC387865 DOI: 10.1128/iai.72.5.2468-2476.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Legionella pneumophila alternates between two states: replication within phagocytes and transmission between host amoebae or macrophages. In broth cultures that model this life cycle, during the replication period, CsrA inhibits expression of transmission traits. When nutrients become limiting, the alarmone (p)ppGpp accumulates and the sigma factors RpoS and FliA and the positive activators LetA/S and LetE promote differentiation to the transmissible form. Here we show that when cells enter the postexponential growth phase, RpoS increases expression of the transmission genes fliA, flaA, and mip, factors L. pneumophila needs to establish a new replication niche. In contrast, in exponential (E)-phase cells whose (p)ppGpp levels are low, rpoS inhibits expression of transmission traits, on the basis of three separate observations. First, rpoS RNA levels peak in the E phase, suggestive of a role for RpoS during replication. Second, in multiple copies, rpoS decreases the amounts of csrA, letE, fliA, and flaA transcripts and inhibits the transmission traits of motility, infectivity, and cytotoxicity. Third, rpoS blocks expression of cytotoxicity and motility by E-phase bacteria that have been induced to express the LetA activator ectopically. The data are discussed in the context of a model in which the alarmone (p)ppGpp enables RpoS to outcompete other sigma factors for binding to RNA polymerase to promote transcription of transmission genes, while LetA/S acts in parallel to relieve CsrA posttranscriptional repression of the transmission regulon. By coupling transcriptional and posttranscriptional control pathways, intracellular L. pneumophila could respond to stress by rapidly differentiating to a transmissible form.
Collapse
Affiliation(s)
- Michael A Bachman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
69
|
Boaretti M, Lleò MM, Bonato B, Signoretto C, Canepari P. Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ Microbiol 2004; 5:986-96. [PMID: 14510852 DOI: 10.1046/j.1462-2920.2003.00497.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When exposed to stress-provoking environmental conditions such as those of ground waters, many medically important bacteria have been shown to be capable of activating a survival strategy known as the viable but non-culturable (VBNC) state. In this state bacteria are no longer culturable on conventional growth media, but the cells maintain their viability and pathogenicity genes/factors and can start dividing again, in a part of the cell population, upon restoration of favourable environmental conditions. Little is known about the genetic mechanisms underlying the VBNC state. In this study we show evidence of involvement of the rpoS gene in persistence of Escherichia coli in the VBNC state. The kinetics of entry into the non-culturable state and duration of cell viability were measured in two E. coli mutants carrying an inactivated rpoS gene and compared with those of the parents. For these experiments, laboratory microcosms consisting of an artificial oligotrophic medium incubated at 4 degrees C were used. The E. coli parental strains reached the non-culturable state in 33 days when the plate counts were evaluated on Luria-Bertani agar containing sodium pyruvate, whereas cells of the rpoS mutants lost their culturability in only 21 days. Upon reaching unculturability the parents yielded respiring cells and cells with intact membranes for at least the next three weeks and resuscitation was allowed during this time. In contrast, the RpoS- mutant cells demonstrated intact membranes for only two weeks and a very restricted (<7 days) resuscitation capability. Guanosine 3',5'-bispyrophosphate (ppGpp) acts as a positive regulator during the production and functioning of RpoS. A mutant deficient in ppGpp production behaved like the rpoS mutants, while overproducers of ppGpp displayed a vitality at least comparable to that of RpoS+ strains. These results suggest that the E. coli parental strains enter the VBNC state which lasts for, at least, three weeks, after which apparently all the cells die. The rpoS mutants do not activate this survival strategy and early die. This implies involvement of the rpoS gene in E. coli persistence in the VBNC state.
Collapse
Affiliation(s)
- Marzia Boaretti
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37124 Verona, Italy
| | | | | | | | | |
Collapse
|
70
|
Ferenci T. What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 2003; 11:457-61. [PMID: 14557028 DOI: 10.1016/j.tim.2003.08.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pathogenic and commensal Escherichia coli isolates frequently contain defective alleles of the mutS and rpoS genes, located in a highly polymorphic segment of the chromosome. The environments leading to enrichment of rpoS mutations and the selective advantages of these mutants are becoming apparent. Unexpectedly, rpoS defects occur because of a basic design limitation in cellular regulation. Antagonistic pleiotropy results from the futile competition between different sigma factors associated with the RNA polymerase, and drives the elimination of RpoS (or sigma(S)) in environments requiring high levels of transcription that is dependent on RpoD (or sigma(D) or sigma(70)). Nutrient-limited environments provide an ideal breeding ground for rpoS mutations. By contrast, in other settings, increased stress resistance selects for restoration of rpoS function. Hence extensive polymorphism in the mutS-rpoS region is postulated to result from cycling between environments in which the functional or non-functional genes provide distinct fitness advantages.
Collapse
Affiliation(s)
- Thomas Ferenci
- School of Molecular and Microbial Biosciences G08, University of Sydney, 2006, NSW, Australia.
| |
Collapse
|
71
|
Yang X, Ishiguro EE. Temperature-sensitive growth and decreased thermotolerance associated with relA mutations in Escherichia coli. J Bacteriol 2003; 185:5765-71. [PMID: 13129947 PMCID: PMC193974 DOI: 10.1128/jb.185.19.5765-5771.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relA gene of Escherichia coli encodes guanosine 3',5'-bispyrophosphate (ppGpp) synthetase I, a ribosome-associated enzyme that is activated during amino acid starvation. The stringent response is thought to be mediated by ppGpp. Mutations in relA are known to result in pleiotropic phenotypes. We now report that three different relA mutant alleles, relA1, relA2, and relA251::kan, conferred temperature-sensitive phenotypes, as demonstrated by reduced plating efficiencies on nutrient agar (Difco) or on Davis minimal agar (Difco) at temperatures above 41 degrees C. The relA-mediated temperature sensitivity was osmoremedial and could be completely suppressed, for example, by the addition of NaCl to the medium at a concentration of 0.3 M. The temperature sensitivities of the relA mutants were associated with decreased thermotolerance; e.g., relA mutants lost viability at 42 degrees C, a temperature that is normally nonlethal. The spoT gene encodes a bifunctional enzyme possessing ppGpp synthetase and ppGpp pyrophosphohydrolase activities. The introduction of the spoT207::cat allele into a strain bearing the relA251::kan mutation completely abolished ppGpp synthesis. This ppGpp null mutant was even more temperature sensitive than the strain carrying the relA251::kan mutation alone. The relA-mediated thermosensitivity was suppressed by certain mutant alleles of rpoB (encoding the beta subunit of RNA polymerase) and spoT that have been previously reported to suppress other phenotypic characteristics conferred by relA mutations. Collectively, these results suggest that ppGpp may be required in some way for the expression of genes involved in thermotolerance.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | |
Collapse
|
72
|
Mergulhão FJM, Monteiro GA, Larsson G, Sandén AM, Farewell A, Nystrom T, Cabral JMS, Taipa MA. Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB. Appl Microbiol Biotechnol 2003; 61:495-501. [PMID: 12764564 DOI: 10.1007/s00253-003-1232-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 12/17/2002] [Accepted: 12/19/2002] [Indexed: 10/25/2022]
Abstract
The use of the uspA and uspB promoters (universal stress promoters) for heterologous protein production in Escherichia coli is described. Best results were obtained with a moderate copy number vector (15-60 copies) bearing the uspA promoter, reaching 4.6 mg/g dry cell weight (DCW) of ZZ-proinsulin secreted to the periplasm and 1.9 mg/g DCW secreted to the culture medium. These values are about 1.7-fold higher than those previously reported with the same ZZ fusion tag and the SpA leader peptide showing that these stress promoters are potentially valuable for recombinant protein secretion in E. coli. It is further demonstrated that the use of M9 minimal medium is advantageous for protein secretion as compared to LB rich medium.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Jöres L, Wagner R. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem 2003; 278:16834-43. [PMID: 12621053 DOI: 10.1074/jbc.m300196200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of stable RNA genes is known to be dramatically reduced in the presence of guanosine tetraphosphate (ppGpp), the mediator of the stringent response. Using in vitro transcription systems with ribosomal RNA P1 promoters, we have analyzed which step of the initiation cycle is inhibited by the effector ppGpp. We show that formation of the ternary transcription initiation complex consisting of RNA polymerase holoenzyme, the promoter DNA, and the first initiating nucleotide triphosphate is the major step at which ppGpp exerts its regulation. Neither primary binding of RNA polymerase to the promoter nor isomerization to the open binary complexes or the subsequent promoter clearance steps contributes notably to the observed inhibition. The effect of ppGpp-dependent inhibition in the formation of the ternary transcription initiation complex could be mimicked by nucleotide derivatives known to bind to the RNA polymerase active center. Using these model compounds, almost identical inhibition characteristics were observed as seen with ppGpp. The results support the previously published model, which suggests that ppGpp-dependent inhibition is based on competition between the inhibitor molecules and NTP substrates for access to the active center of RNA polymerase.
Collapse
Affiliation(s)
- Lars Jöres
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
74
|
Abstract
Like ageing insects, worms and mammals, growth-arrested Escherichia coli cells accumulate oxidatively damaged proteins. In the early stages of the E. coli stationary phase, this oxidation is caused by an increased production of aberrant proteins, which are especially susceptible to oxidative attack. This route of oxidation appears to elude the classical oxidative defence proteins. The failure of growth-arrested cells fully to combat oxidative damage may also be linked to a trade-off between proliferation activities (primarily directed by the housekeeping sigma factor, sigma70) and maintenance (primarily directed by sigmaS). This trade-off is regulated by the alarmone ppGpp such that elevated ppGpp levels allow sigmaS, and other alternative sigma factors, to work in concert with sigma70 by shifting their relative competitiveness for RNA polymerase binding. However, even during elevated ppGpp levels and stasis, E. coli cells maintain a basal transcription of housekeeping sigma70-dependent genes, and resources are thus partly diverted from maintenance and stress defences to activities relating to proliferation. An alternative view argues for ppGpp being involved in programmed cell death upon growth arrest by regulating chromosomally located toxin-antitoxin loci. Thus, models of bacterial senescence, like those dealing with ageing in higher organisms, encompass both stochastic deterioration theories and programming theories. This review summarizes and evaluates these models.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology - Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden.
| |
Collapse
|
75
|
Laurie AD, Bernardo LMD, Sze CC, Skarfstad E, Szalewska-Palasz A, Nyström T, Shingler V. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 2003; 278:1494-503. [PMID: 12421818 DOI: 10.1074/jbc.m209268200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some promoters, including the DmpR-controlled sigma(N)-dependent Po promoter, are effectively rendered silent in cells lacking the nutritional alarmone (p)ppGpp. Here we demonstrate that four mutations within the housekeeping sigma(D)-factor can restore sigma(N)-dependent Po transcription in the absence of (p)ppGpp. Using both in vitro and in vivo transcription competition assays, we show that all the four sigma(D) mutant proteins are defective in their ability to compete with sigma(N) for available core RNA polymerase and that the magnitude of the defect reflects the hierarchy of restoration of transcription from Po in (p)ppGpp-deficient cells. Consistently, underproduction of sigma(D) or overproduction of the anti-sigma(D) protein Rsd were also found to allow (p)ppGpp-independent transcription from the sigma(N)-Po promoter. Together with data from the direct effects of (p)ppGpp on sigma(N)-dependent Po transcription and sigma-factor competition, the results support a model in which (p)ppGpp serves as a master global regulator of transcription by differentially modulating alternative sigma-factor competition to adapt to changing cellular nutritional demands.
Collapse
Affiliation(s)
- Andrew D Laurie
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
76
|
Magnusson LU, Nystrom T, Farewell A. Underproduction of sigma 70 mimics a stringent response. A proteome approach. J Biol Chem 2003; 278:968-73. [PMID: 12421813 DOI: 10.1074/jbc.m209881200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When Escherichia coli cells enter stationary phase due to carbon starvation the synthesis of ribosomal proteins is rapidly repressed. In a DeltarelA DeltaspoT mutant, defective in the production of the alarmone guanosine tetraphosphate (ppGpp), this regulation of the levels of the protein synthesizing system is abolished. Using a proteomic approach we demonstrate that the production of the vast majority of detected E. coli proteins are decontrolled during carbon starvation in the DeltarelA DeltaspoT strain and that the starved cells behave as if they were growing exponentially. In addition we show that the inhibition of ribosome synthesis by the stringent response can be qualitatively mimicked by artificially lowering the levels of the housekeeping sigma factor, sigma(70). In other words, genes encoding the protein-synthesizing system are especially sensitive to reduced availability of sigma(70) programmed RNA polymerase. This effect is not dependent on ppGpp since lowering the levels of sigma(70) gives a similar but less pronounced effect in a ppGpp(0) strain. The data is discussed in view of the models advocating for a passive control of gene expression during stringency based on alterations in RNA polymerase availability.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, Sweden
| | | | | |
Collapse
|
77
|
Affiliation(s)
- Helen Murphy
- Laboratory of Molecular Genetics, NICHD, NIH, Building 6, Room 3B-314, Bethesda, Maryland 20892-2785, USA
| | | |
Collapse
|
78
|
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the tick Ixodes scapularis. A 2.9-kb fragment containing a putative spoT gene was isolated from B. burgdorferi genomic DNA by PCR amplification and cloned into a pBAD24 vector. The cloned gene complemented Escherichia coli mutant strain CF1693, which contains deletions of both the relA and spoT genes. The spoT gene in E. coli encodes a bifunctional enzyme capable of synthesizing and degrading (p)ppGpp, which mediates the stringent response during carbon source starvation. B. burgdorferi has been reported to have a stress response to serum starvation. Thin-layer chromatography was used to detect (p)ppGpp extracted from H(3)(32)PO(4)-labeled B. burgdorferi cells starved for serum in RPMI. B. burgdorferi spoT gene expression was characterized during fatty acid starvation. Northern analysis of spoT revealed detectable message at 2.5 min of starvation in RPMI. Expression of spoT during serum starvation increased approximately 6-fold during the 30 min that starvation conditions were maintained. Further, expression of spoT decreased when serum was added to serum-starved cells. Reverse transcriptase PCR (RT-PCR) was used to detect spoT mRNA from approximately 10(6) cells starved for serum in RPMI for 2.5 to 30 min or incubated in tick saliva for 15 min. Northern blot analysis suggests that spoT transcript was approximately 900 nucleotides in length. RT-PCR amplification of the transcript using several sets of primers confirmed this finding. Additionally, a truncated clone containing only the first 950 bp of the 2,001-bp spoT open reading frame was able to complement E. coli CF1693. The data suggest that B. burgdorferi exhibits a stringent response to serum starvation and during incubation in tick saliva.
Collapse
Affiliation(s)
- Marc B Concepcion
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, USA
| | | |
Collapse
|
79
|
Medina G, Juárez K, Soberón-Chávez G. The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 2003; 185:377-80. [PMID: 12486077 PMCID: PMC141836 DOI: 10.1128/jb.185.1.377-380.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Accepted: 10/14/2002] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa rhlAB operon encodes the enzyme rhamnosyltransferase 1, which produces the biosurfactant mono-rhamnolipid; rhlAB induction is dependent on the quorum-sensing transcription activator RhlR complexed with the autoinducer N-butyryl-homoserine lactone (C(4)-HSL). In this work we studied rhlAB induction in a P. aeruginosa and Escherichia coli background. We found that, in both bacteria, its expression is not induced during the logarithmic phase of growth even in the presence of RhlR and C(4)-HSL. Additionally, we found that rhlAB expression is partially sigma(s) dependent.
Collapse
Affiliation(s)
- Gerardo Medina
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62251, Mexico
| | | | | |
Collapse
|
80
|
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J Bacteriol 2002; 184:6976-86. [PMID: 12446648 PMCID: PMC135471 DOI: 10.1128/jb.184.24.6976-6986.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation induces the nitrogen-regulated (Ntr) response, which includes proteins that assimilate ammonia and scavenge nitrogen. Nitrogen limitation also induces catabolic pathways that degrade four metabolically related compounds: putrescine, arginine, ornithine, and gamma-aminobutyrate (GABA). We analyzed the structure, function, and regulation of the gab operon, whose products degrade GABA, a proposed intermediate in putrescine catabolism. We showed that the gabDTPC gene cluster constitutes an operon based partially on coregulation of GabT and GabD activities and the polarity of an insertion in gabT on gabC. A DeltagabDT mutant grew normally on all of the nitrogen sources tested except GABA. The unexpected growth with putrescine resulted from specific induction of gab-independent enzymes. Nac was required for gab transcription in vivo and in vitro. Ntr induction did not require GABA, but various nitrogen sources did not induce enzyme activity equally. A gabC (formerly ygaE) mutant grew faster with GABA and had elevated levels of gab operon products, which suggests that GabC is a repressor. GabC is proposed to reduce nitrogen source-specific modulation of expression. Unlike a wild-type strain, a gabC mutant utilized GABA as a carbon source and such growth required sigma(S). Previous studies showing sigma(S)-dependent gab expression in stationary phase involved gabC mutants, which suggests that such expression does not occur in wild-type strains. The seemingly narrow catabolic function of the gab operon is contrasted with the nonspecific (nitrogen source-independent) induction. We propose that the gab operon and the Ntr response itself contribute to putrescine and polyamine homeostasis.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
81
|
Navarro-Lloréns JM, Martínez-García E, Tormo A. Enterobacter cloacae rpoS promoter and gene organization. Arch Microbiol 2002; 179:33-41. [PMID: 12471502 DOI: 10.1007/s00203-002-0493-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Revised: 09/20/2002] [Accepted: 09/24/2002] [Indexed: 12/01/2022]
Abstract
The upstream region of the Enterobacter cloacae strain CECT960 rpoS gene was sequenced. An IS 10R element was found within the nlpD gene, between rpoSp and rpoS. The rpoS promoter, although functional, did not drive transcription of the gene in this strain. However, rpoS transcription depended on this promoter in strains that lacked the insertion sequence in nlpD. rpoSp showed growth-phase-dependent, sigma(S)-independent regulation. Transcription from rpoSp was strongly inhibited by glucose even though it was cAMP-receptor-protein (CRP)-independent. Its functionality was also independent of both integration host factor (IHF) and the alarmone ppGpp. RpoS-dependent resistance to some environmental stresses showed a quantitative response to RpoS levels under some conditions (alkaline pH and high osmolarity) but not others (acidic pH, high temperature, and UV irradiation).
Collapse
Affiliation(s)
- Juana María Navarro-Lloréns
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
82
|
Abstract
Analysis of senescent Escherichia coli cells reveals a link between protein oxidation and the fidelity of the translational apparatus. This model system has also provided a mechanistic molecular explanation for a trade-off between reproduction and survival activities, which may inspire proponents of the disposable soma theory and antagonistic pleiotropy hypothesis of aging.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology - Microbiology, Göteborg University Medicinaregatan 9C, Göteborg, Sweden.
| |
Collapse
|
83
|
Tani TH, Khodursky A, Blumenthal RM, Brown PO, Matthews RG. Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 2002; 99:13471-6. [PMID: 12374860 PMCID: PMC129697 DOI: 10.1073/pnas.212510999] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2002] [Indexed: 11/18/2022] Open
Abstract
Bacterial adaptation to nutrient limitation and increased population densities is central to survival and virulence. Surprisingly, <3% of Escherichia coli genes are known to play roles specific to the stationary phase. There is evidence that the leucine-responsive regulatory protein (Lrp) may play an important role in stationary phase, so this study used microarrays representing >98% of E. coli genes to more comprehensively identify those controlled by Lrp. The primary analysis compared isogenic Lrp(+) and Lrp(-) strains in cells growing in steady state in glucose minimal medium, either in the presence or absence of leucine. More than 400 genes were significantly Lrp-responsive under the conditions used. Transcription of 147 genes was lower in Lrp(+) than in Lrp(-) cells whether or not leucine was present; most of these genes were tightly coregulated under several conditions, including a burst of synthesis on transition to stationary phase. This cluster includes 56 of 115 genes already known to play roles in stationary phase. Our results suggest that the actual number of genes induced on entrance into stationary phase is closer to 200 and that Lrp affects nearly three-quarters of them, including genes involved in response to nutrient limitation, high concentrations of organic acids, and osmotic stress.
Collapse
Affiliation(s)
- Travis H Tani
- Biophysics Research Division and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
84
|
Brown L, Gentry D, Elliott T, Cashel M. DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 2002; 184:4455-65. [PMID: 12142416 PMCID: PMC135238 DOI: 10.1128/jb.184.16.4455-4465.2002] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor (also called sigmaS or sigma38) is known to regulate at least 50 genes in response to environmental sources of stress or during entry into stationary phase. Regulation of RpoS abundance and activity is complex, with many factors participating at multiple levels. One factor is the nutritional stress signal ppGpp. The absence of ppGpp blocks or delays the induction of rpoS during entry into stationary phase. Artificially inducing ppGpp, without starvation, is known to induce rpoS during the log phase 25- to 50-fold. Induction of ppGpp is found to have only minor effects on rpoS transcript abundance or on RpoS protein stability; instead, the efficiency of rpoS mRNA translation is increased by ppGpp as judged by both RpoS pulse-labeling and promoter-independent effects on lacZ fusions. DksA is found to affect RpoS abundance in a manner related to ppGpp. Deleting dksA blocks rpoS induction by ppGpp. Overproduction of DksA induces rpoS but not ppGpp. Deleting dksA neither alters regulation of ppGpp in response to amino acid starvation nor nullifies the inhibitory effects of ppGpp on stable RNA synthesis. Although this suggests that dksA is epistatic to ppGpp, inducing ppGpp does not induce DksA. A dksA deletion does display a subset of the same multiple-amino-acid requirements found for ppGpp(0) mutants, but overproducing DksA does not satisfy ppGpp(0) requirements. Sequenced spontaneous extragenic suppressors of dksA polyauxotrophy are frequently the same T563P rpoB allele that suppresses a ppGpp(0) phenotype. We propose that DksA functions downstream of ppGpp but indirectly regulates rpoS induction.
Collapse
Affiliation(s)
- Larissa Brown
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
85
|
Chang DE, Smalley DJ, Conway T. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 2002; 45:289-306. [PMID: 12123445 DOI: 10.1046/j.1365-2958.2002.03001.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When conditions cause bacterial growth to stop, extensive reprogramming of physiology and gene expression allows for the cell's survival. We used whole-genome DNA arrays to determine the system response in Escherichia coli cells experiencing transient growth arrest caused by glucose-lactose diauxie and H2O2 treatment, and also entry into stationary phase. The results show that growth-arrested cells induce stringent control of several gene systems. The vast majority of genes encoding the transcription and translation apparatus immediately downregulate, followed by a global return to steady state when growth resumes. Approximately one-half of the amino acid biosynthesis genes downregulate during growth arrest, with the notable exception of the his operon, which transiently upregulates in the diauxie experiment. Nucleotide biosynthesis downregulates, a result that is again consistent with the stringent response. Likewise, aerobic metabolism downregulates during growth arrest, and the results led us to suggest a model for stringent control of the ArcA regulon. The stationary phase stress response fully induces during growth arrest, whether transient or permanent, in a manner consistent with known mechanisms related to stringent control. Cells similarly induce the addiction module anti-toxin and toxin genes during growth arrest; the latter are known to inhibit translation and DNA replication. The results indicate that in all aspects of the response cells do not distinguish between transient and potentially permanent growth arrest (stationary phase). We introduce an expanded model for the stringent response that integrates induction of stationary phase survival genes and inhibition of transcription, translation and DNA replication. Central to the model is the reprogramming of transcription by guanosine tetraphosphate (ppGpp), which provides for the cell's rapid response to growth arrest and, by virtue of its brief half-life, the ability to quickly resume growth as changing conditions allow.
Collapse
Affiliation(s)
- Dong-Eun Chang
- Advanced Center for Genome Technology, The University of Oklahoma, Norman, OK 73019-0245, USA
| | | | | |
Collapse
|
86
|
Potamitou A, Neubauer P, Holmgren A, Vlamis-Gardikas A. Expression of Escherichia coli glutaredoxin 2 is mainly regulated by ppGpp and sigmaS. J Biol Chem 2002; 277:17775-80. [PMID: 11889138 DOI: 10.1074/jbc.m201306200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli glutaredoxin 2 (Grx2, encoded by grxB) differs greatly from the other two glutaredoxins in structure and catalytic properties. In a wild type strain, levels of Grx2 increased 3-fold in the stationary phase (up to 8 microg/mg). Guanosine-3',5'-tetraphoshate (ppGpp) and sigma(S), which regulate the transcription of genes in the stationary phase, dramatically affected the expression of Grx2. spoTrelA null mutants, lacking ppGpp, had very low levels of Grx2, while overproduction of full-length RelA or valine-induced starvation of isoleucine, both conditions elevating ppGpp levels, resulted in elevation of Grx2. Null mutants for the sigma(S)-specific protease ClpP, which have higher levels of sigma(S), exhibited a 3-fold Grx2 increase. sigma(S) in trans also increased the levels of Grx2. Therefore the stationary phase expression of Grx2 is determined by the sigma(S)-bound form of RNA polymerase in connection with ppGpp, while basal levels should be attributed to sigma(70)-RNA polymerase holoenzyme. Osmotic pressure and cAMP also affected the expression of Grx2, presumably via sigma(S). Furthermore, Grx2 levels were elevated in an oxyR(-) strain. In accordance with the role of Grx2 as a stationary phase protein, null mutants for grxB were shown to lyse under starvation conditions and exhibited a distorted morphology.
Collapse
Affiliation(s)
- Aristi Potamitou
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
87
|
Jishage M, Kvint K, Shingler V, Nyström T. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 2002; 16:1260-70. [PMID: 12023304 PMCID: PMC186289 DOI: 10.1101/gad.227902] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many regulons controlled by alternative sigma factors, including sigma(S) and sigma(32), are poorly induced in cells lacking the alarmone ppGpp. We show that ppGpp is not absolutely required for the activity of sigma(S)-dependent promoters because underproduction of sigma(70), specific mutations in rpoD (rpoD40 and rpoD35), or overproduction of Rsd (anti-sigma(70)) restored expression from sigma(S)-dependent promoters in vivo in the absence of ppGpp accumulation. An in vitro transcription/competition assay with reconstituted RNA polymerase showed that addition of ppGpp reduces the ability of wild-type sigma(70) to compete with sigma(32) for core binding and the mutant sigma(70) proteins, encoded by rpoD40 and rpoD35, compete less efficiently than wild-type sigma(70). Similarly, an in vivo competition assay showed that the ability of both sigma(32) and sigma(S) to compete with sigma(70) is diminished in cells lacking ppGpp. Consistently, the fraction of sigma(S) and sigma(32) bound to core was drastically reduced in ppGpp-deficient cells. Thus, the stringent response encompasses a mechanism that alters the relative competitiveness of sigma factors in accordance with cellular demands during physiological stress.
Collapse
Affiliation(s)
- Miki Jishage
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteberg, Sweden
| | | | | | | |
Collapse
|
88
|
Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 2002; 184:2500-20. [PMID: 11948165 PMCID: PMC134987 DOI: 10.1128/jb.184.9.2500-2520.2002] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response in Bacillus subtilis was characterized by using proteome and transcriptome approaches. Comparison of protein synthesis patterns of wild-type and relA mutant cells cultivated under conditions which provoke the stringent response revealed significant differences. According to their altered synthesis patterns in response to DL-norvaline, proteins were assigned to four distinct classes: (i) negative stringent control, i.e., strongly decreased protein synthesis in the wild type but not in the relA mutant (e.g., r-proteins); (ii) positive stringent control, i.e., induction of protein synthesis in the wild type only (e.g., YvyD and LeuD); (iii) proteins that were induced independently of RelA (e.g., YjcI); and (iv) proteins downregulated independently of RelA (e.g., glycolytic enzymes). Transcriptome studies based on DNA macroarray techniques were used to complement the proteome data, resulting in comparable induction and repression patterns of almost all corresponding genes. However, a comparison of both approaches revealed that only a subset of RelA-dependent genes or proteins was detectable by proteomics, demonstrating that the transcriptome approach allows a more comprehensive global gene expression profile analysis. The present study presents the first comprehensive description of the stringent response of a bacterial species and an almost complete map of protein-encoding genes affected by (p)ppGpp. The negative stringent control concerns reactions typical of growth and reproduction (ribosome synthesis, DNA synthesis, cell wall synthesis, etc.). Negatively controlled unknown y-genes may also code for proteins with a specific function during growth and reproduction (e.g., YlaG). On the other hand, many genes are induced in a RelA-dependent manner, including genes coding for already-known and as-yet-unknown proteins. A passive model is preferred to explain this positive control relying on the redistribution of the RNA polymerase under the influence of (p)ppGpp.
Collapse
Affiliation(s)
- Christine Eymann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
89
|
Colland F, Fujita N, Ishihama A, Kolb A. The interaction between sigmaS, the stationary phase sigma factor, and the core enzyme of Escherichia coli RNA polymerase. Genes Cells 2002; 7:233-47. [PMID: 11918668 DOI: 10.1046/j.1365-2443.2002.00517.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The RNA polymerase holoenzyme of Escherichia coli is composed of a core enzyme (subunit structure alpha2betabeta') associated with one of the sigma subunits, required for promoter recognition. Different sigma factors compete for core binding. Among the seven sigma factors present in E. coli, sigma70 controls gene transcription during the exponential phase, whereas sigmaS regulates the transcription of genes in the stationary phase or in response to different stresses. Using labelled sigmaS and sigma70, we compared the affinities of both sigma factors for core binding and investigated the structural changes in the different subunits involved in the formation of the holoenzymes. RESULTS Using native polyacrylamide gel electrophoresis, we demonstrate that sigmaS binds to the core enzyme with fivefold reduced affinity compared to sigma70. Using iron chelate protein footprinting, we show that the core enzyme significantly reduces polypeptide backbone solvent accessibility in regions 1.1, 2.5, 3.1 and 3.2 of sigmaS, while increasing the accessibility in region 4.1 of sigmaS. We have also analysed the positioning of sigmaS on the holoenzyme by the proximity-dependent protein cleavage method using sigmaS derivatives in which FeBABE was tethered to single cysteine residues at nine different positions. Protein cutting patterns are observed on the beta and beta' subunits, but not alpha. Regions 2.5, 3.1 and 3.2 of sigmaS are close to both beta and beta' subunits, in agreement with iron chelate protein footprinting data. CONCLUSIONS A comparison between these results using sigmaS and previous data from sigma70 indicates similar contact patterns on the core subunits and similar characteristic changes associated with holoenzyme formation, despite striking differences in the accessibility of regions 4.1 and 4.2.
Collapse
Affiliation(s)
- Frédéric Colland
- Institut Pasteur, Laboratoire des Regulations Transcriptionnelles (FRE 2364 CNRS), 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
90
|
Taylor CM, Beresford M, Epton HAS, Sigee DC, Shama G, Andrew PW, Roberts IS. Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 2002; 184:621-8. [PMID: 11790730 PMCID: PMC139534 DOI: 10.1128/jb.184.3.621-628.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here the identification and characterization of two Listeria monocytogenes (Tn917-LTV3) relA and hpt transposon insertion mutants that were impaired in growth after attachment to a model surface. Both mutants were unable to accumulate (p)ppGpp in response to amino acid starvation, whereas the wild-type strain accumulated (p)ppGpp within 30 min of stress induction. The induction of transcription of the relA gene after adhesion was demonstrated, suggesting that the ability to mount a stringent response and undergo physiological adaptation to nutrient deprivation is essential for the subsequent growth of the adhered bacteria. The absence of (p)ppGpp in the hpt mutant, which is blocked in the purine salvage pathway, is curious and suggests that a functional purine salvage pathway is required for the biosynthesis of (p)ppGpp. Both mutants were avirulent in a murine model of listeriosis, indicating an essential role for the stringent response in the survival and growth of L. monocytogenes in the host. Taken as a whole, this study provides new information on the role of the stringent response and the physiological adaptation of L. monocytogenes for biofilm growth and pathogenesis.
Collapse
Affiliation(s)
- Clare M Taylor
- School of Biological Sciences, University of Manchester, 1.800 Stopford Bldg., Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | | | |
Collapse
|
91
|
Gong L, Takayama K, Kjelleberg S. Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria. MICROBIOLOGY (READING, ENGLAND) 2002; 148:559-570. [PMID: 11832519 DOI: 10.1099/00221287-148-2-559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In bacteria, cytoplasmic levels of the effector nucleotide ppGpp are regulated in response to changes in growth conditions. This study describes the involvement of SpoT-mediated ppGpp accumulation in the survival of light-exposed bacteria during fatty acid starvation. In contrast to isogenic wild-type strains and relA mutants, the 'Vibrio angustum' S14 spoT and Escherichia coli relA spoT mutants displayed significant losses in viability in response to cerulenin-induced fatty acid starvation under cool-white fluorescent light. However, when starvation experiments were performed in complete darkness, or under light filtered through a UV-resistant perspex sheet, only a minor decline in viability was observed for the wild-type and mutant strains. This finding indicated that the lethal effect was mediated by weak UV emission. In contrast to the E. coli relA spoT mutant, which lacks ppGpp, the 'V. angustum' S14 spoT mutant exhibited higher ppGpp levels and lower RNA synthesis rates during fatty acid starvation, features that might be correlated with its lethality. In agreement with this finding, fatty acid starvation lethality also occurred upon induction of ppGpp overaccumulation in E. coli. These data suggest that the precise regulation of ppGpp levels in the stressed cell is crucial, and that both the absence and the overaccumulation of ppGpp impair fatty acid starvation survival of light-exposed cells. Moreover, the UV-induced lethal effect during fatty acid starvation was also observed for E. coli strains mutated in rpoS and dps, which, in the wild-type, are regulated directly or indirectly by ppGpp, respectively. The restoration of viability of fatty-acid-starved spoT mutant cells through the addition of exogenous catalase suggested that the observed light-dependent lethal effect was, at least in part, caused by UV-imposed oxidative stress. Based on these results, it is proposed that fatty acid starvation adaptation of light-exposed bacterial cells depends on the development of resistance to UV-induced oxidative stress. This stress resistance was found to require appropriate ppGpp levels, ppGpp-induced RpoS expression and, hence, upregulation of RpoS-regulated stress-defending genes, such as dps.
Collapse
Affiliation(s)
- Lan Gong
- School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, Australia1
| | - Kathy Takayama
- School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, Australia1
| | - Staffan Kjelleberg
- School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, Australia1
| |
Collapse
|
92
|
Sze CC, Bernardo LMD, Shingler V. Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: a common phenotype by different mechanisms. J Bacteriol 2002; 184:760-70. [PMID: 11790746 PMCID: PMC139538 DOI: 10.1128/jb.184.3.760-770.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related sigma(54)-dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding sigma(54) RNA polymerase, the integration host factor, and the regulator. These common properties allow cross-regulation of Pu and Po by DmpR and XylR in response to appropriate aromatic effectors. In vivo, transcription of both the DmpR/Po and XylR/Pu regulatory circuits is subject to dominant global regulation, which results in repression of transcription during growth in rich media. Here, we comparatively assess the contribution of (p)ppGpp, the FtsH protease, and a component of an alternative phosphoenolpyruvate-sugar phosphotransferase system, which have been independently implicated in mediating this level of regulation. Further, by exploiting the cross-regulatory abilities of these two circuits, we identify the target component(s) that are intercepted in each case. The results show that (i) contrary to previous speculation, FtsH is not universally required for transcription of sigma(54)-dependent systems; (ii) the two factors found to impact the XylR/Pu regulatory circuit do not intercept the DmpR/Po circuit; and (iii) (p)ppGpp impacts the DmpR/Po system to a greater extent than the XylR/Pu system in both the native Pseudomonas putida and a heterologous Escherichia coli host. The data demonstrate that, despite the similarities of the specific regulatory circuits, the host global regulatory network latches onto and dominates over these specific circuits by exploiting their different properties. The mechanistic implications of how each of the host factors exerts its action are discussed.
Collapse
Affiliation(s)
- Chun Chau Sze
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
93
|
Diez AA, Tunlid A, Nyström T. The Escherichia coli ftsK1 mutation attenuates the induction of sigma(S)-dependent genes upon transition to stationary phase. FEMS Microbiol Lett 2002; 206:19-23. [PMID: 11786251 DOI: 10.1111/j.1574-6968.2002.tb10980.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A mutation in the cell division gene ftsK causes super-induction of sigma(70)-dependent stress defense genes, such as uspA, during entry of cells into stationary phase. In contrast, we report here that stationary phase induction of sigma(S)-dependent genes, uspB and cfa, is attenuated and that sigma(S) accumulates at a lower rate in ftsK1 cells. Ectopic overexpression of rpoS restored induction of the rpoS regulon in the ftsK mutant, as did a deletion in the recA gene. Thus, a mutation in the cell division gene, ftsK, uncouples the otherwise coordinated induction of sigma(S)-dependent genes and the universal stress response gene, uspA, during entry into stationary phase.
Collapse
Affiliation(s)
- Alfredo A Diez
- Department of Cell and Molecular Biology-Microbiology, Göteborg, Sweden
| | | | | |
Collapse
|
94
|
Christensen SK, Mikkelsen M, Pedersen K, Gerdes K. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A 2001; 98:14328-33. [PMID: 11717402 PMCID: PMC64681 DOI: 10.1073/pnas.251327898] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stringent response is defined as the physiological changes elicited by amino acid starvation. Many of these changes depend on the regulatory nucleotide ppGpp (guanosine tetraphosphate) synthesized by RelA (ppGpp synthetase I), the relA-encoded protein. The second rel locus of Escherichia coli is called relBE and encodes RelE cytotoxin and RelB antitoxin. RelB counteracts the toxic effect of RelE. In addition, RelB is an autorepressor of relBE transcription. Here we reveal a ppGpp-independent mechanism that reduces the level of translation during amino acid starvation. Artificial overexpression of RelE severely inhibited translation. During amino acid starvation, the presence of relBE caused a significant reduction in the poststarvation level of translation. Concomitantly, relBE transcription was rapidly and strongly induced. Induction of transcription occurred independently of relA and spoT (encoding ppGpp synthetase II), but instead depended on Lon protease. Consistently, Lon was required for degradation of RelB. Replacement of the relBE promoter with a LacI-regulated promoter indicated that strong and ongoing transcription of relBE is required to maintain a proper RelB:RelE ratio during starvation. Thus relBE may be regarded as a previously uncharacterized type of stress-response element that reduces the global level of translation during nutritional stress.
Collapse
Affiliation(s)
- S K Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, OU, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
95
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
96
|
Eymann C, Hecker M. Induction of sigma(B)-dependent general stress genes by amino acid starvation in a spo0H mutant of Bacillus subtilis. FEMS Microbiol Lett 2001; 199:221-7. [PMID: 11377871 DOI: 10.1111/j.1574-6968.2001.tb10678.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Solely sigma(B)-dependent genes like gsiB and gspA are not significantly induced in amino acid-starved wild-type cells, since amino acid starvation does not trigger activation of sigma(B). The general stress gene yvyD is subject to the control of both sigma(B) and sigma(H) therefore displaying induction in response to amino acid starvation at the sigma(H)-dependent promoter. Surprisingly, the proteins YvyD, GsiB and GspA were significantly induced in amino acid-starved cells of a strain lacking sigma(H) activity. Transcriptional studies provided evidence that sigma(B)-dependent transcription is indeed induced in a spo0H mutant during amino acid starvation and depends on RsbP but not on RsbU indicating that the stress signal transduction is not required for this induction. A similar phenomenon of sigma(B) activation was observed in amino acid-starved cells of a spo0A deletion mutant. The sigma(B)-dependent transcription in a spo0H mutant further needs an active RelA protein which is responsible for strong repression of house-keeping genes after amino acid starvation (stringent response). Our data indicate that in the absence of sigma(H) and under conditions which provoke the stringent response, RsbP-dependent levels of active sigma(B) can more effectively compete for increased levels of free RNA polymerase core enzyme leading to the induction of the probably strongest sigma(B)-dependent genes.
Collapse
Affiliation(s)
- C Eymann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahnstrasse 15, D-17487, Greifswald, Germany
| | | |
Collapse
|
97
|
Abstract
Microbial adaptation to environmental stress plays an important role in survival. It is necessary to understand the mechanisms underlying the survival of microbes under stress, as they may eventually aid in the successful control of the growth and persistence of these organisms. During nutrient starvation, Escherichia coli elicits a stringent response to conserve energy. The hallmark of the stringent response is the accumulation of guanosine tetra- (ppGpp) and pentaphosphates (pppGpp), which probably bind RNA polymerase to regulate gene expression at certain promoters. Recently, there has been renewed interest in the stringent responses of other microbes, with a view to correlating it with sporulation, virulence and long-term persistence.
Collapse
Affiliation(s)
- D Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India.
| | | |
Collapse
|
98
|
Becker G, Hengge-Aronis R. What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S). Mol Microbiol 2001; 39:1153-65. [PMID: 11251833 DOI: 10.1111/j.1365-2958.2001.02313.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sigmaS and sigma70 subunits of Escherichia coli RNA polymerase recognize very similar promoter sequences. Therefore, many promoters can be activated by both holoenzymes in vitro. The same promoters, however, often exhibit distinct sigma factor selectivity in vivo. It has been shown that high salt conditions, reduced negative supercoiling and the formation of complex nucleoprotein structures in a promoter region can contribute to or even generate sigmaS selectivity. Here, we characterize the first positively acting sigmaS-selective feature in the promoter sequence itself. Using the sigmaS-dependent csiD promoter as a model system, we demonstrate that C and T at the -13 and -14 positions, respectively, result in strongest expression. We provide allele-specific suppression data indicating that these nucleotides are contacted by K173 in region 2.5 of sigmaS. In contrast, sigma70, which features a glutamate at the corresponding position (E458), as well as the sigmaS(K173E) variant, exhibit a preference for a G(-13). C(-13) is highly conserved in sigmaS-dependent promoters, and additional data with the osmY promoter demonstrate that the K173/C(-13) interaction is of general importance. In conclusion, our data demonstrate an important role for region 2.5 in sigmaS in transcription initiation. Moreover, we propose a consensus sequence for a sigmaS-selective promoter and discuss its emergence and functional properties from an evolutionary point of view.
Collapse
Affiliation(s)
- G Becker
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | | |
Collapse
|