51
|
Shi Y, Dodson GE, Mukhopadhyay PS, Shanware NP, Trinh AT, Tibbetts RS. Identification of carboxyl-terminal MCM3 phosphorylation sites using polyreactive phosphospecific antibodies. J Biol Chem 2007; 282:9236-43. [PMID: 17244605 DOI: 10.1074/jbc.m609256200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functionally related ATM (ataxia telangiectasia-mutated) and ATR (ATM-Rad3-related) protein kinases are critical regulators of DNA damage responses in mammalian cells. ATM and ATR share highly overlapping substrate specificities and show a strong preference for the phosphorylation of Ser or Thr residues followed by Gln. In this report we used a polyreactive phosphospecific antibody (alpha-pDSQ) that recognizes a subset of phosphorylated Asp-Ser-Gln sequences to purify candidate ATM/ATR substrates. This led to the identification of phosphorylation sites in the carboxyl terminus of the minichromosome maintenance protein 3 (MCM3), a component of the hexameric MCM DNA helicase. We show that the alpha-DSQ antibody recognizes tandem DSQ phosphorylation sites (Ser-725 and Ser-732) in the carboxyl terminus of murine MCM3 (mMCM3) and that ATM phosphorylates both sites in vitro. ATM phosphorylated the carboxyl termini of mMCM3 and human MCM3 in vivo and the phosphorylated form of MCM3 retained association with the canonical MCM complex. Although DNA damage did not affect steady-state levels of chromatin-bound MCM3, the ATM-phosphorylated form of MCM3 was preferentially localized to the soluble, nucleoplasmic fraction. This finding suggests that the carboxyl terminus of chromatin-loaded MCM3 may be sequestered from ATM-dependent checkpoint signals. Finally, we show that ATM and ATR jointly contribute to UV light-induced MCM3 phosphorylation, but that ATM is the predominant UV-activated MCM3 kinase in vivo. The carboxyl-terminal ATM phosphorylation sites are conserved in vertebrate MCM3 orthologs suggesting that this motif may serve important regulatory functions in response to DNA damage. Our findings also suggest that DSQ motifs are common phosphoacceptor motifs for ATM family kinases.
Collapse
Affiliation(s)
- Yuling Shi
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
52
|
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 2006; 119:124-31. [PMID: 16371652 PMCID: PMC1582148 DOI: 10.1242/jcs.02703] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here, we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint-gene mutations. Instead, when cells competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus, studies in fission yeast are likely to prove helpful in understanding the pathways that lead from replication stress and inappropriate mitosis to cell death in mammalian cells.
Collapse
Affiliation(s)
| | - Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoinkawahara-machi, Sakyo-ku, Kyoto 606-8507, Japan
| | - William C Burhans
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Authors for correspondence (e-mail: , )
| | - Joel A Huberman
- Department of Cancer Genetics and
- Authors for correspondence (e-mail: , )
| |
Collapse
|
53
|
Chou DM, Elledge SJ. Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci U S A 2006; 103:18143-7. [PMID: 17116885 PMCID: PMC1654129 DOI: 10.1073/pnas.0609251103] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tipin is a mammalian protein that interacts with Timeless, which plays a role in DNA damage checkpoint responses. Here, we show that Tipin is a nuclear protein that associates with the replicative helicase and protects cells against genotoxic agents. Tipin is required for efficient cell cycle arrest in response to DNA damage, and depletion of Tipin renders cells sensitive to ionizing radiation as well as replication stress. Loss of Tipin results in spontaneous gamma-H2AX foci, a marker for DNA double-strand breaks. We find that Tipin and Timeless form a complex that maintains the level of both proteins in cells and that the loss of either one will lead to the loss of the interacting partner. This observation explains the similar checkpoint phenotypes observed in both Tipin- and Timeless-depleted cells.
Collapse
Affiliation(s)
- Danny M. Chou
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Stephen J. Elledge
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
- *To whom correspondence should be sent at: Department of Genetics,
Center for Genetics and Genomics, Howard Hughes Medical Institute, Room 158D, New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115. E-mail:
| |
Collapse
|
54
|
Olson E, Nievera CJ, Klimovich V, Fanning E, Wu X. RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem 2006; 281:39517-33. [PMID: 17035231 DOI: 10.1074/jbc.m605121200] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Upon DNA damage, replication is inhibited by the S-phase checkpoint. ATR (ataxia telangiectasia mutated- and Rad3-related) is specifically involved in the inhibition of replicon initiation when cells are treated with DNA damage-inducing agents that stall replication forks, but the mechanism by which it acts to prevent replication is not yet fully understood. We observed that RPA2 is phosphorylated on chromatin in an ATR-dependent manner when replication forks are stalled. Mutation of the ATR-dependent phosphorylation sites in RPA2 leads to a defect in the down-regulation of DNA synthesis following treatment with UV radiation, although ATR activation is not affected. Threonine 21 and serine 33, two residues among several phosphorylation sites in the amino terminus of RPA2, are specifically required for the UV-induced, ATR-mediated inhibition of DNA replication. RPA2 mutant alleles containing phospho-mimetic mutations at ATR-dependent phosphorylation sites have an impaired ability to associate with replication centers, indicating that ATR phosphorylation of RPA2 directly affects the replication function of RPA. Our studies suggest that in response to UV-induced DNA damage, ATR rapidly phosphorylates RPA2, disrupting its association with replication centers in the S-phase and contributing to the inhibition of DNA replication.
Collapse
Affiliation(s)
- Erin Olson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
55
|
Abstract
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
Collapse
Affiliation(s)
- Luo Lu
- Department of Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Harbor-UCLA Medical Center, CA 90502, USA.
| |
Collapse
|
56
|
Ashley T, Gaeth AP, Inagaki H, Seftel A, Cohen MM, Anderson LK, Kurahashi H, Emanuel BS. Meiotic recombination and spatial proximity in the etiology of the recurrent t(11;22). Am J Hum Genet 2006; 79:524-38. [PMID: 16909390 PMCID: PMC1559541 DOI: 10.1086/507652] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/10/2006] [Indexed: 01/27/2023] Open
Abstract
Although balanced translocations are among the most common human chromosomal aberrations, the constitutional t(11;22)(q23;q11) is the only known recurrent non-Robertsonian translocation. Evidence indicates that de novo formation of the t(11;22) occurs during meiosis. To test the hypothesis that spatial proximity of chromosomes 11 and 22 in meiotic prophase oocytes and spermatocytes plays a role in the rearrangement, the positions of the 11q23 and 22q11 translocation breakpoints were examined. Fluorescence in situ hybridization with use of DNA probes for these sites demonstrates that 11q23 is closer to 22q11 in meiosis than to a control at 6q26. Although chromosome 21p11, another control, often lies as close to 11q23 as does 22q11 during meiosis, chromosome 21 rarely rearranges with 11q23, and the DNA sequence of chromosome 21 appears to be less susceptible than 22q11 to double-strand breaks (DSBs). It has been suggested that the rearrangement recurs as a result of the palindromic AT-rich repeats at both 11q23 and 22q11, which extrude hairpin structures that are susceptible to DSBs. To determine whether the DSBs at these sites coincide with normal hotspots of meiotic recombination, immunocytochemical mapping of MLH1, a protein involved in crossing over, was employed. The results indicate that the translocation breakpoints do not coincide with recombination hotspots and therefore are unlikely to be the result of meiotic programmed DSBs, although MRE11 is likely to be involved. Previous analysis indicated that the DSBs appear to be repaired by a mechanism similar to nonhomologous end joining (NHEJ), although NHEJ is normally suppressed during meiosis. Taken together, these studies support the hypothesis that physical proximity between 11q23 and 22q11--but not typical meiotic recombinational activity in meiotic prophase--plays an important role in the generation of the constitutional t(11;22) rearrangement.
Collapse
Affiliation(s)
- Terry Ashley
- Genetics Department, School of Medicine, Yale University, New Haven, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Zou Y, Liu Y, Wu X, Shell SM. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 2006; 208:267-73. [PMID: 16523492 PMCID: PMC3107514 DOI: 10.1002/jcp.20622] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human replication protein A (RPA), a heterotrimeric protein complex, was originally defined as a eukaryotic single-stranded DNA binding (SSB) protein essential for the in vitro replication of simian virus 40 (SV40) DNA. Since then RPA has been found to be an indispensable player in almost all DNA metabolic pathways such as, but not limited to, DNA replication, DNA repair, recombination, cell cycle, and DNA damage checkpoints. Defects in these cellular reactions may lead to genome instability and, thus, the diseases with a high potential to evolve into cancer. This extensive involvement of RPA in various cellular activities implies a potential modulatory role for RPA in cellular responses to genotoxic insults. In support, RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATR (ATM and Rad3-related), and DNA-dependent protein kinase (DNA-PK). The hyperphosphorylation may change the functions of RPA and, thus, the activities of individual pathways in which it is involved. Indeed, there is growing evidence that hyperphosphorylation alters RPA-DNA and RPA-protein interactions. In addition, recent advances in understanding the molecular basis of the stress-induced modulation of RPA functions demonstrate that RPA undergoes a subtle structural change upon hyperphosphorylation, revealing a structure-based modulatory mechanism. Furthermore, given the crucial roles of RPA in a broad range of cellular processes, targeting RPA to inhibit its specific functions, particularly in DNA replication and repair, may serve a valuable strategy for drug development towards better cancer treatment.
Collapse
Affiliation(s)
- Yue Zou
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA.
| | | | | | | |
Collapse
|
58
|
Yim H, Hwang IS, Choi JS, Chun KH, Jin YH, Ham YM, Lee KY, Lee SK. Cleavage of Cdc6 by caspase-3 promotes ATM/ATR kinase-mediated apoptosis of HeLa cells. ACTA ACUST UNITED AC 2006; 174:77-88. [PMID: 16801388 PMCID: PMC2064166 DOI: 10.1083/jcb.200509141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that caspase-3 cleaves Cdc6 at D290/S and D442/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-α–induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-α–induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-α– or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53–Bax-mediated apoptosis.
Collapse
Affiliation(s)
- Hyungshin Yim
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Yoshioka KI, Yoshioka Y, Hsieh P. ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 2006; 22:501-10. [PMID: 16713580 PMCID: PMC2423943 DOI: 10.1016/j.molcel.2006.04.023] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/15/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
S(N)1-type alkylating agents that produce cytotoxic O(6)-methyl-G (O(6)-meG) DNA adducts induce cell cycle arrest and apoptosis in a manner requiring the DNA mismatch repair (MMR) proteins MutSalpha and MutLalpha. Here, we show that checkpoint signaling in response to DNA methylation occurs during S phase and requires DNA replication that gives rise to O(6)-meG/T mispairs. DNA binding studies reveal that MutSalpha specifically recognizes O(6)-meG/T mispairs, but not O(6)-meG/C. In an in vitro assay, ATR-ATRIP, but not RPA, is preferentially recruited to O(6)-meG/T mismatches in a MutSalpha- and MutLalpha-dependent manner. Furthermore, ATR kinase is activated to phosphorylate Chk1 in the presence of O(6)-meG/T mispairs and MMR proteins. These results suggest that MMR proteins can act as direct sensors of methylation damage and help recruit ATR-ATRIP to sites of cytotoxic O(6)-meG adducts to initiate ATR checkpoint signaling.
Collapse
Affiliation(s)
- Ken-ichi Yoshioka
- Genetics and Biochemistry Branch National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda, Maryland 20892
| | - Yoshiko Yoshioka
- Genetics and Biochemistry Branch National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda, Maryland 20892
| | - Peggy Hsieh
- Genetics and Biochemistry Branch National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda, Maryland 20892
- Correspondence:
| |
Collapse
|
60
|
Sakasai R, Shinohe K, Ichijima Y, Okita N, Shibata A, Asahina K, Teraoka H. Differential involvement of phosphatidylinositol 3-kinase-related protein kinases in hyperphosphorylation of replication protein A2 in response to replication-mediated DNA double-strand breaks. Genes Cells 2006; 11:237-46. [PMID: 16483312 DOI: 10.1111/j.1365-2443.2006.00942.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Replication protein A2 (RPA2), a component of the RPA heterotrimer, is hyperphosphorylated and forms nuclear foci in response to camptothecin (CPT) that directly induces replication-mediated DNA double-strand breaks (DSBs). Ataxia-telangiectasia mutated and Rad3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are activated by CPT, and RPA2 is hyperphosphorylated in a DNA-PK-dependent manner. To distinguish the roles of phosphatidylinositol 3-kinase-related protein kinases including DNA-PK, ataxia-telangiectasia mutated (ATM), and ATR, in the response to replication-mediated DSBs, we analyzed RPA2 focus formation and hyperphosphorylation during exposure to CPT. ATR knock-down with siRNA suppressed CPT-induced RPA2 hyperphosphorylation and focus formation. CPT-induced RPA2 focus formation was normally observed in DNA-PK- or ATM-deficient cells. Comparison between CPT and hydroxyurea (HU) indirectly inducing DSBs showed that RPA2 hyperphosphorylation is DNA-PK-dependent in CPT-treated cells and DNA-PK-independent in HU-treated cells. Although RPA2 foci rapidly formed in response to HU and CPT, the RPA2 hyperphosphorylation in HU-treated cells occurred later than in the CPT-treated cells, indicating that the DNA-PK dependency of RPA2 hyperphosphorylation is likely to be related to the mode of DSB induction. These results suggest that DNA-PK is responsible for the RPA2 hyperphosphorylation following ATR-dependent RPA2 focus formation in response to replication-mediated DSBs directly induced by CPT.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Schumacher LY, Vo DD, Garban HJ, Comin-Anduix B, Owens SK, Dissette VB, Glaspy JA, McBride WH, Bonavida B, Economou JS, Ribas A. Immunosensitization of Tumor Cells to Dendritic Cell-Activated Immune Responses with the Proteasome Inhibitor Bortezomib (PS-341, Velcade). THE JOURNAL OF IMMUNOLOGY 2006; 176:4757-65. [PMID: 16585569 DOI: 10.4049/jimmunol.176.8.4757] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteasome inhibition results in proapoptotic changes in cancer cells, which may make them more sensitive to immune effector cells. We established a murine model to test whether the proteasome inhibitor bortezomib could sensitize established B16 melanoma tumors to dendritic cell (DC)-activated immune effector cells. Day 3-established s.c. B16 tumors had significantly decreased tumor outgrowth when treated with a combination of bortezomib and DC, regardless of whether the DC were loaded or not with a tumor Ag. In vivo Ab-depletion studies demonstrated that the effector cells were NK and CD8+ cells, but not CD4+ cells. NF-kappaB nuclear transcription factor assay and gene-expression profiling of B16 treated with bortezomib was consistent with inhibition of NF-kappaB target genes leading to a proapoptotic phenotype. In vitro lytic assays demonstrated that TNF-alpha, but not perforin, Fas-ligand, or TRAIL, was responsible for bortezomib-sensitized B16 cytotoxicity. In conclusion, the proteasome inhibitor bortezomib can pharmacologically sensitize tumor cells to the lytic effects of DC-activated immune effector cells.
Collapse
Affiliation(s)
- Lana Y Schumacher
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Adams KE, Medhurst AL, Dart DA, Lakin ND. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 2006; 25:3894-904. [PMID: 16474843 PMCID: PMC1852851 DOI: 10.1038/sj.onc.1209426] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ATM and ATR are two related kinases essential for signalling DNA damage. Although ATM is thought to be the principle kinase responsible for signalling ionising radiation (IR)-induced DNA damage, ATR also contributes to signalling this form of genotoxic stress. However, the molecular basis of differential ATM and ATR activation in response to IR remains unclear. Here, we report that ATR is recruited to sites of IR-induced DNA damage significantly later than activation of ATM. We show that ATR is recruited to IR-induced nuclear foci in G(1) and S phase of the cell cycle, supporting a role for ATR in detecting DNA damage outside of S phase. In addition, we report that recruitment of ATR to sites of IR-induced DNA damage is concomitant with appearance of large tracts of single-stranded DNA (ssDNA) and that this event is dependent on ATM and components of the Mre11/Rad50/Nbs1 (MRN) protein complex.
Collapse
Affiliation(s)
- K E Adams
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
63
|
Wu X, Yang Z, Liu Y, Zou Y. Preferential localization of hyperphosphorylated replication protein A to double-strand break repair and checkpoint complexes upon DNA damage. Biochem J 2006; 391:473-80. [PMID: 15929725 PMCID: PMC1276948 DOI: 10.1042/bj20050379] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RPA (replication protein A) is an essential factor for DNA DSB (double-strand break) repair and cell cycle checkpoint activation. The 32 kDa subunit of RPA undergoes hyperphosphorylation in response to cellular genotoxic insults. However, the potential involvement of hyperphosphorylated RPA in DSB repair and checkpoint activation remains unclear. Using co-immunoprecipitation assays, we showed that cellular interaction of RPA with two DSB repair factors, Rad51 and Rad52, was predominantly mediated by the hyperphosphorylated species of RPA in cells after UV and camptothecin treatment. Moreover, Rad51 and Rad52 displayed higher affinity for the hyperphosphorylated RPA than native RPA in an in vitro binding assay. Checkpoint kinase ATR (ataxia telangiectasia mutated and Rad3-related) also interacted more efficiently with the hyperphosphorylated RPA than with native RPA following DNA damage. Consistently, immunofluorescence microscopy demonstrated that the hyperphosphorylated RPA was able to co-localize with Rad52 and ATR to form significant nuclear foci in cells. Our results suggest that hyperphosphorylated RPA is preferentially localized to DSB repair and the DNA damage checkpoint complexes in response to DNA damage.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, U.S.A
| | - Zhengguan Yang
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, U.S.A
| | - Yiyong Liu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, U.S.A
| | - Yue Zou
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
64
|
Abstract
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein. RPA is conserved in all eukaryotes and is essential for DNA replication, DNA repair, and recombination. RPA also plays a role in coordinating DNA metabolism and the cellular response to DNA damage. Assays have been established for many of these reactions. This chapter provides an overview of the methods used for analyzing RPA-DNA interactions, RPA-protein interactions, and functional activities of RPA. Methods are also discussed for visualizing RPA in the cell and analyzing the effects of RPA function on cell cycle progression in mammalian cells.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | | | | | | |
Collapse
|
65
|
Zhang J, Bao S, Furumai R, Kucera KS, Ali A, Dean NM, Wang XF. Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol Cell Biol 2005; 25:9910-9. [PMID: 16260606 PMCID: PMC1280286 DOI: 10.1128/mcb.25.22.9910-9919.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, P.O. Box 3813, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Dodson GE, Tibbetts RS. DNA replication stress-induced phosphorylation of cyclic AMP response element-binding protein mediated by ATM. J Biol Chem 2005; 281:1692-7. [PMID: 16293623 DOI: 10.1074/jbc.m509577200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage-response regulators ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) are structurally and functionally related protein kinases that exhibit nearly identical substrate specificities in vitro. Current paradigms hold that the relative contributions of ATM and ATR to nuclear substrate phosphorylation are dictated by the type of initiating DNA lesion; ATM-dependent substrate phosphorylation is principally activated by DNA double strand breaks, whereas ATR-dependent substrate phosphorylation is induced by UV light and other forms of DNA replication stress. In this report, we employed the cyclic AMP-response element-binding (CREB) protein to provide evidence for substrate discrimination by ATM and ATR in cellulo. ATM and ATR phosphorylate CREB in vitro, and CREB is phosphorylated on Ser-121 in intact cells in response to ionizing radiation (IR), UV light, and hydroxyurea. The UV light- and hydroxyurea-induced phosphorylation of CREB was delayed in comparison to the canonical ATR substrate CHK1, suggesting potentially different mechanisms of phosphorylation. UV light-induced CREB phosphorylation temporally correlated with ATM autophosphorylation on Ser-1981, and an ATM-specific small interfering RNA suppressed CREB phosphorylation in response to this stimulus. UV light-induced CREB phosphorylation was absent in ATM-deficient cells, confirming that ATM is required for CREB phosphorylation in UV irradiation-damaged cells. Interestingly, RNA interference-mediated suppression of ATR partially inhibited CREB phosphorylation in response to UV light, which correlated with reduced phosphorylation of ATM on Ser-1981. These findings suggest that ATM is the major genotoxin-induced CREB kinase in mammalian cells and that ATR lies upstream of ATM in a UV light-induced signaling pathway.
Collapse
Affiliation(s)
- Gerald E Dodson
- Department of Pharmacology, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
67
|
Shi Y, Dodson GE, Shaikh S, Rundell K, Tibbetts RS. Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. J Biol Chem 2005; 280:40195-200. [PMID: 16221684 DOI: 10.1074/jbc.c500400200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structurally related ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) protein kinases fulfill overlapping yet non-redundant functions as key regulators of cellular DNA damage responses. We recently showed that ATM phosphorylates the cyclic AMP response element-binding protein, CREB, following exposure to ionizing radiation (IR) and other DNA-damaging stimuli. Here, we show that a phospho-specific antibody recognizing the major ATM phosphorylation site in CREB cross-reacts with SV40 large tumor antigen (LTag), a multifunctional oncoprotein required for replication of the SV40 minichromosome. The relevant IR-induced phosphorylation site in LTag recognized by phospho-CREB antibody was mapped to Ser-120. IR strongly induced the phosphorylation of Ser-120 in an ATM-dependent manner in mouse embryo fibroblasts. Infection of African green monkey CV1 cells with SV40 resulted in the activation of ATM and phosphorylation of LTag and endogenous ATM substrates. Infection-induced LTag phosphorylation correlated with the onset of DNA replication, was ATM-dependent, and peaked when viral DNA levels reached their maximum. SV40 replication in CV1 cells required an intact LTag Ser-120 phosphorylation site and was inhibited following transfection with ATM small interfering RNA suggesting that ATM is required for optimal SV40 replication in primate cells. Our findings uncover a direct link between ATM and SV40 LTag that may have implications for understanding the replication cycle of oncogenic polyoma viruses.
Collapse
Affiliation(s)
- Yuling Shi
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
68
|
Kim SM, Kumagai A, Lee J, Dunphy WG. Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J Biol Chem 2005; 280:38355-64. [PMID: 16186122 DOI: 10.1074/jbc.m508673200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ATR, a critical regulator of DNA replication and damage checkpoint responses, possesses a binding partner called ATRIP. We have studied the functional properties of Xenopus ATR and ATRIP in incubations with purified components and in frog egg extracts. In purified systems, ATRIP associates with DNA in both RPA-dependent and RPA-independent manners, depending on the composition of the template. However, in egg extracts, only the RPA-dependent mode of binding to DNA can be detected. ATRIP adopts an oligomeric state in egg extracts that depends upon binding to ATR. In addition, ATR and ATRIP are mutually dependent on one another for stable binding to DNA in egg extracts. The ATR-dependent oligomerization of ATRIP does not require an intact coiled-coil domain in ATRIP and does not change in the presence of checkpoint-inducing DNA templates. Egg extracts containing a mutant of ATRIP that cannot bind to ATR are defective in the phosphorylation of Chk1. However, extracts containing mutants of ATRIP lacking stable DNA-binding and coiled-coil domains show no reduction in the phosphorylation of Chk1 in response to defined DNA templates. Furthermore, activation of Chk1 does not depend upon RPA under these conditions. These results suggest that ATRIP must associate with ATR in order for ATR to carry out the phosphorylation of Chk1 effectively. However, this function of ATRIP does not involve its ability to mediate the stable binding of ATR to defined checkpoint-inducing DNA templates in egg extracts, does not require an intact coiled-coil domain, and does not depend on RPA.
Collapse
Affiliation(s)
- Soo-Mi Kim
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
69
|
Itakura E, Sawada I, Matsuura A. Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol Biol Cell 2005; 16:5551-62. [PMID: 16176973 PMCID: PMC1289401 DOI: 10.1091/mbc.e05-05-0427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ATR (ATM and Rad3-related), a PI kinase-related kinase (PIKK), has been implicated in the DNA structure checkpoint in mammalian cells. ATR associates with its partner protein ATRIP to form a functional complex in the nucleus. In this study, we investigated the role of the ATRIP coiled-coil domain in ATR-mediated processes. The coiled-coil domain of human ATRIP contributes to self-dimerization in vivo, which is important for the stable translocation of the ATR-ATRIP complex to nuclear foci that are formed after exposure to genotoxic stress. The expression of dimerization-defective ATRIP diminishes the maintenance of replication forks during treatment with replication inhibitors. By contrast, it does not compromise the G2/M checkpoint after IR-induced DNA damage. These results show that there are two critical functions of ATR-ATRIP after the exposure to genotoxic stress: maintenance of the integrity of replication machinery and execution of cell cycle arrest, which are separable and are achieved via distinct mechanisms. The former function may involve the concentrated localization of ATR to damaged sites for which the ATRIP coiled-coil motif is critical.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | |
Collapse
|
70
|
Ljungman M. Activation of DNA damage signaling. Mutat Res 2005; 577:203-16. [PMID: 15922368 DOI: 10.1016/j.mrfmmm.2005.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 05/02/2023]
Abstract
Cells respond to DNA damage by activating DNA repair and DNA damage signaling pathways. While DNA repair proteins directly interact with DNA lesions, activation of DNA damage signaling pathways may be triggered by the effect the DNA lesions have on replication, transcription or chromatin topology. This review will focus on the potential mechanisms of the activation of DNA damage-induced signal transduction pathways.
Collapse
Affiliation(s)
- Mats Ljungman
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-0936, USA.
| |
Collapse
|
71
|
Wang L, Dai W, Lu L. Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells. Oncogene 2005; 24:3020-7. [PMID: 15750624 PMCID: PMC1920501 DOI: 10.1038/sj.onc.1208547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies from our lab found that ultraviolet (UV) irradiation induces a voltage-gated potassium (Kv) channel activation and subsequently activates JNK signaling pathway resulting in apoptosis. The present study in rabbit corneal epithelial (RCE) cells is to investigate mechanisms of UV irradiation-induced Kv channel activity involving p53 activation in parallel to DNA damage-induced signaling pathway. UV irradiation-induced signaling events were characterized by measurements of JNK activation and further downstream p53 phosphorylation. UV irradiation elicited an early response in the cell membrane through activation of Kv channels to activate the JNK signaling pathway and p53 phosphorylation. Exposure of RCE cells to UV irradiation within a few min resulted in JNK and p53 activations that were markedly inhibited by suppression of Kv channel activity. However, suppression of Kv channel activity failed to prevent p53 activation induced by extended DNA damages through prolonging UV exposure time (more than 15 min). In addition, caffeine inhibited UV-induced activation of SEK, an upstream MAPK kinase of JNK, resulting in suppression of both Kv channel-involved and DNA damage-induced p53 activation. Our results indicate in these cells that UV irradiation induces earlier and later intracellular events that link to activation of JNK and p53. The early event in response to UV irradiation is initiated by activating Kv channels in the cell membrane, and the later event is predominated by UV irradiation-caused DNA damage.
Collapse
Affiliation(s)
- Ling Wang
- Division of Molecular Medicine, Harbor-UCLA Medical Center, School of Medicine University of California Los Angeles, Torrance, CA 90502, USA
| | - Wei Dai
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Luo Lu
- Division of Molecular Medicine, Harbor-UCLA Medical Center, School of Medicine University of California Los Angeles, Torrance, CA 90502, USA
- *Correspondence: L Lu, Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 W Carson Street, C-2, Torrance, CA 90502, USA; E-mail:
| |
Collapse
|
72
|
Ball HL, Myers JS, Cortez D. ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell 2005; 16:2372-81. [PMID: 15743907 PMCID: PMC1087242 DOI: 10.1091/mbc.e04-11-1006] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ATR associates with the regulatory protein ATRIP that has been proposed to localize ATR to sites of DNA damage through an interaction with single-stranded DNA (ssDNA) coated with replication protein A (RPA). We tested this hypothesis and found that ATRIP is required for ATR accumulation at intranuclear foci induced by DNA damage. A domain at the N terminus of ATRIP is necessary and sufficient for interaction with RPA-ssDNA. Deletion of the ssDNA-RPA interaction domain of ATRIP greatly diminished accumulation of ATRIP into foci. However, the ATRIP-RPA-ssDNA interaction is not sufficient for ATRIP recognition of DNA damage. A splice variant of ATRIP that cannot bind to ATR revealed that ATR association is also essential for proper ATRIP localization. Furthermore, the ATRIP-RPA-ssDNA interaction is not absolutely essential for ATR activation because ATR phosphorylates Chk1 in cells expressing only a mutant of ATRIP that does not bind to RPA-ssDNA. These data suggest that binding to RPA-ssDNA is not the essential function of ATRIP in ATR-dependent checkpoint signaling and ATR has an important function in properly localizing the ATR-ATRIP complex.
Collapse
Affiliation(s)
- Heather L Ball
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
73
|
Kim K, Dimitrova DD, Carta KM, Saxena A, Daras M, Borowiec JA. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein a complex formation. Mol Cell Biol 2005; 25:2463-74. [PMID: 15743838 PMCID: PMC1061594 DOI: 10.1128/mcb.25.6.2463-2474.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 06/14/2004] [Accepted: 12/13/2004] [Indexed: 11/20/2022] Open
Abstract
Human replication protein A (RPA), the primary single-stranded DNA-binding protein, was previously found to be inhibited after heat shock by complex formation with nucleolin. Here we show that nucleolin-RPA complex formation is stimulated after genotoxic stresses such as treatment with camptothecin or exposure to ionizing radiation. Complex formation in vitro and in vivo requires a 63-residue glycine-arginine-rich (GAR) domain located at the extreme C terminus of nucleolin, with this domain sufficient to inhibit DNA replication in vitro. Fluorescence resonance energy transfer studies demonstrate that the nucleolin-RPA interaction after stress occurs both in the nucleoplasm and in the nucleolus. Expression of the GAR domain or a nucleolin mutant (TM) with a constitutive interaction with RPA is sufficient to inhibit entry into S phase. Increasing cellular RPA levels by overexpression of the RPA2 subunit minimizes the inhibitory effects of nucleolin GAR or TM expression on chromosomal DNA replication. The arrest is independent of p53 activation by ATM or ATR and does not involve heightened expression of p21. Our data reveal a novel cellular mechanism that represses genomic replication in response to genotoxic stress by inhibition of an essential DNA replication factor.
Collapse
Affiliation(s)
- Kyung Kim
- Department of Biochemistry, New York University School of Medicine, 550 First Ave., MSB-383, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
74
|
Araya R, Hirai I, Meyerkord CL, Wang HG. Loss of RPA1 induces Chk2 phosphorylation through a caffeine-sensitive pathway. FEBS Lett 2005; 579:157-61. [PMID: 15620706 DOI: 10.1016/j.febslet.2004.11.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/13/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
RPA is an important component of DNA replication, repair and recombination, but its involvement in the signaling of cell-cycle checkpoints is not well understood. In this study, we show that knockdown of RPA1 by siRNA duplexes induces ATM (Ser1981) and Chk2 (Thr68), but not Chk1 (Ser345) phosphorylation and results in p21 upregulation in HeLa cells. However, the induction of Chk2 (Thr68) phosphorylation and p21 expression by RPA1 siRNA transfection can be completely blocked by the ATM inhibitor caffeine. Moreover, transfection of siRNAs targeting ATM dramatically reduces Chk2 (Thr68) phosphorylation in RPA1 knockdown cells. Taken together, these results suggest that loss of RPA1 activates the Chk2 signaling pathway in an ATM-dependent manner.
Collapse
Affiliation(s)
- Runa Araya
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
75
|
Ramadan K, Shevelev I, Hübscher U. The DNA-polymerase-X family: controllers of DNA quality? Nat Rev Mol Cell Biol 2004; 5:1038-43. [PMID: 15573140 DOI: 10.1038/nrm1530] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthesis of the genetic material of the cell is achieved by a large number of DNA polymerases. Besides replicating the genome, they are involved in DNA-repair processes. Recent studies have indicated that certain DNA-polymerase-X-family members can synthesize unusual DNA structures, and we propose that these DNA structures might serve as 'flag wavers' for the induction of DNA-repair and/or DNA-damage-checkpoint pathways.
Collapse
Affiliation(s)
- Kristijan Ramadan
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | | | | |
Collapse
|
76
|
White P, Brestelli JE, Kaestner KH, Greenbaum LE. Identification of transcriptional networks during liver regeneration. J Biol Chem 2004; 280:3715-22. [PMID: 15546871 DOI: 10.1074/jbc.m410844200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The molecular analysis of mammalian cellular proliferation in vivo is limited in most organ systems by the low turnover and/or the asynchronous nature of cell cycle progression. A notable exception is the partial hepatectomy model, in which quiescent hepatocytes reenter the cell cycle and progress in a synchronous fashion. Here we have exploited this model to identify regulatory networks operative in the mammalian cell cycle. We performed microarray-based expression profiling on livers 0-40 h post-hepatectomy corresponding to G0, G1, and S phases. Differentially expressed genes were identified using the statistical analysis program PaGE (Patterns from Gene Expression), which was highly accurate as confirmed by quantitative reverse transcription-PCR of randomly selected targets. A shift in the transcriptional program from genes involved in lipid and hormone biosynthesis in the quiescent liver to those contributing to cytoskeleton assembly and DNA synthesis in the proliferating liver was demonstrated by biological theme analysis. In a novel approach, we employed computational pathway analysis tools to identify specific regulatory networks operative at various stages of the cell cycle. This allowed us to identify a large cluster of genes controlling mitotic spindle assembly and checkpoint control at the 40-h time point as regulated at the mRNA level in vivo.
Collapse
Affiliation(s)
- Peter White
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
77
|
Itakura E, Takai KK, Umeda K, Kimura M, Ohsumi M, Tamai K, Matsuura A. Amino-terminal domain of ATRIP contributes to intranuclear relocation of the ATR-ATRIP complex following DNA damage. FEBS Lett 2004; 577:289-93. [PMID: 15527801 DOI: 10.1016/j.febslet.2004.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 10/10/2004] [Accepted: 10/10/2004] [Indexed: 10/26/2022]
Abstract
ATM and rad3-related protein kinase (ATR), a member of the phosphoinositide kinase-like protein kinase family, plays a critical role in cellular responses to DNA structural abnormalities in conjunction with its interacting protein, ATRIP. Here, we show that the amino-terminal portion of ATRIP is relocalized to DNA damage-induced nuclear foci in an RPA-dependent manner, despite its lack of ability to associate with ATR. In addition, ATR-free ATRIP protein can be recruited to the nuclear foci. Our results suggest that the N-terminal domain of the ATRIP protein contributes to the cell cycle checkpoint by regulating the intranuclear localization of ATR.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | |
Collapse
|