51
|
Pakkanen O, Pirskanen A, Myllyharju J. Selective expression of nonsecreted triple-helical and secreted single-chain recombinant collagen fragments in the yeast Pichia pastoris. J Biotechnol 2006; 123:248-56. [PMID: 16388866 DOI: 10.1016/j.jbiotec.2005.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 11/07/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
High-level recombinant expression systems for the production of stable triple-helical human collagens and collagen fragments have been developed in the yeast Pichia pastoris. Collagen fragments are secreted as single-chain polypeptides by the yeast alpha-mating factor pre-pro sequence, but secretion of full-length triple-helical procollagen molecules has not been achieved despite the use of the same secretory signal. We studied here the effects of the secretory signal and the conformation and size of the collagen polypeptide on its secretion in P. pastoris. Unlike the collagen signal sequence, the alpha-mating factor pre-pro sequence led to efficient secretion of single-chain 45 and 9 kDa type I collagen fragments. The efficiency was dependent on the length of the collagen polypeptide, as secretion of single-chain full-length 90 kDa alpha1(I) polypeptides was less efficient than that of the 45 kDa fragment. Furthermore, the conformation of the collagen polypeptides had a marked effect on secretion, as induction of trimerization of the 45 and 9 kDa fragments by either the C propeptide or the small trimerizing domain foldon led to an accumulation of triple-helical molecules inside the cells despite the presence of the alpha-mating factor pre-pro sequence. Our results show that P. pastoris is a suitable host for the development of tailored expression systems aimed at selective production of nonsecreted triple-helical and secreted single-chain collagen fragments of varying lengths for specific purposes.
Collapse
Affiliation(s)
- Outi Pakkanen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P.O. Box 5000, University of Oulu, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
52
|
McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. ACTA ACUST UNITED AC 2006; 11:1768-79. [PMID: 16411822 DOI: 10.1089/ten.2005.11.1768] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genetically engineered elastin-like polypeptide (ELP) hydrogels offer unique promise as scaffolds for cartilage tissue engineering because of the potential to promote chondrogenesis and to control mechanical properties. In this study, we designed and synthesized ELPs capable of undergoing enzyme-initiated gelation via tissue transglutaminase, with the ultimate goal of creating an injectable, in situ cross-linking scaffold to promote functional cartilage repair. Addition of the enzyme promoted ELP gel formation and chondrocyte encapsulation in a biocompatible process, which resulted in cartilage matrix synthesis in vitro and the potential to contribute to cartilage mechanical function in vivo. A significant increase in the accumulation of sulfated glycosaminoglycans was observed, and histological sections revealed the accumulation of a cartilaginous matrix rich in type II collagen and lacking in type I collagen, indicative of hyaline cartilage formation. These results provide evidence of chondrocytic phenotype maintenance for cells in the ELP hydrogels in vitro. In addition, the dynamic shear moduli of ELP hydrogels seeded with chondrocytes increased from 0.28 to 1.7 kPa during a 4-week culture period. This increase in the mechanical integrity of cross-linked ELP hydrogels suggests restructuring of the ELP matrix by deposition of functional cartilage extracellular matrix components.
Collapse
Affiliation(s)
- Melissa K McHale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
53
|
Han R, Zwiefka A, Caswell CC, Xu Y, Keene DR, Lukomska E, Zhao Z, Höök M, Lukomski S. Assessment of prokaryotic collagen-like sequences derived from streptococcal Scl1 and Scl2 proteins as a source of recombinant GXY polymers. Appl Microbiol Biotechnol 2006; 72:109-115. [PMID: 16552563 DOI: 10.1007/s00253-006-0387-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/15/2006] [Accepted: 02/18/2006] [Indexed: 11/27/2022]
Abstract
Collagen triple helix, composed of the repeating Gly-Xaa-Yaa (GXY) sequence, is a structural element found in all multicellular animals and also in some prokaryotes. Long GXY polymers are highly regarded components used in food, cosmetic, biomedical, and pharmaceutical industries. In this study, we explore a new concept for the production of recombinant GXY polymers which are based on the sequence of "prokaryotic collagens", the streptococcal collagen-like proteins Scl1 and Scl2. Analysis of 50 Scl variants identified the amino acid distribution and GXY-repeat usage that are involved in the stabilization of the triple helix in Scls. Using circular dichroism spectroscopy and electron microscopy, we show that significantly different recombinant rScl polypeptides form stable, unhydroxylated homotrimeric triple helices that can be produced both intra- and extracellularly in the Escherichia coli. These rScl constructs containing 20 to 129 GXY repeats had mid-point melting temperatures between 32 and 39 degrees C. Altogether, Scl-derived collagens, which are different from the mammalian collagens, can form stable triple helices under physiological conditions and can be used for the production of recombinant GXY polymers with a wide variety of potential applications.
Collapse
Affiliation(s)
- Runlin Han
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Antoni Zwiefka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Yi Xu
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, 77030, USA
| | | | - Ewa Lukomska
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Zhihong Zhao
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, 77030, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
| |
Collapse
|
54
|
Velema J, Kaplan D. Biopolymer-based biomaterials as scaffolds for tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 102:187-238. [PMID: 17089791 DOI: 10.1007/10_013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biopolymers as biomaterials and matrices in tissue engineering offer important options in control of structure, morphology and chemistry as reasonable substitutes or mimics of extracellular matrix systems. These features also provide for control of material functions such as mechanical properties in gel, fiber and porous scaffold formats. The inherent biodegradability of biopolymers is important to help regulate the rate and extent of cell and tissue remodeling in vitro or in vivo. The ability to genetically redesign these polymer systems to bioengineer appropriate features to regulate cell responses and interactions is another important feature that offers both fundamental insight into chemistry-structure-function relationships as well as direct utility as biomaterials. Biopolymer matrices for biomaterials and tissue engineering can directly influence the functional attributes of tissues formed on these materials and suggest they will continue play an increasingly important role in the field.
Collapse
Affiliation(s)
- James Velema
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
55
|
Chen MT, Weiss R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol 2005; 23:1551-5. [PMID: 16299520 DOI: 10.1038/nbt1162] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 10/10/2005] [Indexed: 11/09/2022]
Abstract
The construction of synthetic cell-cell communication networks can improve our quantitative understanding of naturally occurring signaling pathways and enhance our capabilities to engineer coordinated cellular behavior in cell populations. Towards accomplishing these goals in eukaryotes, we developed and analyzed two artificial cell-cell communication systems in yeast. We integrated Arabidopsis thaliana signal synthesis and receptor components with yeast endogenous protein phosphorylation elements and new response promoters. In the first system, engineered yeast 'sender' cells synthesize the plant hormone cytokinin, which diffuses into the environment and activates a hybrid exogenous/endogenous phosphorylation signaling pathway in nearby engineered yeast 'receiver' cells. For the second system, the sender network was integrated into the receivers under positive-feedback regulation, resulting in population density-dependent gene expression (that is, quorum sensing). The combined experimental work and mathematical modeling of the systems presented here can benefit various biotechnology applications for yeast and higher level eukaryotes, including fermentation processes, biomaterial fabrication and tissue engineering.
Collapse
Affiliation(s)
- Ming-Tang Chen
- Department of Electrical Engineering, Princeton University, J319, Engineering Quadrangle, Olden Street, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
56
|
Báez J, Olsen D, Polarek JW. Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 2005; 69:245-52. [PMID: 16240115 DOI: 10.1007/s00253-005-0180-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/12/2005] [Accepted: 09/02/2005] [Indexed: 11/28/2022]
Abstract
The use of genetically engineered microorganisms is a cost-effective, scalable technology for the production of recombinant human collagen (rhC) and recombinant gelatin (rG). This review will discuss the use of yeast (Pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha) and of bacteria (Escherichia coli, Bacillus brevis) genetically engineered for the production of rhC and rG. P. pastoris is the preferred production system for rhC and rG. Recombinant strains of P. pastoris accumulate properly hydroxylated triple helical rhC intracellularly at levels up to 1.5 g/l. Coexpression of recombinant collagen with recombinant prolyl hydroxylase results in the synthesis of hydroxylated collagen with thermal stability similar to native collagens. The purified hydroxylated rhC forms fibrils that are structurally similar to fibrils assembled from native collagen. These qualities make rhC attractive for use in many medical applications. P. pastoris can also be engineered to secrete high levels (3 to 14 g/l ) of collagen fragments with defined length, composition, and physiochemical properties that serve as substitutes for animal-derived gelatins. The replacement of animal-derived collagen and gelatin with rhC and rG will result in products with improved safety, traceability, reproducibility, and quality. In addition, the rhC and rG can be engineered to improve the performance of products containing these biomaterials.
Collapse
Affiliation(s)
- Julio Báez
- FibroGen, Inc., 225 Gateway Boulevard, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
57
|
Li HC, Huang CC, Chen SF, Chou MY. Assembly of homotrimeric type XXI minicollagen by coexpression of prolyl 4-hydroxylase in stably transfected Drosophila melanogaster S2 cells. Biochem Biophys Res Commun 2005; 336:375-85. [PMID: 16115607 DOI: 10.1016/j.bbrc.2005.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
We established stably transfected insect cell lines containing cDNAs encoding the alpha and beta subunits of human prolyl 4-hydroxylase in both Trichoplusia ni and Drosophila melanogaster S2 cells. The expression level and enzymatic activity of recombinant prolyl 4-hydroxylase produced in the Drosophila expression system were significantly higher than those produced in the T. ni system. We further characterized the involvement of prolyl 4-hydroxylase in the assembly of the three alpha chains to form trimeric type XXI minicollagen, which comprises the intact C-terminal non-collagenous (NC1) and collagenous domain (COL1), in the Drosophila system. When minicollagen XXI was stably expressed in Drosophila S2 cells alone, negligible amounts of interchain disulfide-bonded trimers were detected in the culture media. However, minicollagen XXI was secreted as disulfide-bonded homotrimers by coexpression with prolyl 4-hydroxylase in the stably transfected Drosophila S2 cells. Minicollagen XXI coexpressed with prolyl 4-hydroxylase contained sufficient amounts of hydroxyproline to form thermal stable pepsin-resistant triple helices consisting of both interchain and non-interchain disulfide-bonded trimers. These results demonstrate that a sufficient amount of active prolyl 4-hydroxylase is required for the assembly of type XXI collagen triple helices in Drosophila cells and the trimeric assembly is governed by the C-terminal collagenous domain.
Collapse
Affiliation(s)
- Hsiu-Chuan Li
- Department of Applied Gene Technology, Biomedical Engineering Center, Industrial Technology Research Institute, Taiwan, ROC
| | | | | | | |
Collapse
|
58
|
Görgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Res 2005; 5:677-83. [PMID: 15780668 DOI: 10.1016/j.femsyr.2004.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 11/05/2004] [Accepted: 12/03/2004] [Indexed: 11/26/2022] Open
Abstract
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.
Collapse
Affiliation(s)
- Johann F Görgens
- Department of Applied Microbiology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
59
|
Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. Amino acid supplementation improves heterologous protein production by Saccharomyces cerevisiae in defined medium. Appl Microbiol Biotechnol 2005; 67:684-91. [PMID: 15630584 DOI: 10.1007/s00253-004-1803-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/22/2004] [Accepted: 10/19/2004] [Indexed: 11/30/2022]
Abstract
Supplementation of a chemically defined medium with amino acids or succinate to improve heterologous xylanase production by a prototrophic Saccharomyces cerevisiae transformant was investigated. The corresponding xylanase production during growth on ethanol in batch culture and in glucose-limited chemostat culture were quantified, as the native ADH2 promoter regulating xylanase expression was derepressed under these conditions. The addition of a balanced mixture of the preferred amino acids, Ala, Arg, Asn, Glu, Gln and Gly, improved both biomass and xylanase production, whereas several other individual amino acids inhibited biomass and/or xylanase production. Heterologous protein production by the recombinant yeast was also improved by supplementing the medium with succinate. The production of heterologous xylanase during growth on ethanol or glucose could thus be improved by supplementing metabolic precursors in the carbon- or nitrogen-metabolism.
Collapse
Affiliation(s)
- Johann F Görgens
- Department of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden
| | | | | | | |
Collapse
|
60
|
Abstract
Collagen, a large insoluble protein with a characteristic triple helical structure, is found as the most prominent component of extracellular matrix. The functions of collagen are not limited to providing mechanical strength to various tissues and organs as a structural protein, as it has been pointed out that collagen exhibits various biological functions through specific interactions with other macromolecules. However, the use of native triple helical collagen is often troublesome because of its insolubility and gelating properties. Instead, triple helical collagen-like peptides have been designed and are used as collagen surrogates in studies on collagen structure, stability, and biological functions including binding to other proteins and cultured cells. This article reviews recent progress in peptide design, synthesis, and the applications of collagen-like peptides in current matrix biology, while emphasizing the advantages of the peptide-based strategy.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Science, Niigata University of Science and Applied Life Sciences, Niigata, Japan.
| |
Collapse
|
61
|
Neubauer A, Neubauer P, Myllyharju J. High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biol 2004; 24:59-68. [PMID: 15749002 DOI: 10.1016/j.matbio.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
The collagen prolyl 4-hydroxylases (C-P4Hs), enzymes residing within the lumen of the endoplasmic reticulum, play a central role in the synthesis of all collagens. The vertebrate enzymes are alpha(2)beta(2) tetramers in which the two catalytic sites are located in the alpha subunits, and protein disulfide isomerase serves as the beta subunit. All attempts to assemble an active C-P4H tetramer from its subunits in in vitro cell-free systems have been unsuccessful, but assembly of a recombinant enzyme has been reported in several cell types by coexpression of the two types of subunit. An active type I C-P4H tetramer was obtained here by periplasmic expression in Escherichia coli strains BL21 and RB791. Further optimization for production by stepwise regulated coexpression of its subunits in the cytoplasm of a thioredoxin reductase and glutathione reductase mutant E. coli strain resulted in large amounts of human type I C-P4H tetramer. The specific activity of the C-P4H tetramer purified from the cytoplasmic expression was within the range of values reported for human type I C-P4H isolated as a nonrecombinant enzyme or produced in the endoplasmic reticulum of insect cells, but the expression level, about 25 mg/l in a fermenter, is about 5-10 times that obtained in insect cells. The enzyme expressed in E. coli differed from those present in vivo and those produced in other hosts in that it lacked the N glycosylation of its alpha subunits, which may be advantageous in crystallization experiments.
Collapse
Affiliation(s)
- Antje Neubauer
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P. O. Box 5000, University of Oulu, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
62
|
Abstract
Within native tissues cells are held within the extracellular matrix (ECM), which has a role in maintaining homeostasis, guiding development and directing regeneration. Efforts in tissue engineering have aimed to mimick the ECM to help guide morphogenesis and tissue repair. Studies have not only looked at ways to mimick the structure and characteristics of the ECM, but have also considered ways to reproduce its molecular properties including its bioadhesive character, proteolytic susceptibility and ability to bind growth factors.
Collapse
Affiliation(s)
- Jeffrey A Hubbell
- Institute for Biological and Chemical Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Ecublens, Switzerland.
| |
Collapse
|
63
|
Yang C, Hillas PJ, Báez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek JW. The Application of Recombinant Human Collagen in Tissue Engineering. BioDrugs 2004; 18:103-19. [PMID: 15046526 DOI: 10.2165/00063030-200418020-00004] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Collagen is the main structural protein in vertebrates. It plays an essential role in providing a scaffold for cellular support and thereby affecting cell attachment, migration, proliferation, differentiation, and survival. As such, it also plays an important role in numerous approaches to the engineering of human tissues for medical applications related to tissue, bone, and skin repair and reconstruction. Currently, the collagen used in tissue engineering applications is derived from animal tissues, creating concerns related to the quality, purity, and predictability of its performance. It also carries the risk of transmission of infectious agents and precipitating immunological reactions. The recent development of recombinant sources of human collagen provides a reliable, predictable and chemically defined source of purified human collagens that is free of animal components. The triple-helical collagens made by recombinant technology have the same amino acid sequence as human tissue-derived collagen. Furthermore, by achieving the equivalent extent of proline hydroxylation via coexpression of genes encoding prolyl hydroxylase with the collagen genes, one can produce collagens with a similar degree of stability as naturally occurring material. The recombinant production process of collagen involves the generation of single triple-helical molecules that are then used to construct more complex three-dimensional structures. If one loosely defines tissue engineering as the use of a biocompatible scaffold combined with a biologically active agent (be it a gene or gene construct, growth factor or other biologically active agent) to induce tissue regeneration, then the production of recombinant human collagen enables the engineering of human tissue based on a human matrix or scaffold. Recombinant human collagens are an efficient scaffold for bone repair when combined with a recombinant bone morphogenetic protein in a porous, sponge-like format, and when presented as a membrane, sponge or gel can serve as a basis for the engineering of skin, cartilage and periodontal ligament, depending on the specific requirements of the chosen application.
Collapse
Affiliation(s)
- Chunlin Yang
- FibroGen Inc., 225 Gateway Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Majsterek I, McAdams E, Adachi E, Dhume ST, Fertala A. Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci 2003; 12:2063-72. [PMID: 12931004 PMCID: PMC2324002 DOI: 10.1110/ps.0385103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.
Collapse
Affiliation(s)
- Ireneusz Majsterek
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
65
|
Pakkanen O, Hämäläinen ER, Kivirikko KI, Myllyharju J. Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 2003; 278:32478-83. [PMID: 12805365 DOI: 10.1074/jbc.m304405200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.
Collapse
Affiliation(s)
- Outi Pakkanen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
66
|
Abstract
The collagen prolyl 4-hydroxylases (P4Hs), enzymes residing within the endoplasmic reticulum, have a central role in the biosynthesis of collagens. In addition, cytoplasmic P4Hs play a critical role in the regulation of the hypoxia-inducible transcription factor HIFalpha. Collagen and HIF P4Hs constitute enzyme families as several isoenzymes have been identified. Two catalytic alpha subunit isoforms have been cloned and characterized for collagen P4Hs from vertebrates, both of them assembling into alpha(2)beta(2) P4H tetramers in which protein disulfide isomerase (PDI) acts as the beta subunit. The catalytic properties of the two isoenzymes are very similar, but distinct differences are found in the binding properties of peptide substrates and inhibitors, and major differences are seen in the expression patterns of the isoenzymes. The nematode Caenorhabditis elegans has five P4H alpha subunit isoforms, PHY1-PHY5. The C. elegans PHY1 and PHY2, together with PDI, are expressed in the collagen synthesizing hypodermal cells and three P4H forms are assembled from them, a PHY-1/PHY-2/PDI(2) mixed tetramer and PHY-1/PDI and PHY-2/PDI dimers. The mixed tetramer is the main P4H form in wild-type C. elegans. PHY-3 is much shorter than PHY-1 and PHY-2, has a unique expression pattern, and is most likely involved in the synthesis of collagens in early embryos. The genome of Drosophila melanogaster contains approximately 20 P4H alpha subunit-related genes, and that of Arabidopsis thaliana six. One A. thaliana P4H has been cloned and shown to be a soluble monomer with several unexpected properties. It effectively hydroxylates poly(L-proline), (Pro-Pro-Gly)(10) and many other proline-containing peptides.
Collapse
Affiliation(s)
- Johanna Myllyharju
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland.
| |
Collapse
|
67
|
Yin J, Lin JH, Li WT, Wang DIC. Evaluation of different promoters and host strains for the high-level expression of collagen-like polymer in Escherichia coli. J Biotechnol 2003; 100:181-91. [PMID: 12443849 DOI: 10.1016/s0168-1656(02)00249-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increased expression of collagen-like polymer, CLP3.1-his which consists of 52 repeating peptide (GAPGAPGSQGAPGLQ), in Escherichia coli was investigated. The effects of three promoters, thermally inducible promoter, T7 promoter and T7lac promoter, and three Escherichia coli host strains, BL21, BL21(DE3) and BL21(DE3)[pLysS] which differ in stringency of suppressing basal transcription, were compared. Based on the CLP3.1-his expression level, solubility of CLP3.1-his in cells and basal transcription that occurred in the absence of induction, two expression systems, BL21(DE3) containing plasmid pJY-2 with T7lac promoter and BL21(DE3)[pLysS] containing plasmid pJY-1 with T7 promoter, were selected. With these two expression systems, CLP3.1-his expression levels greater than 40% (g/g) of total cellular proteins and CLP3.1-his concentrations of 0.1-0.2 gl(-1) can be achieved by using Luria-Bertani medium in shake flask batch cultures. The CLP3.1-his accumulated in the cells is totally soluble and no basal transcription was found before induction. These two high-level expression systems are promising for use in scale-up production.
Collapse
Affiliation(s)
- Jin Yin
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
68
|
de Wolf F. Chapter V Collagen and gelatin. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0921-0423(03)80005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
69
|
Wong Po Foo C, Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev 2002; 54:1131-43. [PMID: 12384311 DOI: 10.1016/s0169-409x(02)00061-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Various strategies have been employed to genetically engineer fibrous proteins. Two examples, the subject of this review, include spider dragline silk from Nephila clavipes and collagen. These proteins are highlighted because of their unique mechanical and biological properties related to controlled release, biomaterials and tissue engineering. Cloning and expression of native genes and synthetic artificial variants of the consensus sequence repeats from the native genes has been accomplished. Expression of recombinant silk and collagen proteins has been reported in a variety of host systems, including bacteria, yeast, insect cells, plants and mammalian cells. Future utility for these proteins for biomedical materials is expected to increase as needs expand for designer materials with tailored mechanical properties and biological interactions to elicit specific responses in vitro and in vivo.
Collapse
Affiliation(s)
- Cheryl Wong Po Foo
- Department of Chemical and Biological Engineering and Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | |
Collapse
|
70
|
Merle C, Perret S, Lacour T, Jonval V, Hudaverdian S, Garrone R, Ruggiero F, Theisen M. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett 2002; 515:114-8. [PMID: 11943205 DOI: 10.1016/s0014-5793(02)02452-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Potential contamination of animal-derived collagen with pathogens has led to the demand for safe recombinant sources of this complex molecule. In continuation of our previous work [Ruggiero et al. (2000) FEBS Lett. 469, 132-136], here we show that it is possible to produce recombinant hydroxylated homotrimeric collagen in tobacco plants that are co-transformed with a human type I collagen and a chimeric proline-4-hydroxylase (P4H). This is to our knowledge the first time that transient expression in tobacco was used to improve the quality of a recombinant protein produced in plants through co-expression with an animal cell-derived modifying enzyme. We demonstrated the functionality of the new chimeric P4H and thus improved the thermal stability of recombinant collagen I from plants to 37 degrees C.
Collapse
Affiliation(s)
- C Merle
- Meristem Therapeutics, 8 rue des Frères Lumière, 63100, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
71
|
de Bruin EC, Werten MWT, Laane C, de Wolf FA. Endogenous prolyl 4-hydroxylation in Hansenula polymorpha and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Res 2002; 1:291-8. [PMID: 12702332 DOI: 10.1111/j.1567-1364.2002.tb00047.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Several yeast systems have recently been developed for the recombinant production of gelatin and collagen. Amino acid sequence-specific prolyl 4-hydroxylation is essential for the gel-forming capacity of gelatin and for the proper folding of (pro)collagen. This post-translational modification is generally considered to be absent in microbial eukaryotic systems and therefore co-expression of heterologous (human or animal) prolyl 4-hydroxylase would be required. However, we found that the well-known protein expression host Hansenula polymorpha unexpectedly does have the endogenous capacity for prolyl 4-hydroxylation. Without co-expression of a heterologous prolyl 4-hydroxylase, both an endogenous collagen-like protein and a heterologously expressed collagen fragment were found to be sequence-specifically hydroxylated.
Collapse
Affiliation(s)
- Eric C de Bruin
- Agrotechnological Research Institute, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
72
|
Nokelainen M, Tu H, Vuorela A, Notbohm H, Kivirikko KI, Myllyharju J. High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 2001; 18:797-806. [PMID: 11427962 DOI: 10.1002/yea.730] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Four human genes, two of them encoding the proalpha1 and proalpha2 chains of type I procollagen and two of them the two types of subunit of prolyl 4-hydroxylase (4-PH), were integrated into the genome of Pichia pastoris. The proalpha1 and proalpha2 chains expressed formed type I procollagen molecules with the correct 2:1 chain ratio, and the 4-PH subunits formed an active enzyme tetramer that fully hydroxylated the proalpha chains. Chains lacking their N but not C propeptides formed pCcollagen molecules with the 2:1 chain ratio and, surprisingly, the expression levels of pCcollagen were 1.5-3-fold relative to those of procollagen. Both types of molecule could be converted by pepsin treatment to collagen molecules that formed native-type fibrils in vitro. The expression levels obtained for the pCcollagen using only single copies of each of the four genes and a 2 l fermenter ranged up to 0.5 g/l, indicating that it should be possible to optimize this system for high-level production of recombinant human type I collagen for numerous medical applications.
Collapse
Affiliation(s)
- M Nokelainen
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry, PO Box 5000, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
73
|
Olsen DR, Leigh SD, Chang R, McMullin H, Ong W, Tai E, Chisholm G, Birk DE, Berg RA, Hitzeman RA, Toman PD. Production of human type I collagen in yeast reveals unexpected new insights into the molecular assembly of collagen trimers. J Biol Chem 2001; 276:24038-43. [PMID: 11279215 DOI: 10.1074/jbc.m101613200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substantial evidence supports the role of the procollagen C-propeptide in the initial association of procollagen polypeptides and for triple helix formation. To evaluate the role of the propeptide domains on triple helix formation, human recombinant type I procollagen, pN-collagen (procollagen without the C-propeptides), pC-collagen (procollagen without the N-propeptides), and collagen (minus both propeptide domains) heterotrimers were expressed in Saccharomyces cerevisiae. Deletion of the N- or C-propeptide, or both propeptide domains, from both proalpha-chains resulted in correctly aligned triple helical type I collagen. Protease digestion assays demonstrated folding of the triple helix in the absence of the N- and C-propeptides from both proalpha-chains. This result suggests that sequences required for folding of the triple helix are located in the helical/telopeptide domains of the collagen molecule. Using a strain that does not contain prolyl hydroxylase, the same folding mechanism was shown to be operative in the absence of prolyl hydroxylase. Normal collagen fibrils were generated showing the characteristic banding pattern using this recombinant collagen. This system offers new opportunities for the study of collagen expression and maturation.
Collapse
Affiliation(s)
- D R Olsen
- Cohesion Technologies Inc., Palo Alto, California 94303, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|