51
|
Reiner DS, Hetsko ML, Meszaros JG, Sun CH, Morrison HG, Brunton LL, Gillin FD. Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J Biol Chem 2003; 278:2533-40. [PMID: 12397071 DOI: 10.1074/jbc.m208033200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excystation of Giardia lamblia, which initiates infection, is a poorly understood but dramatic differentiation induced by physiological signals from the host. Our data implicate a central role for calcium homeostasis in excystation. Agents that alter cytosolic Ca(2+) levels (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-tetra(acetyloxymethyl) ester, a Ca(2+) channel blocker, Ca(2+) ionophores, and thapsigargin) strongly inhibit excystation. Treatment of Giardia with thapsigargin raised intracellular Ca(2+) levels, and peak Ca(2+) responses increased with each stage of excystation, consistent with the kinetics of inhibition. Fluorescent thapsigargin localized to a likely Ca(2+) storage compartment in cysts. The ability to sequester ions in membrane-bounded compartments is a hallmark of the eukaryotic cell. These studies support the existence of a giardial thapsigargin-sensitive Ca(2+) storage compartment resembling the sarcoplasmic/endoplasmic reticulum calcium ATPase pump-leak system and suggest that it is important in regulation of differentiation and appeared early in the evolution of eukaryotic cells. Calmodulin antagonists also blocked excystation. The divergent giardial calmodulin localized to the eight flagellar basal bodies/centrosomes, like protein kinase A. Inhibitor kinetics suggest that protein kinase A signaling triggers excystation, whereas calcium signaling is mainly required later, for parasite activation and emergence. Thus, the basal bodies may be a cellular control center to coordinate the resumption of motility and cytokinesis in excystation.
Collapse
Affiliation(s)
- David S Reiner
- Department of Pathology, University of California, San Diego, 92103, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Svärd SG, Hagblom P, Palm JED. Giardia lamblia -- a model organism for eukaryotic cell differentiation. FEMS Microbiol Lett 2003; 218:3-7. [PMID: 12583890 DOI: 10.1111/j.1574-6968.2003.tb11490.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Giardia lamblia is a binucleated, flagellated protozoan parasite that inhabits the upper small intestine of its vertebrate hosts. The entire life cycle, which can be completed in vitro, is simple with cycling between a vegetative trophozoite and a highly resistant cystic form. The parasite is one of the earliest diverging eukaryotes known and more than 95% of the genome is sequenced. This makes Giardia an excellent model system for studies of basic eukaryotic processes like cell differentiation. In this review we will discuss recent data concerning Giardia differentiation with a focus on DNA replication and cytokinesis.
Collapse
Affiliation(s)
- Staffan G Svärd
- Microbiology and Tumour Biology Center, Karolinska Institutet, Box 280, 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
53
|
Ellis JG, Davila M, Chakrabarti R. Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization. J Biol Chem 2003; 278:1936-45. [PMID: 12397063 DOI: 10.1074/jbc.m209274200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is approximately 5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial approximately 2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts.
Collapse
Affiliation(s)
- John G Ellis
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826-2362, USA
| | | | | |
Collapse
|
54
|
Olivares JL, Fernández R, Fleta J, Rodríguez G, Clavel A. Serum mineral levels in children with intestinal parasitic infection. Dig Dis 2003; 21:258-61. [PMID: 14571100 DOI: 10.1159/000073344] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parasitic infections are highly prevalent in the general population. A relation between a parasitic infection and absorption of minerals is not an easy task. Serum levels of copper, zinc and magnesium were prospectively measured in 64 children with intestinal parasitic infection. Thirty-nine children with Enterobius vermicularis were treated with pyrantel pamoate and 25 children with Giardia lamblia with tinidazole and metronidazole. Three months after treatment, significant differences in serum copper, zinc and magnesium were seen in patients with E. vermicularis infection, and in serum magnesium levels in patients with G. lamblia. Although the pathogenic mechanism is not clear, these findings could reflect a deficiency related to malabsorption due to mucous affection. Early detection and treatment of intestinal parasitosis could avoid these serum mineral deficiencies.
Collapse
Affiliation(s)
- José L Olivares
- Department of Paediatrics, University of Zaragoza, School of Medicine, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
55
|
Abstract
Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment. As the advent of new molecular technologies in Giardia sets the stage for a renewed focus on the cytoskeleton and its role in Giardia virulence, we discuss future research directions in cytoskeletal function and regulation.
Collapse
Affiliation(s)
- Heidi G Elmendorf
- Department of Biology, Georgetown University, 348 Reiss Building 37th and O Sts. NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
56
|
Sun CH, Palm D, McArthur AG, Svärd SG, Gillin FD. A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol Microbiol 2002; 46:971-84. [PMID: 12421304 DOI: 10.1046/j.1365-2958.2002.03233.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Giardia lamblia is an important human intestinal parasite that survives outside of the host by differentiation of trophozoites into infectious cysts. Transcriptional regulation is key for encystation gene expression, but the mechanisms are unknown. Giardia genome database searches identified a myb-like gene (gmyb2) whose expression increased during encystation. Epitope-tagged gMyb2 localized to both nuclei. DNA binding and mutation analysis showed that gMyb2 binds specifically to C(T/A)ACAG, a c-Myb-like target sequence in the promoters of encystation-induced genes encoding gMyb2, three cyst wall proteins and G6PI-B, a key enzyme in cyst wall polysaccharide biosynthesis. gMyb2 binding sites were not found in the upstream regions of 31 other giardial genes. Deletion of the putative gMyb2 binding site greatly reduced encystation-specific promoter activity of g6pi-b. Fusion of gMyb2 binding sites to the constitutive ran promoter or g6pi-b promoter deletion lacking the gMyb2 binding site in-duced encystation-specific expression. gMyb2 may play an important role in transcriptional regulation of encystation genes, and may help co-ordinate synthesis of cyst wall proteins and polysaccharide. gMyb2 is the first giardial transcription factor to be functionally identified and the first that is associated with upregulation of encystation genes. This work provides a model for study of differential gene regulation in early diverging eukaryotic organisms.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Pathology, University of California at San Diego, School of Medicine, CA 92102-8416, USA
| | | | | | | | | |
Collapse
|
57
|
Franco E, Manning-Cela R, Meza I. Signal transduction in Entamoeba histolytica induced by interaction with fibronectin: presence and activation of phosphokinase A and its possible relation to invasiveness. Arch Med Res 2002; 33:389-97. [PMID: 12234529 DOI: 10.1016/s0188-4409(02)00368-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interaction of Entamoeba histolytica trophozoites with extracellular matrix (ECM) proteins activates signaling pathways through G-protein-coupled receptors. Increments of adenylyl cyclase activity and cAMP produce a striking reorganization of actin into structures that apparently facilitate adhesive, locomotive, and secretory activities. The reorganization of actin is induced by phosphorylation of actin-associated proteins by diverse kinases activated during the signaling process. Although cAMP-dependent kinases have not yet been identified in this parasite, the activation of the adenylyl cyclase route and its effects on particular motility-related functions strongly suggest their presence. Phosphokinase A (PKA) was detected by phosphorylation of the specific substrate, kemptide, its further activation by cAMP, and its inhibition by H89. The catalytic subunit of the enzyme was identified by immunofluorescence microscopy and by immunoprecipitation. Adhesion and damage to cultured cells were monitored by FN-binding and cytotoxicity assays. A cAMP-dependent kinase activated by effectors and agonists of adenylyl cyclase and also during interaction of trophozoites with fibronectin (FN) was found. The enzyme is associated with small granules in the cytoplasm and upon activation, a fraction of its catalytic subunit with an Mr of 100 kDa was translocated to the nucleus, while another fraction was aggregated into big clusters. Activity and translocation were blocked by H89, a specific inhibitor of PKA. Trophozoites stimulated by dBcAMP or forskolin-formed lamellae and restructured actin, but no significant increase in their adhesion to FN was observed and only showed 10% stimulus in their capacity to damage target cells. Treatment with H89 decreased adhesion to 40% and caused 80% inhibition in cell damage. These amebas showed altered organization of the actin structures induced by dBcAMP or FN. Our results support previous suggestions concerning the participation of PKA in the response elicited by the interaction of E. histolytica trophozoites with ECM proteins. They also indicate that adhesion and secretion in conjunction with motile activities are related to invasion processes.
Collapse
Affiliation(s)
- Elizabeth Franco
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | |
Collapse
|
58
|
Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol 2002; 32:655-75. [PMID: 12062485 DOI: 10.1016/s0020-7519(02)00006-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entamoeba, Giardia, and trichomonads are the prominent members of a group known as 'mucosal parasites'. While Entamoeba and Giardia trophozoites colonise the small intestine, trichomonads inhabit the genitourinary tracts of humans and animals. These protozoa lack mitochondria, well-developed Golgi complexes, and other organelles typical of higher eukaryotes. Nonetheless, they have developed unique metabolic pathways that allow them to survive and multiply in the small intestine and reproductive tracts by scavenging nutrients from the host. Various investigators have shown that these protozoa are unable to synthesise the majority of their own lipids and cholesterol de novo; rather, they depend mostly on supplies from outside sources. Therefore, questions of how they transport and utilise exogenous lipids for metabolic purposes are extremely important. There is evidence suggesting that these parasites can take up the lipids and cholesterol they need from lipoprotein particles present in the host and/or in the growth medium. Studies also support the idea that individual lipid and fatty acid molecules can be transported without the help of lipoproteins. Exogenous phospholipids have been shown to undergo fatty acid remodelling (by deacylation/reacylation reactions), which allows these protozoa to alter lipids, bypassing the synthesis of entirely new phospholipid molecules. In addition, many of these amitochondriates are, however, capable of elongating/desaturating long-chain fatty acids, and assembling novel glycophospholipid molecules. In this review, progress in various aspects of lipid research on these organisms is discussed. Attempts are also made to identify steps of lipid metabolic pathways that can be used to develop chemotherapeutic agents against these and other mucosal parasites.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Langford TD, Silberman JD, Weiland MEL, Svärd SG, McCaffery JM, Sogin ML, Gillin FD. Giardia lamblia: identification and characterization of Rab and GDI proteins in a genome survey of the ER to Golgi endomembrane system. Exp Parasitol 2002; 101:13-24. [PMID: 12243734 DOI: 10.1016/s0014-4894(02)00037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the complexity of the endomembrane transport system in the early diverging eukaryote, Giardia lamblia, we characterized homologues of the GTP-binding proteins, Rab1 and Rab2, involved in regulating vesicular trafficking between the endoplasmic reticulum and Golgi in higher eukaryotes, and GDI, which plays a key role in the cycling of Rab proteins. G. lamblia Rab1, 2.1, and GDI sequences largely resemble yeast and mammalian homologues, are transcribed as 0.66-, 0.62-, and 1.4-kb messages, respectively, and are expressed during growth and encystation. Western analyses detected an abundant Rab/GDI complex at approximately 80 kDa, and free GDI (60 kDa) in both trophozoites and encysting cells. Immunoelectron microscopy with antibody to Rab1 localized Rab with ER, encystation secretory vesicles, and lysosome-like peripheral vesicles. GDI associated with these structures, and with small vesicles found throughout the cytoplasm, consistent with GDI's key role in Rab cycling between organelles within the cell.
Collapse
Affiliation(s)
- T Dianne Langford
- Division of Infectious Diseases, Department of Pathology, University of California, San Diego, CA 92103-8416, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Siman-Tov MM, Ivens AC, Jaffe CL. Molecular cloning and characterization of two new isoforms of the protein kinase A catalytic subunit from the human parasite Leishmania. Gene 2002; 288:65-75. [PMID: 12034495 DOI: 10.1016/s0378-1119(02)00403-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leishmania are protozoan parasites that cause extensive morbidity and mortality in humans. Genes for two new isoforms of the protein kinase A catalytic subunit (PKAC) in Leishmania, Lmpkac2a and Lmpkac2b, were cloned and characterized. The predicted open reading frames for these isoforms are 93.4% identical over 338 amino acids (aa). The conserved PK catalytic cores (subdomains I-XI) are identical, while the carboxy-terminal extensions differ by only two aa. However, LmPKAC2 shares only 62% identity over the 255 aa catalytic core region with the previously described LmPKAC1 (c-lpk2). Unlike LmPKAC1, the location of the FXXF motif at the carboxy-terminus is conserved in both LmPKAC2 isoforms; however, the aa sequence, LXXF, in isoform-2a is unusual. The leishmanial isoforms can be distinguished by their NH(2)-terminal extensions, which show minimal similarity at the primary sequence level. Structural analysis of the three enzymes based on the crystal structure of mammalian PKAs predicts that both LmPKAC2 isoforms, unlike LmPKAC1, have identical alpha-helix structures in the NH(2)-terminal extension. Lmpkac2 genes are located on chromosome 35 just downstream from the leishmanial prp8 gene. This genomic organization is conserved in two species of Leishmania and Crithidia fasciculata and allowed for the partial analysis of Cfpkac2a. Phylogenetic analysis groups the two LmPKAC2 isoforms together and separately from LmPKAC1, which is more similar to the Euglena gracilis PKAC, EPK2. These findings provide the basis for additional studies on the role of the PKA family in parasite differentiation and virulence.
Collapse
Affiliation(s)
- Michal M Siman-Tov
- Department of Parasitology, Hebrew University - Hadassah Medical School, Jerusalem 91220, Israel
| | | | | |
Collapse
|