51
|
Mavrantoni A, Thallmair V, Leitner MG, Schreiber DN, Oliver D, Halaszovich CR. A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases. Front Pharmacol 2015; 6:68. [PMID: 25873899 PMCID: PMC4379879 DOI: 10.3389/fphar.2015.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/14/2015] [Indexed: 11/20/2022] Open
Abstract
Voltage sensitive phosphatases (VSPs), including engineered voltage sensitive PTEN, are excellent tools to rapidly and reversibly alter the phosphoinositide (PI) content of the plasma membrane in vivo and study the tumor suppressor PTEN. However, widespread adoption of these tools is hampered by the requirement for electrophysiological instrumentation to control the activity of VSPs. Additionally, monitoring and quantifying the PI changes in living cells requires sophisticated microscopy equipment and image analysis. Here we present methods that bypass these obstacles. First, we explore technically simple means for activation of VSPs via extracellularly applied agents or light. Secondly, we characterize methods to monitor PI(4,5)P2 and PI(3,4,5)P3 levels using fluorescence microscopy or photometry in conjunction with translocation or FRET based PI probes, respectively. We then demonstrate the application of these techniques by characterizing the effect of known PTEN mutations on its enzymatic activity, analyzing the effect of PTEN inhibitors, and detecting in real time rapid inhibition of protein kinase B following depletion of PI(3,4,5)P3. Thus, we established an approach that does not only allow for rapidly manipulating and monitoring PI(4,5)P2 and PI(3,4,5)P3 levels in a population of cells, but also facilitates the study of PTEN mutants and pharmacological targeting in mammalian cells.
Collapse
Affiliation(s)
- Angeliki Mavrantoni
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Michael G Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Daniela N Schreiber
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Christian R Halaszovich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| |
Collapse
|
52
|
Schifferer M, Feng S, Stein F, Tischer C, Schultz C. Reversible chemical dimerizer-induced recovery of PIP2 levels moves clathrin to the plasma membrane. Bioorg Med Chem 2015; 23:2862-7. [PMID: 25840797 DOI: 10.1016/j.bmc.2015.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/24/2022]
Abstract
Chemical dimerizers are powerful non-invasive tools for bringing molecules together inside intact cells. We recently introduced a rapidly reversible chemical dimerizer system which enables transient translocation of enzymes to and from the plasma membrane (PM). Here we have applied this system to transiently activate phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown at the PM via translocation of phosphoinositide 5-phosphatase (5Ptase). We found that the PIP2 sensor phospholipase C-δ PH domain (PLCδ-PH) is released from the PM upon addition of the reversible chemical dimerizer rCD1. By outcompeting rCD1, rapid release of the 5Ptase from the PM is followed by PIP2 recovery. This permits the observation of the PIP2-dependent clathrin assembly at the PM.
Collapse
Affiliation(s)
- Martina Schifferer
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Suihan Feng
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Christian Tischer
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|
53
|
Hammond GRV, Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:746-58. [PMID: 25732852 DOI: 10.1016/j.bbalip.2015.02.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
54
|
Borbiro I, Badheka D, Rohacs T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal 2015; 8:ra15. [PMID: 25670203 DOI: 10.1126/scisignal.2005667] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.
Collapse
Affiliation(s)
- Istvan Borbiro
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Doreen Badheka
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
55
|
Mori MX. Bridge between the channel and FRET of PtdIns(4,5)P₂ sensor. Channels (Austin) 2014; 8:292-3. [PMID: 25478620 PMCID: PMC5210509 DOI: 10.4161/chan.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
56
|
Nerve growth factor sensitizes adult sympathetic neurons to the proinflammatory peptide bradykinin. J Neurosci 2014; 34:11959-71. [PMID: 25186743 DOI: 10.1523/jneurosci.1536-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca(2+) elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca(2+) levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin.
Collapse
|
57
|
Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. ACTA ACUST UNITED AC 2014; 143:183-201. [PMID: 24470487 PMCID: PMC4001779 DOI: 10.1085/jgp.201311033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C-insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of total current. In conclusion, our studies demonstrate a fundamental role for PI(4,5)P2 in regulating TRPC6 and TRPC7 activity triggered by PLC-coupled receptor stimulation.
Collapse
Affiliation(s)
- Kyohei Itsuki
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Keum D, Baek C, Kim DI, Kweon HJ, Suh BC. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit. ACTA ACUST UNITED AC 2014; 144:297-309. [PMID: 25225550 PMCID: PMC4178937 DOI: 10.1085/jgp.201411245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pathway through which preferentially GqPCRs inhibit CaV2.2 channels depends on which β subunits are present. G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Christina Baek
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Dong-Il Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Hae-Jin Kweon
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| |
Collapse
|
59
|
Ziemba BP, Li J, Landgraf KE, Knight JD, Voth GA, Falke JJ. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α. Biochemistry 2014; 53:1697-713. [PMID: 24559055 PMCID: PMC3971957 DOI: 10.1021/bi4016082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Protein
kinase C-α (PKCα) is a member of the conventional
family of protein kinase C isoforms (cPKCs) that regulate diverse
cellular signaling pathways, share a common activation mechanism,
and are linked to multiple pathologies. The cPKC domain structure
is modular, consisting of an N-terminal pseudosubstrate peptide, two
inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase
domain. Mature, cytoplasmic cPKCs are inactive until they are switched
on by a multistep activation reaction that occurs largely on the plasma
membrane surface. Often, this activation begins with a cytoplasmic
Ca2+ signal that triggers C2 domain targeting to the plasma
membrane where it binds phosphatidylserine (PS) and phosphatidylinositol
4,5-bisphosphate (PIP2). Subsequently, the appearance of
the signaling lipid diacylglycerol (DAG) activates the membrane-bound
enzyme by recruiting the inhibitory pseudosubstrate and one or both
C1 domains away from the kinase domain. To further investigate this
mechanism, this study has utilized single-molecule total internal
reflection fluorescence microscopy (TIRFM) to quantitate the binding
and lateral diffusion of full-length PKCα and fragments missing
specific domain(s) on supported lipid bilayers. Lipid binding events,
and events during which additional protein is inserted into the bilayer,
were detected by their effects on the equilibrium bound particle density
and the two-dimensional diffusion rate. In addition to the previously
proposed activation steps, the findings reveal a major, undescribed,
kinase-inactive intermediate. On bilayers containing PS or PS and
PIP2, full-length PKCα first docks to the membrane
via its C2 domain, and then its C1A domain embeds itself in the bilayer
even before DAG appears. The resulting pre-DAG intermediate with membrane-bound
C1A and C2 domains is the predominant state of PKCα while it
awaits the DAG signal. The newly detected, membrane-embedded C1A domain
of this pre-DAG intermediate confers multiple useful features, including
enhanced membrane affinity and longer bound state lifetime. The findings
also identify the key molecular step in kinase activation: because
C1A is already membrane-embedded in the kinase off state, recruitment
of C1B to the bilayer by DAG or phorbol ester is the key regulatory
event that stabilizes the kinase on state. More broadly, this study
illustrates the power of single-molecule methods in elucidating the
activation mechanisms and hidden regulatory states of membrane-bound
signaling proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | | | | | |
Collapse
|
60
|
Dickson EJ, Falkenburger BH, Hille B. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. ACTA ACUST UNITED AC 2014; 141:521-35. [PMID: 23630337 PMCID: PMC3639578 DOI: 10.1085/jgp.201210886] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol.http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
61
|
Goedhart J, van Unen J, Adjobo-Hermans MJW, Gadella TWJ. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location. Sci Rep 2014; 3:2284. [PMID: 23884432 PMCID: PMC3722567 DOI: 10.1038/srep02284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/10/2013] [Indexed: 02/02/2023] Open
Abstract
The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.
Collapse
Affiliation(s)
- Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Castro LRV, Guiot E, Polito M, Paupardin-Tritsch D, Vincent P. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors. Biotechnol J 2014; 9:192-202. [PMID: 24478276 DOI: 10.1002/biot.201300202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/02/2013] [Accepted: 01/08/2014] [Indexed: 11/11/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Liliana R V Castro
- CNRS UMR7102, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR7102, Paris, France
| | | | | | | | | |
Collapse
|
63
|
Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, Snead M, Brown R, Morrison A, Wilson S, Harrison S, Moore C, Balla T. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem 2014; 289:6120-32. [PMID: 24415756 DOI: 10.1074/jbc.m113.531426] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4-kinase type IIIα (PI4KA) is a host factor essential for hepatitis C virus replication and hence is a target for drug development. PI4KA has also been linked to endoplasmic reticulum exit sites and generation of plasma membrane phosphoinositides. Here, we developed highly specific and potent inhibitors of PI4KA and conditional knock-out mice to study the importance of this enzyme in vitro and in vivo. Our studies showed that PI4KA is essential for the maintenance of plasma membrane phosphatidylinositol 4,5-bisphosphate pools but only during strong stimulation of receptors coupled to phospholipase C activation. Pharmacological blockade of PI4KA in adult animals leads to sudden death closely correlating with the drug's ability to induce phosphatidylinositol 4,5-bisphosphate depletion after agonist stimulation. Genetic inactivation of PI4KA also leads to death; however, the cause in this case is due to severe intestinal necrosis. These studies highlight the risks of targeting PI4KA as an anti-hepatitis C virus strategy and also point to important distinctions between genetic and pharmacological studies when selecting host factors as putative therapeutic targets.
Collapse
Affiliation(s)
- Naveen Bojjireddy
- From the Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
To perform functional cell-based screening assays on seven-transmembrane (7TM) receptors, also known as G-protein coupled receptors, at least three distinct assays are currently needed to screen for G(alphas), G(alphai/0) or G(alphaq/11) signaling receptors. Therefore, there has long been a desire for a universal screening assay that could be used to screen all 7TM receptors independent of their signaling pathway. The receptor/beta-arrestin interaction is common to virtually all 7TM receptors. Therefore, an assay based on this interaction should achieve just that. Bioluminescence resonance energy transfer technology can be used to measure the receptor/beta-arrestin interaction in living cells but due to various technical and biological reasons, the use of the technology for compound screening has been limited. The recent development of beta-arrestin mutants that significantly improve the assay signal, in combination with new improved instrumentation, has transformed bioluminescence resonance energy transfer technology from being a highly specialized research tool in molecular pharmacology to a more drug screening-friendly technique that is useful in an industrial setting.
Collapse
Affiliation(s)
- Anders Heding
- Department of Molecular Screening, 7TM Pharma, Fremtidsvej 3, 2970 Hørsholm, Denmark.
| |
Collapse
|
65
|
Penniston JT, Padányi R, Pászty K, Varga K, Hegedus L, Enyedi A. Apart from its known function, the plasma membrane Ca²⁺ATPase can regulate Ca²⁺ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 2013; 127:72-84. [PMID: 24198396 DOI: 10.1242/jcs.132548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs, also known as ATP2B1-ATP2B4) are known targets of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂], but if and how they control the PtdIns(4,5)P₂ pool has not been considered. We demonstrate here that PMCAs protect PtdIns(4,5)P₂ in the plasma membrane from hydrolysis by phospholipase C (PLC). Comparison of active and inactive PMCAs indicates that the protection operates by two mechanisms; one requiring active PMCAs, the other not. It appears that the mechanism requiring activity is the removal of the Ca(2+) required for sustained PLC activity, whereas the mechanism not requiring activity is PtdIns(4,5)P₂ binding. We show that in PMCA overexpressing cells, PtdIns(4,5)P₂ binding can lead to less inositol 1,4,5-triphosphate (InsP₃) and diminished Ca(2+) release from intracellular Ca(2+) pools. Inspection of a homology model of PMCA suggests that PMCAs have a conserved cluster of basic residues forming a 'blue collar' at the interface between the membrane core and the cytoplasmic domains. By molecular dynamics simulation, we found that the blue collar forms four binding pockets for the phosphorylated inositol head group of PtdIns(4,5)P₂; these pockets bind PtdIns(4,5)P₂ strongly and frequently. Our studies suggest that by having the ability to bind PtdIns(4,5)P₂, PMCAs can control the accessibility of PtdIns(4,5)P₂ for PLC and other PtdIns(4,5)P₂-mediated processes.
Collapse
Affiliation(s)
- John T Penniston
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1025 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
66
|
Tateyama M, Kubo Y. Analyses of the effects of Gq protein on the activated states of the muscarinic M3 receptor and the purinergic P2Y1 receptor. Physiol Rep 2013; 1:e00134. [PMID: 24303197 PMCID: PMC3841061 DOI: 10.1002/phy2.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/04/2013] [Accepted: 09/29/2013] [Indexed: 12/31/2022] Open
Abstract
G protein–coupled receptors (GPCRs) cause various cellular responses through activating heterotrimeric G protein upon the agonist binding. The interaction with G protein has been suggested to stabilize the agonist-bound active conformation of GPCRs. We previously reported the effects of Gq protein on the stabilization of the active conformation of the muscarinic receptor type 1 (M1R), using a fluorescence resonance energy transfer (FRET) technique. In this study, we aimed at examining whether or not the binding of Gq protein affects the agonist-induced active conformation of receptors other than the M1R. For this purpose, functionally intact fluorescent receptors of the metabotropic purinergic receptor type 1 (P2Y1R) and muscarinic receptor type 3 (M3R) were constructed, by inserting junctional linkers between the short intracellular third loops (i3) and yellow fluorescent protein (YFP). The YFP-fused receptors also showed the agonist-induced increases in FRET from the cyan fluorescent protein (CFP) tethered with Gαq subunit, indicating that they interacted with Gq protein. The agonist-induced conformational changes of the receptors were detected as the agonist-induced decrease in FRET between YFP at the i3 and CFP at the C-tail. The FRET decrease of the M3R but not of the P2Y1R was enhanced by coexpression of Gq protein. In addition, coexpression of Gq protein significantly decelerated the FRET recovery of the M3R construct but not of the P2Y1R construct upon the agonist removal. These results suggest that the effects of the Gq binding on the active conformation of the receptor differ depending on the type of GPCRs.
Collapse
Affiliation(s)
- Michihiro Tateyama
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences Myodaiji, Okazaki, 444-8585, Aichi, Japan ; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI) Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | | |
Collapse
|
67
|
Warren SC, Margineanu A, Alibhai D, Kelly DJ, Talbot C, Alexandrov Y, Munro I, Katan M, Dunsby C, French PMW. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets. PLoS One 2013; 8:e70687. [PMID: 23940626 PMCID: PMC3734241 DOI: 10.1371/journal.pone.0070687] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/20/2013] [Indexed: 12/18/2022] Open
Abstract
Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.
Collapse
Affiliation(s)
- Sean C Warren
- Department of Chemistry, Institute for Chemical Biology, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Tewson PH, Quinn AM, Hughes TE. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells. JOURNAL OF BIOMOLECULAR SCREENING 2013; 18:797-806. [PMID: 23580666 PMCID: PMC4242713 DOI: 10.1177/1087057113485427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.
Collapse
|
69
|
Janssen A, Beerling E, Medema R, van Rheenen J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS One 2013; 8:e64029. [PMID: 23691140 PMCID: PMC3654962 DOI: 10.1371/journal.pone.0064029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Taxanes, such as docetaxel, are microtubule-targeting chemotherapeutics that have been successfully used in the treatment of cancer. Based on data obtained from cell cultures, it is believed that taxanes induce tumor cell death by specifically perturbing mitotic progression. Here, we report on data that suggest that this generally accepted view may be too simplified. We describe a high-resolution intravital imaging method to simultaneously visualize mitotic progression and the onset of apoptosis. To directly compare in vitro and in vivo data, we have visualized the effect of docetaxel on mitotic progression in mouse and human colorectal tumor cell lines both in vitro and in isogenic tumors in mice. We show that docetaxel-induced apoptosis in vitro occurs via mitotic cell death, whereas the vast majority of tumor cells in their natural environment die independent of mitotic defects. This demonstrates that docetaxel exerts its anti-tumor effects in vivo through means other than mitotic perturbation. The differences between in vitro and in vivo mechanisms of action of chemotherapeutics may explain the limited response to many of the anti-mitotic agents that are currently validated in clinical trials. Our data illustrate the requirement and power of our intravital imaging technique to study and validate the mode of action of chemotherapeutic agents in vivo, which will be essential to understand and improve their clinical efficacy.
Collapse
Affiliation(s)
- Aniek Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evelyne Beerling
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - René Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| | - Jacco van Rheenen
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| |
Collapse
|
70
|
Mak DOD. A mechanism for different receptors coupled to the same G protein to generate different responses mediated by different second messengers. J Gen Physiol 2013; 141:513-6. [PMID: 23630335 PMCID: PMC3639579 DOI: 10.1085/jgp.201311006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Don-On Daniel Mak
- Physiology Department, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
71
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous second messenger, derived from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) by enzymes of the phospholipase C (PLC) family. Binding of IP(3) to its cognate receptor in the endoplasmic reticulum membrane leads to release of Ca(2+) into the cytoplasm, which is involved in the regulation of an array of cellular functions. Traditional techniques for the detection of IP(3) have required the extraction of a large number of cells, with limitations in the time resolution of changes in IP(3) and an inability to obtain detailed information on the dynamics of this second messenger in single cells. Recent progress in this field has led to the development of a number of genetically encoded fluorescent biosensors, which upon recombinant expression are able selectively to detect real-time changes in IP(3) in single live cells. In this chapter, I detail protocols for the expression, visualization (by confocol or fluorescence microscopy), and interpretation of data obtained with such biosensors expressed in mammalian cells.
Collapse
Affiliation(s)
- Carl P Nelson
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care, and Pain Management, Leicester Royal Infirmary, University of Leicester, Leicester, UK.
| |
Collapse
|
72
|
Kruse M, Hammond GRV, Hille B. Regulation of voltage-gated potassium channels by PI(4,5)P2. ACTA ACUST UNITED AC 2012; 140:189-205. [PMID: 22851677 PMCID: PMC3409096 DOI: 10.1085/jgp.201210806] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) regulates activities of numerous ion channels including inwardly rectifying potassium (Kir) channels, KCNQ, TRP, and voltage-gated calcium channels. Several studies suggest that voltage-gated potassium (KV) channels might be regulated by PI(4,5)P2. Wide expression of KV channels in different cells suggests that such regulation could have broad physiological consequences. To study regulation of KV channels by PI(4,5)P2, we have coexpressed several of them in tsA-201 cells with a G protein–coupled receptor (M1R), a voltage-sensitive lipid 5-phosphatase (Dr-VSP), or an engineered fusion protein carrying both lipid 4-phosphatase and 5-phosphatase activity (pseudojanin). These tools deplete PI(4,5)P2 with application of muscarinic agonists, depolarization, or rapamycin, respectively. PI(4,5)P2 at the plasma membrane was monitored by Förster resonance energy transfer (FRET) from PH probes of PLCδ1 simultaneously with whole-cell recordings. Activation of Dr-VSP or recruitment of pseudojanin inhibited KV7.1, KV7.2/7.3, and Kir2.1 channel current by 90–95%. Activation of M1R inhibited KV7.2/7.3 current similarly. With these tools, we tested for potential PI(4,5)P2 regulation of activity of KV1.1/KVβ1.1, KV1.3, KV1.4, and KV1.5/KVβ1.3, KV2.1, KV3.4, KV4.2, KV4.3 (with different KChIPs and DPP6-s), and hERG/KCNE2. Interestingly, we found a substantial removal of inactivation for KV1.1/KVβ1.1 and KV3.4, resulting in up-regulation of current density upon activation of M1R but no changes in activity upon activating only VSP or pseudojanin. The other channels tested except possibly hERG showed no alteration in activity in any of the assays we used. In conclusion, a depletion of PI(4,5)P2 at the plasma membrane by enzymes does not seem to influence activity of most tested KV channels, whereas it does strongly inhibit members of the KV7 and Kir families.
Collapse
Affiliation(s)
- Martin Kruse
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
73
|
Depry C, Mehta S, Zhang J. Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors. Pflugers Arch 2012; 465:373-81. [PMID: 23138230 DOI: 10.1007/s00424-012-1175-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/13/2012] [Indexed: 12/25/2022]
Abstract
Cells rely on a complex, interconnected network of signaling pathways to sense and interpret changes in their extracellular environment. The development of genetically encoded fluorescent protein (FP)-based biosensors has made it possible for researchers to directly observe and characterize the spatiotemporal dynamics of these intracellular signaling pathways in living cells. However, detailed information regarding the precise temporal and spatial relationships between intersecting pathways is often lost when individual signaling events are monitored in isolation. As the development of biosensor technology continues to advance, it is becoming increasingly feasible to image multiple FP-based biosensors concurrently, permitting greater insights into the intricate coordination of intracellular signaling networks by enabling parallel monitoring of distinct signaling events within the same cell. In this review, we discuss several strategies for multiplexed imaging of FP-based biosensors, while also underscoring some of the challenges associated with these techniques and highlighting additional avenues that could lead to further improvements in parallel monitoring of intracellular signaling events.
Collapse
Affiliation(s)
- Charlene Depry
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
74
|
Abstract
Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale.
Collapse
Affiliation(s)
- Ganesh Kadamur
- Department of Pharmacology, Molecular Biophysics Graduate Program and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
75
|
Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol 2012; 14:793-801. [DOI: 10.1038/ncb2537] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/07/2012] [Indexed: 12/11/2022]
|
76
|
Okumoto S. Quantitative imaging using genetically encoded sensors for small molecules in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:108-17. [PMID: 22449046 DOI: 10.1111/j.1365-313x.2012.04910.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative imaging in live cells is a powerful method for monitoring the dynamics of biomolecules at an excellent spatio-temporal resolution. Such an approach, initially limited to a small number of substrates for which specific dyes were available, has become possible for a large number of biomolecules due to the development of genetically encoded, protein-based sensors. These sensors, which can be introduced into live cells through a transgenic approach, offer the benefits of quantitative imaging, with an extra advantage of non-invasiveness. In the past decade there has been a drastic expansion in the number of biomolecules for which genetically encoded sensors are available, and the functional properties of existing sensors are being improved at a dramatic pace. A number of technical improvements have now made the application of genetically encoded sensors in plants rather straightforward, and some of the sensors such as calcium indicator proteins have become standard analytical tools in many plant laboratories. The use of a handful of probes has already revealed an amazing specificity of cellular biomolecule dynamics in plants, which leads us to believe that there are many more discoveries to be made using genetically encoded sensors. In this short review, we will summarize the progress made in the past 15 years in the development in genetically encoded sensors, and highlight significant discoveries made in plant biology.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
77
|
Abstract
Phosphoinositides are important regulators of cellular homoeostasis and numerous signal-transduction pathways. One of their major features is their ability to recruit signalling proteins to membranes by direct interaction with phosphoinositide-binding modules. The distribution and dynamics of membrane phosphoinositides are therefore major determinants in the spatiotemporal control of cell signalling and membrane trafficking. However, standard biochemical approaches cannot reveal the dynamics of phosphoinositides at the single-cell level. A major technical advance has been the development of genetically encoded fluorescent phosphoinositide probes on the basis of the phosphoinositide-binding domains found in signalling proteins, such as the PH (pleckstrin homology) domain. This review describes the diverse fluorescent phosphoinositide probes available for imaging specific phosphoinositide species and how their use has improved the understanding of phosphoinositide signalling at the single-cell level.
Collapse
Affiliation(s)
- Guillaume Halet
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
78
|
Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. PROGRESS IN BRAIN RESEARCH 2012; 196:235-63. [PMID: 22341329 DOI: 10.1016/b978-0-444-59426-6.00012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent protein technology has evolved to include genetically encoded biosensors that can monitor levels of ions, metabolites, and enzyme activities as well as protein conformation and even membrane voltage. They are well suited to live-cell microscopy and quantitative analysis, and they can be used in multiple imaging modes, including one- or two-photon fluorescence intensity or lifetime microscopy. Although not nearly complete, there now exists a substantial set of genetically encoded reporters that can be used to monitor many aspects of neuronal and glial biology, and these biosensors can be used to visualize synaptic transmission and activity-dependent signaling in vitro and in vivo. In this review, we present an overview of design strategies for engineering biosensors, including sensor designs using circularly permuted fluorescent proteins and using fluorescence resonance energy transfer between fluorescent proteins. We also provide examples of indicators that sense small ions (e.g., pH, chloride, zinc), metabolites (e.g., glutamate, glucose, ATP, cAMP, lipid metabolites), signaling pathways (e.g., G protein-coupled receptors, Rho GTPases), enzyme activities (e.g., protein kinase A, caspases), and reactive species. We focus on examples where these genetically encoded indicators have been applied to brain-related studies and used with live-cell fluorescence microscopy.
Collapse
|
79
|
Slabbaert JR, Khuong TM, Verstreken P. Phosphoinositides at the Neuromuscular Junction of Drosophila melanogaster: A Genetic Approach. Methods Cell Biol 2012; 108:227-47. [DOI: 10.1016/b978-0-12-386487-1.00012-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
81
|
Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX. A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P₂-diacylglycerol signalling. J Physiol 2011; 590:1101-19. [PMID: 22183723 DOI: 10.1113/jphysiol.2011.221358] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of transient receptor potential (TRP) canonical TRPC3/C6/C7 channels by diacylglycerol (DAG) upon stimulation of phospholipase C (PLC)-coupled receptors results in the breakdown of phosphoinositides (PIPs). The critical importance of PIPs to various ion-transporting molecules is well documented, but their function in relation to TRPC3/C6/C7 channels remains controversial. By using an ectopic voltage-sensing PIP phosphatase (DrVSP), we found that dephosphorylation of PIPs robustly inhibits currents induced by carbachol (CCh), 1-oleolyl-2-acetyl-sn-glycerol (OAG) or RHC80267 in TRPC3, TRPC6 and TRPC7 channels, though the strength of the DrVSP-mediated inhibition (VMI) varied among the channels with a rank order of C7>C6>C3. Pharmacological and molecular interventions suggest that depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P₂) is most likely the critical event for VMI in all three channels.When the PLC catalytic signal was vigorously activated through overexpression of the muscarinic type-I receptor (M1R), the inactivation of macroscopic TRPC currents was greatly accelerated in the same rank order as the VMI, and VMI of these currents was attenuated or lost. VMI was also rarely detected in vasopressin-induced TRPC6-like currents inA7r5 vascular smooth muscle cells, indicating that the inactivation by PI(4,5)P₂ depletion underlies the physiological condition. Simultaneous fluorescence resonance energy transfer (FRET)-based measurement of PI(4,5)P₂ levels and TRPC6 currents confirmed that VMI magnitude reflects the degree of PI(4,5)P₂ depletion. These results demonstrate that TRPC3/C6/C7 channels are differentially regulated by depletion of PI(4,5)P₂, and that the bimodal signal produced by PLC activation controls these channels in a self-limiting manner.
Collapse
Affiliation(s)
- Yuko Imai
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | |
Collapse
|
82
|
Quantitative co-expression of proteins at the single cell level--application to a multimeric FRET sensor. PLoS One 2011; 6:e27321. [PMID: 22114669 PMCID: PMC3219669 DOI: 10.1371/journal.pone.0027321] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 10/13/2011] [Indexed: 01/05/2023] Open
Abstract
Background Co-expression of proteins is generally achieved by introducing two (or more) independent plasmids into cells, each driving the expression of a different protein of interest. However, the relative expression levels may vary strongly between individual cells and cannot be controlled. Ideally, co-expression occurs at a defined ratio, which is constant among cells. This feature is of particular importance for quantitative single cell studies, especially those employing bimolecular Förster Resonance Energy Transfer (FRET) sensors. Methodology/Principal Findings Four co-expression strategies based on co-transfection, a dual promotor plasmid, an internal ribosome entry site (IRES) and a viral 2A peptide were selected. Co-expression of two spectrally separable fluorescent proteins in single living cells was quantified. It is demonstrated that the 2A peptide strategy can be used for robust equimolar co-expression, while the IRES sequence allows expression of two proteins at a ratio of approximately 3:1. Combined 2A and IRES elements were used for the construction of a single plasmid that drives expression of three individual proteins, which generates a FRET sensor for measuring heterotrimeric G-protein activation. The plasmid drives co-expression of donor and acceptor tagged subunits, with reduced heterogeneity, and can be used to measure G-protein activation in single living cells. Conclusions/Significance Quantitative co-expression of two or more proteins can be achieved with little cell-to-cell variability. This finding enables reliable co-expression of donor and acceptor tagged proteins for FRET studies, which is of particular importance for the development of novel bimolecular sensors that can be expressed from single plasmid.
Collapse
|
83
|
Pilling C, Landgraf KE, Falke JJ. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3). Biochemistry 2011; 50:9845-56. [PMID: 21932773 DOI: 10.1021/bi2011306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.
Collapse
Affiliation(s)
- Carissa Pilling
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
84
|
Yudin Y, Lukacs V, Cao C, Rohacs T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 2011; 589:6007-27. [PMID: 22005680 DOI: 10.1113/jphysiol.2011.220228] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activity of the cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels diminishes over time in the presence of extracellular Ca(2+), a phenomenon referred to as desensitization or adaptation. Here we show that activation of TRPM8 by cold or menthol evokes a decrease in cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] levels. The decrease in PtdIns(4,5)P(2) levels was accompanied by increased inositol 1,4,5 trisphosphate (InsP(3)) production, and was inhibited by loading the cells with the Ca(2+) chelator BAPTA-AM, showing that it was the consequence of the activation of phospholipase C (PLC) by increased intracellular Ca(2+) concentrations. PtdIns(4,5)P(2) hydrolysis showed excellent temporal correlation with current desensitization in simultaneous patch clamp and fluorescence-based PtdIns(4,5)P(2) level measurements. Intracellular dialysis of PtdIns(4,5)P(2) inhibited desensitization both in native neuronal and recombinant TRPM8 channels. PtdIns(4)P, the precursor of PtdIns(4,5)P(2), did not inhibit desensitization, consistent with its minimal effect in excised patches. Omission of MgATP from the intracellular solution accelerated desensitization, and MgATP reactivated TRPM8 channels in excised patches in a phosphatidylinositol 4-kinase (PI4K)-dependent manner. PLC-independent depletion of PtdIns(4,5)P(2) using a voltage-sensitive phosphatase (ci-VSP) inhibited TRPM8 currents, and omission of ATP from the intracellular solution inhibited recovery from this inhibition. Inhibitors of PKC had no effect on the kinetics of desensitization. We conclude that Ca(2+) influx through TRPM8 activates a Ca(2+)-sensitive PLC isoform, and the resulting depletion of PtdIns(4,5)P(2) plays a major role in desensitization of both cold and menthol responses.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
85
|
Gerisch G, Ecke M, Wischnewski D, Schroth-Diez B. Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system. BMC Cell Biol 2011; 12:42. [PMID: 21982379 PMCID: PMC3199247 DOI: 10.1186/1471-2121-12-42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/07/2011] [Indexed: 11/27/2022] Open
Abstract
Background In a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile Dictyostelium cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate. To study de-novo cell polarization, we first depolymerized actin and subsequently recorded the spontaneous reorganization of actin patterns in relation to PTEN. Results In a transient stage of recovery from depolymerization, symmetric actin patterns alternate periodically with asymmetric ones. The switches to asymmetry coincide with the unilateral membrane-binding of PTEN. The modes of state transitions in the actin and PTEN systems differ. Transitions in the actin system propagate as waves that are initiated at single sites by the amplification of spontaneous fluctuations. In PTEN-null cells, these waves still propagate with normal speed but loose their regular periodicity. Membrane-binding of PTEN is induced at the border of a coherent PTEN-rich area in the form of expanding and regressing gradients. Conclusions The state transitions in actin organization and the reversible transition from cytoplasmic to membrane-bound PTEN are synchronized but their patterns differ. The transitions in actin organization are independent of PTEN, but when PTEN is present, they are coupled to periodic changes in the membrane-binding of this PIP3-degrading phosphatase. The PTEN oscillations are related to motility patterns of chemotaxing cells.
Collapse
Affiliation(s)
- Günther Gerisch
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
86
|
Gloerich M, Vliem MJ, Prummel E, Meijer LAT, Rensen MGA, Rehmann H, Bos JL. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. ACTA ACUST UNITED AC 2011; 193:1009-20. [PMID: 21670213 PMCID: PMC3115801 DOI: 10.1083/jcb.201011126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Direct interaction between the catalytic domain of Epac1 and the nuclear pore component RanBP2 blocks Epac1 catalytic activity and downstream cAMP signaling. Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
87
|
Miyawaki A. Development of Probes for Cellular Functions Using Fluorescent Proteins and Fluorescence Resonance Energy Transfer. Annu Rev Biochem 2011; 80:357-73. [DOI: 10.1146/annurev-biochem-072909-094736] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Wako-city, Saitama 351-0198, Japan;
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
88
|
Goto JI, Mikoshiba K. Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior. THE CEREBELLUM 2011; 10:820-33. [DOI: 10.1007/s12311-011-0270-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
89
|
Hertel F, Switalski A, Mintert-Jancke E, Karavassilidou K, Bender K, Pott L, Kienitz MC. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLoS One 2011; 6:e20855. [PMID: 21695261 PMCID: PMC3111442 DOI: 10.1371/journal.pone.0020855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
Background Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P2 in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane. For controlled and reversible depletion of PtdIns(4,5)P2, voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Methods and Results Expression and correct targeting of ECFP-PH-PLCδ1, EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P2 in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K+ (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P2 was identified. Conclusions Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral constructs containing self-cleaving 2A-peptide sequences are highly suited for simultaneous transfer of multiple genes in adult cardiac myocytes.
Collapse
Affiliation(s)
- Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Agathe Switalski
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Kirsten Bender
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | | |
Collapse
|
90
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
91
|
Tanimura A. The Development of FRET-Based IP3 Biosensors and Their Use for Monitoring IP3 Dynamics during Ca2+ Oscillations and Ca2+ Waves in Non-Excitable Cells. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Dovgan AV, Cherkas VP, Stepanyuk AR, Fitzgerald DJ, Haynes LP, Tepikin AV, Burgoyne RD, Belan PV. Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons. Eur J Neurosci 2010; 32:347-58. [PMID: 20704590 PMCID: PMC3069492 DOI: 10.1111/j.1460-9568.2010.07303.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hippocalcin is a Ca2+-binding protein that belongs to a family of neuronal Ca2+sensors and is a key mediator of many cellular functions including synaptic plasticity and learning. However, the molecular mechanisms involved in hippocalcin signalling remain illusive. Here we studied whether glutamate receptor activation induced by locally applied or synaptically released glutamate can be decoded by hippocalcin translocation. Local AMPA receptor activation resulted in fast hippocalcin-YFP translocation to specific sites within a dendritic tree mainly due to AMPA receptor-dependent depolarization and following Ca2+influx via voltage-operated calcium channels. Short local NMDA receptor activation induced fast hippocalcin-YFP translocation in a dendritic shaft at the application site due to direct Ca2+influx via NMDA receptor channels. Intrinsic network bursting produced hippocalcin-YFP translocation to a set of dendritic spines when they were subjected to several successive synaptic vesicle releases during a given burst whereas no translocation to spines was observed in response to a single synaptic vesicle release and to back-propagating action potentials. The translocation to spines required Ca2+influx via synaptic NMDA receptors in which Mg2+ block is relieved by postsynaptic depolarization. This synaptic translocation was restricted to spine heads and even closely (within 1–2 μm) located spines on the same dendritic branch signalled independently. Thus, we conclude that hippocalcin may differentially decode various spatiotemporal patterns of glutamate receptor activation into site- and time-specific translocation to its targets. Hippocalcin also possesses an ability to produce local signalling at the single synaptic level providing a molecular mechanism for homosynaptic plasticity.
Collapse
Affiliation(s)
- A V Dovgan
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Dexter RJ, Schepartz A. Direct visualization of protein association in living cells with complex-edited electron microscopy. Angew Chem Int Ed Engl 2010; 49:7952-4. [PMID: 20845344 PMCID: PMC3021176 DOI: 10.1002/anie.201003217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rachel J Dexter
- Department of Chemistry, Yale University, New Haven, CT 06510 (USA)
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06510 (USA)
| |
Collapse
|
94
|
Dexter RJ, Schepartz A. Direct Visualization of Protein Association in Living Cells with Complex-Edited Electron Microscopy. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
95
|
Suh BC, Leal K, Hille B. Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 2010; 67:224-38. [PMID: 20670831 DOI: 10.1016/j.neuron.2010.07.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2010] [Indexed: 12/23/2022]
Abstract
Modulation of voltage-gated Ca(2+) channels controls activities of excitable cells. We show that high-voltage activated Ca(2+) channels are regulated by membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) with different sensitivities. Plasma membrane PIP(2) depletion by rapamycin-induced translocation of an inositol lipid 5-phosphatase or by a voltage-sensitive 5-phosphatase (VSP) suppresses Ca(V)1.2 and Ca(V)1.3 channel currents by approximately 35% and Ca(V)2.1 and Ca(V)2.2 currents by 29% and 55%, respectively. Other Ca(V) channels are less sensitive. Inhibition is not relieved by strong depolarizing prepulses. It changes the voltage dependence of channel gating little. Recovery of currents from inhibition needs intracellular hydrolysable ATP, presumably for PIP(2) resynthesis. When PIP(2) is increased by overexpressing PIP 5-kinase, activation and inactivation of Ca(V)2.2 current slow and voltage-dependent gating shifts to slightly higher voltages. Thus, endogenous membrane PIP(2) supports high-voltage activated L-, N-, and P/Q-type Ca(2+) channels, and stimuli that activate phospholipase C deplete PIP(2) and reduce those Ca(2+) channel currents.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics, The University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | | | | |
Collapse
|
96
|
Schultz C, Neef AB, Gadella TW, Goedhart J. Imaging lipids in living cells. Cold Spring Harb Protoc 2010; 2010:pdb.top83. [PMID: 20647368 DOI: 10.1101/pdb.top83] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The investigation of lipids in living cells is one of the underdeveloped areas in cell biology. Although it is possible to analyze the global lipid composition of a cell type, fractionation of the various types of membranes from cells is extraordinarily difficult, mainly because most membranes appear to be in contact with each other. Therefore, we know the lipid components, but we have a difficult time finding out their exact position, how dynamically they change location, and how rapidly they are metabolized. Imaging lipids in cells seems to be the obvious solution to the problem. The most common way to image molecules is by the artificial addition of a fluorescent tag. The use of fluorescent proteins has become the mainstay of protein imaging, but this method is, of course, not suitable for small molecules such as lipids. Unfortunately, the fluorescent tag is usually as large as the lipid and is therefore likely to have a severe influence on lipid location and metabolism. To circumvent this problem, two solutions have been developed--namely, the use of fluorescently labeled proteins that specifically recognize lipids and a chemical method to introduce the fluorescent tag inside the cell. This article describes procedures necessary to image lipids by fluorescently tagged lipid-binding domains and by labeling lipid derivatives in fixed and living cells.
Collapse
|
97
|
Tanaka N, Papoian GA. Reverse-engineering of biochemical reaction networks from spatio-temporal correlations of fluorescence fluctuations. J Theor Biol 2010; 264:490-500. [DOI: 10.1016/j.jtbi.2010.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 01/31/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
98
|
Balla T. Putting G protein-coupled receptor-mediated activation of phospholipase C in the limelight. ACTA ACUST UNITED AC 2010; 135:77-80. [PMID: 20100889 PMCID: PMC2812503 DOI: 10.1085/jgp.200910396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
99
|
Falkenburger BH, Jensen JB, Hille B. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells. ACTA ACUST UNITED AC 2010; 135:81-97. [PMID: 20100890 PMCID: PMC2812500 DOI: 10.1085/jgp.200910344] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Galpha subunit, are common for many different GPCRs. For G(q)-coupled M(1) muscarinic (acetylcholine) receptors (M(1)Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M(1)R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M(1)R signaling through G(q) to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) and PIP(2)-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with approximately 3,000 fluorescently labeled receptors, G proteins, or PLC molecules per microm(2) of plasma membrane. Endogenous levels are much lower, 1-40 per microm(2). Our kinetic model reproduces the time courses and concentration-response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M(1)R and Gbeta FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Galpha(q) greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Galpha(q) subunits bound to PLC.
Collapse
Affiliation(s)
- Björn H Falkenburger
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
100
|
Falkenburger BH, Jensen JB, Hille B. Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. ACTA ACUST UNITED AC 2010; 135:99-114. [PMID: 20100891 PMCID: PMC2812502 DOI: 10.1085/jgp.200910345] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The signaling phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP(2)) is synthesized in two steps from phosphatidylinositol by lipid kinases. It then interacts with KCNQ channels and with pleckstrin homology (PH) domains among many other physiological protein targets. We measured and developed a quantitative description of these metabolic and protein interaction steps by perturbing the PIP(2) pool with a voltage-sensitive phosphatase (VSP). VSP can remove the 5-phosphate of PIP(2) with a time constant of tau <300 ms and fully inhibits KCNQ currents in a similar time. PIP(2) was then resynthesized from phosphatidylinositol 4-phosphate (PIP) quickly, tau = 11 s. In contrast, resynthesis of PIP(2) after activation of phospholipase C by muscarinic receptors took approximately 130 s. These kinetic experiments showed that (1) PIP(2) activation of KCNQ channels obeys a cooperative square law, (2) the PIP(2) residence time on channels is <10 ms and the exchange time on PH domains is similarly fast, and (3) the step synthesizing PIP(2) by PIP 5-kinase is fast and limited primarily by a step(s) that replenishes the pool of plasma membrane PI(4)P. We extend the kinetic model for signaling from M(1) muscarinic receptors, presented in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910344), with this new information on PIP(2) synthesis and KCNQ interaction.
Collapse
Affiliation(s)
- Björn H Falkenburger
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|