51
|
Zhang B, Chambers KJ, Faller DV, Wang S. Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 2007; 26:7153-7. [PMID: 17486062 DOI: 10.1038/sj.onc.1210509] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The SWI/SNF complex participates as a co-activator in the transcriptional regulation of certain genes. Conversely, we and others have recently established that Brg1 and Brm, the central components of SWI/SNF, act instead as co-repressors for E2F-mediated transcriptional repression, and for the transcription of certain other promoters. We report here that Brg-1 and Brm can switch their mode of function at same promoter between activation and repression by ligand-directed differential coordination with BAF155, BAF170, HDAC1, p300 and prohibitin. This ligand and context-dependent reprogramming of the SWI/SNF complex allows it to differentially serve as either a co-repressor or a co-activator of transcription at the same promoter.
Collapse
Affiliation(s)
- B Zhang
- Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
52
|
Xu R, Spencer VA, Bissell MJ. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 2007; 282:14992-9. [PMID: 17387179 PMCID: PMC2933196 DOI: 10.1074/jbc.m610316200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation assays and mammary-specific genes as models, we show here that extracellular matrix molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the beta- and gamma-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both beta- and gamma-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. Chromatin immunoprecipitation analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Co-immunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, CCAAT/enhancer-binding protein beta, and glucocorticoid receptor. Thus, extracellular matrix- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.
Collapse
Affiliation(s)
- Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
53
|
Dacwag CS, Ohkawa Y, Pal S, Sif S, Imbalzano AN. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol Cell Biol 2006; 27:384-94. [PMID: 17043109 PMCID: PMC1800640 DOI: 10.1128/mcb.01528-06] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle differentiation requires the coordinated activity of transcription factors, histone modifying enzymes, and ATP-dependent chromatin remodeling enzymes. The type II protein arginine methyltransferase Prmt5 symmetrically dimethylates histones H3 and H4 and numerous nonchromatin proteins, and prior work has implicated Prmt5 in transcriptional repression. Here we demonstrate that MyoD-induced muscle differentiation requires Prmt5. One of the first genes activated during differentiation encodes the myogenic regulator myogenin. Prmt5 and dimethylated H3R8 (histone 3 arginine 8) are localized at the myogenin promoter in differentiating cells. Modification of H3R8 required Prmt5, and reduction of Prmt5 resulted in the abrogation of promoter binding by the Brg1 ATPase-associated with the SWI/SNF chromatin remodeling enzymes and all subsequent events associated with gene activation, including increases in chromatin accessibility and stable binding by MyoD. Prmt5 and dimethylated H3R8 were also associated with the myogenin promoter in activated satellite cells isolated from muscle tissue, further demonstrating the physiological relevance of these observations. The data indicate that Prmt5 facilitates myogenesis because it is required for Brg1-dependent chromatin remodeling and gene activation at a locus essential for differentiation. We therefore conclude that a histone modifying enzyme is necessary to permit an ATP-dependent chromatin remodeling enzyme to function.
Collapse
Affiliation(s)
- Caroline S Dacwag
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
54
|
Zhang J, Ohta T, Maruyama A, Hosoya T, Nishikawa K, Maher JM, Shibahara S, Itoh K, Yamamoto M. BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress. Mol Cell Biol 2006; 26:7942-52. [PMID: 16923960 PMCID: PMC1636732 DOI: 10.1128/mcb.00700-06] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) regulates antioxidant-responsive element-mediated induction of cytoprotective genes in response to oxidative stress. The purpose of this study was to determine the role of BRG1, a catalytic subunit of SWI2/SNF2-like chromatin-remodeling complexes, in Nrf2-mediated gene expression. Small interfering RNA knockdown of BRG1 in SW480 cells selectively decreased inducible expression of the heme oxygenase 1 (HO-1) gene after diethylmaleate treatment but did not affect other Nrf2 target genes, such as the gene encoding NADPH:quinone oxidoreductase 1 (NQO1). Chromatin immunoprecipitation analysis revealed that Nrf2 recruits BRG1 to both HO-1 and NQO1 regulatory regions. However, BRG1 knockdown selectively decreased the recruitment of RNA polymerase II to the HO-1 promoter but not to the NQO1 promoter. HO-1, but not other Nrf2-regulated genes, harbors a sequence of TG repeats capable of forming Z-DNA with BRG1 assistance. Similarly, replacement of the TG repeats with an alternative Z-DNA-forming sequence led to BRG1-mediated activation of HO-1. These results thus demonstrate that BRG1, through the facilitation of Z-DNA formation and subsequent recruitment of RNA polymerase II, is critical in Nrf2-mediated inducible expression of HO-1.
Collapse
Affiliation(s)
- Jianyong Zhang
- Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
de la Serna IL, Ohkawa Y, Imbalzano AN. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 2006; 7:461-73. [PMID: 16708073 DOI: 10.1038/nrg1882] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The initiation of cellular differentiation involves alterations in gene expression that depend on chromatin changes, at the level of both higher-order structures and individual genes. Consistent with this, chromatin-remodelling enzymes have key roles in differentiation and development. The functions of ATP-dependent chromatin-remodelling enzymes have been studied in several mammalian differentiation pathways, revealing cell-type-specific and gene-specific roles for these proteins that add another layer of precision to the regulation of differentiation. Recent studies have also revealed a role for ATP-dependent remodelling in regulating the balance between proliferation and differentiation, and have uncovered intriguing links between chromatin remodelling and other cellular processes during differentiation, including recombination, genome organization and the cell cycle.
Collapse
Affiliation(s)
- Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3035 Arlington Avenue, Toledo, Ohio 43606, USA
| | | | | |
Collapse
|
56
|
Villagra A, Cruzat F, Carvallo L, Paredes R, Olate J, van Wijnen AJ, Stein GS, Lian JB, Stein JL, Imbalzano AN, Montecino M. Chromatin remodeling and transcriptional activity of the bone-specific osteocalcin gene require CCAAT/enhancer-binding protein beta-dependent recruitment of SWI/SNF activity. J Biol Chem 2006; 281:22695-706. [PMID: 16772287 DOI: 10.1074/jbc.m511640200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific activation of the osteocalcin (OC) gene is associated with changes in chromatin structure at the promoter region. Two nuclease-hypersensitive sites span the key regulatory elements that control basal tissue-specific and vitamin D3-enhanced OC gene transcription. To gain understanding of the molecular mechanisms involved in chromatin remodeling of the OC gene, we have examined the requirement for SWI/SNF activity. We inducibly expressed an ATPase-defective BRG1 catalytic subunit that forms inactive SWI/SNF complexes that bind to the OC promoter. This interaction results in inhibition of both basal and vitamin D3-enhanced OC gene transcription and a marked decrease in nuclease hypersensitivity. We find that SWI/SNF is recruited to the OC promoter via the transcription factor CCAAT/enhancer-binding protein beta, which together with Runx2 forms a stable complex to facilitate RNA polymerase II binding and activation of OC gene transcription. Together, our results indicate that the SWI/SNF complex is a key regulator of the chromatin-remodeling events that promote tissue-specific transcription in osteoblasts.
Collapse
Affiliation(s)
- Alejandro Villagra
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Casilla 160-C, 4079100 Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Owen-Hughes T. The role of Snf2-related proteins in cancer. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:47-59. [PMID: 16568948 DOI: 10.1007/3-540-37633-x_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several HDAC inhibitors that exhibit impressive anti-tumour activity are now in clinical trials. Proteins that function in the same pathways might also serve as valuable therapeutic targets. A subset of histone deacetylase activities are found to be physically associated with ATP-dependent remodelling enzymes and may assist their function. This raises the possibility that ATP-dependent remodelling enzymes should be considered as therapeutic targets. Here some of the links between ATP-dependent chromatin remodelling enzymes and cancer are reviewed.
Collapse
Affiliation(s)
- T Owen-Hughes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Scotland, UK.
| |
Collapse
|
58
|
de la Serna IL, Ohkawa Y, Higashi C, Dutta C, Osias J, Kommajosyula N, Tachibana T, Imbalzano AN. The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J Biol Chem 2006; 281:20233-41. [PMID: 16648630 DOI: 10.1074/jbc.m512052200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microphthalmia transcription factor (Mitf) activates melanocyte-specific gene expression, is critical for survival and proliferation of melanocytes during development, and has been described as an oncogene in malignant melanoma. SWI/SNF complexes are ATP-dependent chromatin-remodeling enzymes that play a role in many developmental processes. To determine the requirement for SWI/SNF enzymes in melanocyte differentiation, we introduced Mitf into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, Brahma or Brahma-related gene 1 (BRG1). These dominant negative SWI/SNF components have been shown to inhibit gene activation events that normally require SWI/SNF enzymes. We found that Mitf-mediated activation of a subset of endogenous melanocyte-specific genes required SWI/SNF enzymes but that cell-cycle regulation occurred independently of SWI/SNF function. Activation of tyrosinase-related protein 1, a melanocyte-specific gene, correlated with SWI/SNF-dependent changes in chromatin accessibility at the endogenous locus. Both BRG1 and Mitf could be localized to the tyrosinase-related protein 1 and tyrosinase promoters by chromatin immunoprecipitation, whereas immunofluorescence and immunoprecipitation experiments indicate that Mitf and BRG1 co-localized in the nucleus and physically interacted. Together these results suggest that Mitf can recruit SWI/SNF enzymes to melanocyte-specific promoters for the activation of gene expression via induced changes in chromatin structure at endogenous loci.
Collapse
Affiliation(s)
- Ivana L de la Serna
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang GL, Shi X, Salisbury E, Sun Y, Albrecht JH, Smith RG, Timchenko NA. Cyclin D3 maintains growth-inhibitory activity of C/EBPalpha by stabilizing C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes. Mol Cell Biol 2006; 26:2570-82. [PMID: 16537903 PMCID: PMC1430318 DOI: 10.1128/mcb.26.7.2570-2582.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
C/EBPalpha arrests proliferation of young livers by inhibition of cdk2. In old mice, C/EBPalpha inhibits growth by repression of E2F-dependent promoters through the C/EBPalpha-Brm complex. In this paper, we show that cyclin D3-cdk4/cdk6 supports the ability of C/EBPalpha to inhibit liver proliferation in both age groups. Although cyclin D3-cdk4/cdk6 kinases are involved in the promotion of growth, they are expressed in terminally differentiated cells, suggesting that they have additional functions in these settings. We demonstrate that C/EBPalpha represents a target for phosphorylation by cyclin D3-cdk4/cdk6 complexes in differentiated liver cells and in differentiated adipocytes. Cyclin D3-cdk4/cdk6 specifically phosphorylate C/EBPalpha at Ser193 in vitro and in the liver and support growth-inhibitory C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes. We found that cyclin D3 is increased in old livers and activates cdk4/cdk6, resulting in stabilization of the C/EBPalpha-Brm complex. Old livers fail to reduce the activity of cyclin D3-cdk4/cdk6 after partial hepatectomy, leading to high levels of C/EBPalpha-Brm complexes after partial hepatectomy, which correlate with weak proliferation. We examined the role of cyclin D3 in the stabilization of C/EBPalpha-cdk2 and C/EBPalpha-Brm by using 3T3-L1 differentiated cells. In these cells, cyclin D3 is increased during differentiation and phosphorylates C/EBPalpha at Ser193, leading to the formation of growth-inhibitory C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes. The inhibition of cyclin D3 blocks the formation of these complexes. Thus, these studies provide a new function of cyclin D3, which is to support the growth-inhibitory activity of C/EBPalpha.
Collapse
Affiliation(s)
- Guo-Li Wang
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Hill DA, Imbalzano AN. HMGN1 is dispensable for myogenesis and adipogenesis. Gene 2006; 371:59-67. [PMID: 16451822 DOI: 10.1016/j.gene.2005.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/04/2005] [Accepted: 11/09/2005] [Indexed: 11/21/2022]
Abstract
Expression of key regulatory and tissue specific proteins necessary for myogenesis and adipogenesis are dependent on functional SWI/SNF enzymes that hydrolyze ATP to remodel chromatin and allow factors access to chromatinized DNA. Functional chromatin structural changes also can be facilitated by the high mobility group-N1 (HMGN1) protein. HMGN1 is a chromatin architectural protein that specifically interacts with nucleosomes and has been shown to facilitate the reversal of repressive chromatin structure, thereby making it more conducive for transcription. To determine if HMGN1 functions in myogenesis or adipogensis, two SWI/SNF-dependent processes, we used RNA interference to created stable cell lines with reduced HMGN1 protein levels and differentiated them along the myogenic and adipogenic pathways. We show that neither myogenesis nor adipogenesis was affected by reduced HMGN1 protein levels. We further demonstrate that HMGN1 levels naturally decrease as a function of contact-mediated cell cycle arrest, thereby explaining the lack of requirement for HMGN1 in these cellular differentiation processes.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology, University of Massachusetts Medical School, Department of Cell Biology, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
61
|
Ohkawa Y, Marfella CGA, Imbalzano AN. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J 2006; 25:490-501. [PMID: 16424906 PMCID: PMC1383528 DOI: 10.1038/sj.emboj.7600943] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 12/14/2005] [Indexed: 01/13/2023] Open
Abstract
Myogenin is required not for the initiation of myogenesis but instead for skeletal muscle formation through poorly understood mechanisms. We demonstrate in cultured cells and, for the first time, in embryonic tissue, that myogenic late genes that specify the skeletal muscle phenotype are bound by MyoD prior to the initiation of gene expression. At the onset of muscle specification, a transition from MyoD to myogenin occurred at late gene loci, concomitant with loss of HDAC2, the appearance of both the Mef2D regulator and the Brg1 chromatin-remodeling enzyme, and the opening of chromatin structure. We further demonstrated that ectopic expression of myogenin and Mef2D, in the absence of MyoD, was sufficient to induce muscle differentiation in a manner entirely dependent on Brg1. These results indicate that myogenin specifies the muscle phenotype by cooperating with Mef2D to recruit an ATP-dependent chromatin-remodeling enzyme that alters chromatin structure at regulatory sequences to promote terminal differentiation.
Collapse
Affiliation(s)
- Yasuyuki Ohkawa
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Concetta G A Marfella
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony N Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Cell Biology, University of Massachusetts, Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. Tel.: +1 508 856 1029; Fax: +1 508 856 5612; E-mail: or
| |
Collapse
|
62
|
Rosson GB, Bartlett C, Reed W, Weissman BE. BRG1 loss in MiaPaCa2 cells induces an altered cellular morphology and disruption in the organization of the actin cytoskeleton. J Cell Physiol 2005; 205:286-94. [PMID: 15887247 DOI: 10.1002/jcp.20397] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BRG1 and Brahma are critical and mutually exclusive subunits of the multi-constituent SWI/SNF chromatin remodeling complexes. These complexes play a key role in transcriptional regulation by dynamically altering chromatin architecture. Although the two proteins are very similar in structure, murine models demonstrate a clear dichotomy in BRG1/BRM function as heterozygous loss of BRG1 results in tumor development whereas homozygous loss of BRM does not. BRG1 and/or BRM protein is absent or disrupted in approximately 17% of all human adenocarcinomas. Concomitant loss is frequent in non-small cell lung carcinomas and incurs a negative prognosis. The mechanism(s) whereby loss of BRG1 (but apparently not BRM) may contribute to tumor development and/or progression is/are ill defined. In this study, we employ MiaPaCa2, a human pancreatic adenocarcinoma cell line that lacks BRM but retains BRG1 expression to evaluate the impact of BRG1 and BRM individually on growth and tumorigenicity. We show that the MiaPaca2 cell line can apparently tolerate only very low levels of BRM after restoration of stable expression. Reduction of expression of BRG1 via shRNAi in stable clones of MiaPaCa2 results in a marked change in morphology and alterations in actin cytoskeletal organization but does not appear to exert a significant effect on in vitro growth of the cell line. Our results implicate a role for the SWI/SNF complex in the regulation of cellular differentiation.
Collapse
Affiliation(s)
- Gary B Rosson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
63
|
Nagl NG, Patsialou A, Haines DS, Dallas PB, Beck GR, Moran E. The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest. Cancer Res 2005; 65:9236-44. [PMID: 16230384 DOI: 10.1158/0008-5472.can-05-1225] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mammalian SWI/SNF-related complexes are ATPase-powered nucleosome remodeling assemblies crucial for proper development and tissue-specific gene expression. The ATPase activity of the complexes is also critical for tumor suppression. The complexes contain seven or more noncatalytic subunits; only one of which, hSNF5/Ini1/BAF47, has been individually identified as a tumor suppressor thus far. The noncatalytic subunits include p270/ARID1A, which is of particular interest because tissue array analysis corroborated by screening of tumor cell lines indicates that p270 may be deficient in as many as 30% of renal carcinomas and 10% of breast carcinomas. The complexes can also include an alternative ARID1B subunit, which is closely related to p270, but the product of an independent gene. The respective importance of p270 and ARID1B in the control of cell proliferation was explored here using a short interfering RNA approach and a cell system that permits analysis of differentiation-associated cell cycle arrest. The p270-depleted cells fail to undergo normal cell cycle arrest on induction, as evidenced by continued synthesis of DNA. These lines fail to show other characteristics typical of arrested cells, including up-regulation of p21 and down-regulation of cyclins. The requirement for p270 is evident separately in both the up-regulation of p21 and the down-regulation of E2F-responsive products. In contrast, the ARID1B-depleted lines behaved like the parental cells in these assays. Thus, p270-containing complexes are functionally distinct from ARID1B-containing complexes. These results provide a direct biological basis to support the implication from tumor tissue screens that deficiency of p270 plays a causative role in carcinogenesis.
Collapse
Affiliation(s)
- Norman G Nagl
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
64
|
Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL. Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 2005; 19:1723-34. [PMID: 16024661 PMCID: PMC1176010 DOI: 10.1101/gad.1319105] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Precise control of cell proliferation and differentiation is critical for organogenesis. Geminin (Gem) has been proposed to link cell cycle exit and differentiation as a prodifferentiation factor and plays a role in neural cell fate acquisition. Here, we identified the SWI/SNF chromatin-remodeling protein Brg1 as an interacting partner of Gem. Brg1 has been implicated in cell cycle withdrawal and cellular differentiation. Surprisingly, we discovered that Gem antagonizes Brg1 activity during neurogenesis to maintain the undifferentiated cell state. Down-regulation of Gem expression normally precedes neuronal differentiation, and gain- and loss-of-function experiments in Xenopus embryos and mouse P19 cells demonstrated that Gem was essential to prevent premature neurogenesis. Misexpression of Gem also suppressed ectopic neurogenesis driven by Ngn and NeuroD. Gem's activity to block differentiation depended upon its ability to bind Brg1 and could be mediated by Gem's inhibition of proneural basic helix-loop-helix (bHLH)-Brg1 interactions required for bHLH target gene activation. Our data demonstrate a novel mechanism of Gem activity, through regulation of SWI/SNF chromatin-remodeling proteins, and indicate that Gem is an essential regulator of neurogenesis that can control the timing of neural progenitor differentiation and maintain the undifferentiated cell state.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
65
|
Hill DA, Chiosea S, Jamaluddin S, Roy K, Fischer AH, Boyd DD, Nickerson JA, Imbalzano AN. Inducible changes in cell size and attachment area due to expression of a mutant SWI/SNF chromatin remodeling enzyme. J Cell Sci 2005; 117:5847-54. [PMID: 15537831 DOI: 10.1242/jcs.01502] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The SWI/SNF enzymes belong to a family of ATP-dependent chromatin remodeling enzymes that have been functionally implicated in gene regulation, development, differentiation and oncogenesis. BRG1, the catalytic core subunit of some of the SWI/SNF enzymes, can interact with known tumor suppressor proteins and can act as a tumor suppressor itself. We report that cells that inducibly express ATPase-deficient versions of BRG1 increase in cell volume, area of attachment and nuclear size upon expression of the mutant BRG1 protein. Examination of focal adhesions reveals qualitative changes in paxillin distribution but no difference in the actin cytoskeletal structure. Increases in cell size and shape correlate with over-expression of two integrins and the urokinase-type plasminogen activator receptor (uPAR), which is also involved in cell adhesion and is often over-expressed in metastatic cancer cells. These findings demonstrate that gene expression pathways affected by chromatin remodeling enzymes can regulate the physical dimensions of mammalian cell morphology.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag CS, Tapscott SJ, Imbalzano AN. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 2005; 25:3997-4009. [PMID: 15870273 PMCID: PMC1087700 DOI: 10.1128/mcb.25.10.3997-4009.2005] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing evidence for SWI/SNF-dependent activator binding. We observed that the homeodomain factor Pbx1, which cooperates with MyoD to stimulate myogenin expression, is constitutively bound to the myogenin promoter in a SWI/SNF-independent manner, suggesting a two-step mechanism in which MyoD initially interacts indirectly with the myogenin promoter and attracts chromatin-remodeling enzymes, which then facilitate direct binding by MyoD and other regulatory proteins.
Collapse
Affiliation(s)
- Ivana L de la Serna
- University of Massachusetts Medical School, Department of Cell Biology, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Reisman DN, Sciarrotta J, Bouldin TW, Weissman BE, Funkhouser WK. The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl Immunohistochem Mol Morphol 2005; 13:66-74. [PMID: 15722796 DOI: 10.1097/00129039-200503000-00011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SWI/SNF is a chromatin-remodeling complex important in gene regulation, cytokine responses, tumorigenesis, differentiation, and development. As a multitude of signaling pathways require SWI/SNF, loss of SWI/SNF function is expected to have an impact on cellular phenotypes. The SWI/SNF ATPase subunits, BRG1 and BRM, have been shown to be lost in a subset of human cancer cell lines and human primary cancers and may represent tumor suppressor proteins. To better understand the biology of these proteins, the authors examined the expression pattern of BRG1 and BRM in a variety of normal tissues. BRG1 expression was predominantly seen in cell types that constantly undergo proliferation or self-renewal; in contrast, BRM was preferentially expressed in brain, liver, fibromuscular stroma, and endothelial cell types, cell types not constantly engaged in proliferation or self-renewal. This differential expression suggests that these proteins serve distinct functions in human tissues.
Collapse
Affiliation(s)
- David N Reisman
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
68
|
Hill DA, de la Serna IL, Veal TM, Imbalzano AN. BRCA1 interacts with dominant negative SWI/SNF enzymes without affecting homologous recombination or radiation-induced gene activation of p21 or Mdm2. J Cell Biochem 2005; 91:987-98. [PMID: 15034933 DOI: 10.1002/jcb.20003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BRCA1 is a tumor suppressor gene linked to familial breast and ovarian cancer. The BRCA1 protein has been implicated in a diverse set of cellular functions, including activation of gene expression by the p53 tumor suppressor and control of homologous recombination (HR) during DNA repair. Prior reports have demonstrated that BRCA1 can exist in cells in a complex with the BRG1-based SWI/SNF ATP-dependent chromatin remodeling enzymes and that SWI/SNF components contribute to p53-mediated gene activation. To investigate the link between SWI/SNF function and BRCA1 mediated effects on p53-mediated gene activation and on mechanisms of homologous recombination, we have utilized mammalian cells that inducibly express an ATPase-deficient, dominant negative SWI/SNF enzymes. Mutant SWI/SNF ATPases retain the ability to interact with BRCA1 in cells. We report that expression of dominant negative SWI/SNF enzymes does not affect p53-mediated induction of the p21 cyclin dependent kinase inhibitor or the Mdm2 E3 ubiquitin ligase that regulates p53 in cells exposed to UV or gamma irradiation. Similarly, integration of a reporter that monitors homologous recombination by gene conversion into these cells demonstrated no change in the recombination rate in the absence of functional SWI/SNF enzyme. We conclude that the SWI/SNF chromatin remodeling enzymes may contribute to but are not required for these processes.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
69
|
Abstract
Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control.
Collapse
Affiliation(s)
- Tim C Roloff
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
70
|
Seo S, Richardson GA, Kroll KL. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 2004; 132:105-15. [PMID: 15576411 DOI: 10.1242/dev.01548] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin remodeling complexes play crucial roles in transcription and are implicated in processes including cell proliferation, differentiation and embryonic patterning. Brg1 is the catalytic subunit of the SWI/SNF chromatin remodeling complex and shows neural-enriched expression. Although early lethality of Brg1-null mice reflects its importance in embryogenesis, this phenotype precluded further study of specific Brg1-dependent developmental processes. Here, we have identified a requirement of Brg1 for both Xenopus primary neurogenesis and neuronal differentiation of mammalian P19 embryonic carcinoma cells. In Xenopus, loss of Brg1 function did not affect neural induction or neural cell fate determination. However, the Sox2-positive, proliferating neural progenitor cell population was expanded, and expression of a terminally differentiated neuronal marker, N-tubulin, was diminished upon loss of Brg1 activity, suggesting that Brg1 is required for neuronal differentiation. The ability of the bHLH transcription factors Ngnr1 and NeuroD to drive neuronal differentiation was also abolished by loss of Brg1 function, indicating that Brg1 is essential for the proneural activities of Ngnr1 and NeuroD. Consistent with this, dominant-negative interference with Brg1 function in P19 cells suppressed neuronal differentiation promoted by NeuroD2, showing the requirement of Brg1 for neuronal differentiation is conserved in mammalian cells. Finally, we discovered that Brg1 physically associates with both Ngnr1 and NeuroD and that interference with Brg1 function blocks Neurogenin3- and NeuroD2-mediated reporter gene transactivation. Together, our results demonstrate that Brg1 (and by inference the SWI/SNF complex) is required for neuronal differentiation by mediating the transcriptional activities of proneural bHLH proteins.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Blotting, Western
- Brain/embryology
- Cell Cycle
- Cell Differentiation
- Cell Line, Tumor
- Cell Lineage
- Cell Proliferation
- Chromatin/metabolism
- Cloning, Molecular
- DNA Helicases
- DNA, Complementary/metabolism
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Gene Expression Regulation, Developmental
- Histones/metabolism
- Immunohistochemistry
- Immunoprecipitation
- In Situ Nick-End Labeling
- Luciferases/metabolism
- Mice
- Microscopy, Fluorescence
- Models, Genetic
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Neuropeptides/metabolism
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Oligonucleotides/chemistry
- Phenotype
- Phylogeny
- Plasmids/metabolism
- Protein Binding
- RNA/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U1 Small Nuclear/physiology
- Time Factors
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Tubulin/metabolism
- Xenopus
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
71
|
Wadhwa R, Yaguchi T, Kaur K, Suyama E, Kawasaki H, Taira K, Kaul SC. Use of a Randomized Hybrid Ribozyme Library for Identification of Genes Involved in Muscle Differentiation. J Biol Chem 2004; 279:51622-9. [PMID: 15448151 DOI: 10.1074/jbc.m407428200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have employed the hybrid hammerhead ribozyme-based gene discovery system for identification of genes functionally involved in muscle differentiation using in vitro myoblast differentiation assay. The major muscle regulatory genes (MyoD1, Mylk, myosin, myogenin, and Myf5) were identified endorsing the validity of this method. Other gene targets included tumor suppressors and cell cycle regulators (p19ARF and p21WAF1), FGFR-4, fibronectin, Prkg2, Pdk4, fem, and six novel proteins. Functional involvement of three of the identified targets in myoblast differentiation was confirmed by their specific knockdown using ribozymes and siRNA. Besides demonstrating a simple and an effective method of isolation of gene functions involved in muscle differentiation, we report for the first time that overexpression of Fem, a member of the sex-determining family of proteins, caused accelerated myotube formation, and its targeting deferred myoblast differentiation. This functional gene screening is not only helpful in understanding the molecular pathways of muscle differentiation but also to design molecular strategies for myopathologic therapies.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science & Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
72
|
Chanoine C, Della Gaspera B, Charbonnier F. Myogenic regulatory factors: Redundant or specific functions? Lessons fromXenopus. Dev Dyn 2004; 231:662-70. [PMID: 15499556 DOI: 10.1002/dvdy.20174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The discovery, in the late 1980s, of the MyoD gene family of muscle transcription factors has proved to be a milestone in understanding the molecular events controlling the specification and differentiation of the muscle lineage. From gene knock-out mice experiments progressively emerged the idea that each myogenic regulatory factor (MRF) has evolved a specialized as well as a redundant role in muscle differentiation. To date, MyoD serves as a paradigm for the MRF mode of function. The features of gene regulation by MyoD support a model in which subprograms of gene expression are achieved by the combination of promoter-specific regulation of MyoD binding and MyoD-mediated binding of various ancillary proteins. This binding likely includes site-specific chromatin reorganization by means of direct or indirect interaction with remodeling enzymes. In this cascade of molecular events leading to the proper and reproducible activation of muscle gene expression, the role and mode of function of other MRFs still remains largely unclear. Recent in vivo findings using the Xenopus embryo model strongly support the concept that a single MRF can specifically control a subset of muscle genes and, thus, can be substituted by other MRFs albeit with dramatically lower efficiency. The topic of this review is to summarize the molecular data accounting for a redundant and/or specific involvement of each member of the MyoD family in myogenesis in the light of recent studies on the Xenopus model.
Collapse
Affiliation(s)
- Christophe Chanoine
- UMR 7060 CNRS, Equipe Biologie du Développement et de la Différenciation Neuromusculaire, Centre Universitaire des Saints-Pères, Université René Descartes, Paris, France.
| | | | | |
Collapse
|
73
|
Figliola R, Maione R. MyoD induces the expression of p57Kip2 in cells lacking p21Cip1/Waf1: overlapping and distinct functions of the two cdk inhibitors. J Cell Physiol 2004; 200:468-75. [PMID: 15254975 DOI: 10.1002/jcp.20044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The myogenic factor MyoD induces the expression of the cdk inhibitor p21 to promote cell cycle withdrawal in differentiating myoblasts. Although the cdk inhibitor p57 is also highly expressed in skeletal muscle and is thought to redundantly control myogenesis, little is known about its regulation, that has been suggested to be independent of MyoD. Here we show, for the first time, that MyoD is capable to induce the expression of p57. Intriguingly, this ability is restricted to cells lacking p21, suggesting that the two cdk inhibitors may be expressed in different muscle cell lineages. We also suggest that the functions of p21 and p57 in myoblast cells are only in part redundant. In fact, while the two cdk inhibitors play a similar role in cells undergoing G1 arrest during MyoD-induced differentiation, p57 does not replace p21 in cells escaping G1 arrest and undergoing MyoD-induced apoptosis. This difference can be ascribed both to a different subcellular localization and to a differential ability of the two cdk inhibitors to interact with cell cycle regulators.
Collapse
Affiliation(s)
- Rocco Figliola
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena, Roma, Italy
| | | |
Collapse
|
74
|
Kemper JK, Kim H, Miao J, Bhalla S, Bae Y. Role of an mSin3A-Swi/Snf chromatin remodeling complex in the feedback repression of bile acid biosynthesis by SHP. Mol Cell Biol 2004; 24:7707-19. [PMID: 15314177 PMCID: PMC506991 DOI: 10.1128/mcb.24.17.7707-7719.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/09/2004] [Accepted: 06/01/2004] [Indexed: 12/19/2022] Open
Abstract
The orphan receptor SHP interacts with many nuclear receptors and inhibits their transcriptional activities. SHP is central to feedback repression of cholesterol 7alpha hydroxylase gene (CYP7A1) expression by bile acids, which is critical for maintaining cholesterol homeostasis. Using CYP7A1 as a model system, we studied the molecular mechanisms of SHP repression at the level of native chromatin. Chromatin immunoprecipitation studies showed that mSin3A and a Swi/Snf complex containing Brm as a central ATPase were recruited to the promoter. This recruitment was associated with chromatin remodeling after bile acid treatment that was blunted by inhibition of the endogenous Swi/Snf function by dominant-negative ATPase mutants. Biochemical studies indicated that SHP was associated with the mSin3A-Swi/Snf complex by direct interaction with Brm and mSin3A through its repression domain. Expression of Brm, but not an ATPase mutant, inhibited CYP7A1 promoter activity and further enhanced SHP-mediated repression. Bile acid-induced recruitment of mSin3A/Brm, chromatin remodeling, and concomitant repression of endogenous CYP7A1 expression were impaired when SHP expression was inhibited by SHP small interfering RNA. Our results suggest that SHP mediates recruitment of mSin3A-Swi/Snf to the CYP7A1 promoter, resulting in chromatin remodeling and gene repression, which may also be a mechanism for the repression by SHP of genes activated by many nuclear receptors. Our study establishes the first link between a Swi/Snf complex and regulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
75
|
Salma N, Xiao H, Mueller E, Imbalzano AN. Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor gamma nuclear hormone receptor. Mol Cell Biol 2004; 24:4651-63. [PMID: 15143161 PMCID: PMC416408 DOI: 10.1128/mcb.24.11.4651-4663.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) regulates adipogenesis, lipid metabolism, and glucose homeostasis, and roles have emerged for this receptor in the pathogenesis and treatment of diabetes, atherosclerosis, and cancer. We report here that induction of the PPARgamma activator and adipogenesis forced by overexpression of adipogenic regulatory proteins is blocked upon expression of dominant-negative BRG1 or hBRM, the ATPase subunits of distinct SWI/SNF chromatin-remodeling enzymes. We demonstrate that histone hyperacetylation and the binding of C/EBP activators, polymerase II (Pol II), and general transcription factors (GTFs) initially occurred at the inducible PPARgamma2 promoter in the absence of SWI/SNF function. However, the polymerase and GTFs were subsequently lost from the promoter in cells expressing dominant-negative SWI/SNF, explaining the inhibition of PPARgamma2 expression. To corroborate these data, we analyzed interactions at the PPARgamma2 promoter in differentiating preadipocytes. Changes in promoter structure, histone hyperacetylation, and binding of C/EBP activators, Pol II, and most GTFs preceded the interaction of SWI/SNF enzymes with the PPARgamma2 promoter. However, transcription of the PPARgamma2 gene occurred only upon subsequent association of SWI/SNF and TFIIH with the promoter. Thus, induction of the PPARgamma nuclear hormone receptor during adipogenesis requires SWI/SNF enzymes to facilitate preinitiation complex function.
Collapse
Affiliation(s)
- Nunciada Salma
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
76
|
Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 2004; 23:3462-73. [PMID: 14990991 DOI: 10.1038/sj.onc.1207472] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The INI1/hSNF5 tumor suppressor is an integral component of mammalian SWI/SNF chromatin remodeling enzymes that contain SNF2 family ATPases BRM (Brahma) or BRG1 (Brahma Related Gene 1) and that contribute to the regulation of many genes. Genetic studies of yeast SWI/SNF enzyme revealed similar phenotypes when single or multiple components of the enzyme were deleted, indicating a requirement for each subunit. To address the contribution of INI1 in the regulation of SWI/SNF-dependent genes in mammalian cells, we examined the expression of multiple BRG1-dependent, constitutively expressed genes in INI1-deficient cancer cell lines. At least one INI1-deficient line expressed each gene, and reintroduction of INI1 had negligible effects on expression levels. Lack of INI1 also did not prevent interferon gamma (IFNgamma)-mediated induction of CIITA, which is BRG1 dependent, and GBP-1, which is BRG1 enhanced, and reintroduction of INI1 had minimal effects. Chromatin immunoprecipitation experiments revealed that BRG1 inducibly binds to the CIITA promoter despite the absence of INI1. Unlike yeast deleted for the INI1 homologue, SWI/SNF enzymes in INI1-deficient cells were largely intact. Thus in human cells, SWI/SNF enzyme complex formation and the expression of many BRG1-dependent genes are independent of INI1.
Collapse
Affiliation(s)
- Diem N Doan
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
77
|
Kang H, Cui K, Zhao K. BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 2004; 24:1188-99. [PMID: 14729964 PMCID: PMC321457 DOI: 10.1128/mcb.24.3.1188-1199.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 10/29/2003] [Accepted: 11/03/2003] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous mammalian chromatin-remodeling SWI/SNF-like BAF complexes play critical roles in tumorigenesis. It was suggested that the direct interaction of BRG1 with the retinoblastoma protein pRB is required for regulation of cell cycle progression by pRB. We present evidence that the BRG1-containing complexes regulate the expression of the cdk inhibitor p21(CIP1/WAF1/SDI). Furthermore, we show that the physical interaction between BRG1 and pRB is not required for induction of cell growth arrest and transcriptional repression of E2F target genes by pRB. Instead, BRG1 activates pRB by inducing its hypophosphorylation through up-regulation of the cdk inhibitor p21. The hypophosphorylation of pRB is reinforced by down-regulation of critical components, including cdk2, cyclin E, and cyclin D, in the pRB regulatory network. We demonstrate that up-regulation of p21 by BRG1 is necessary to induce formation of flat cells, growth arrest, and finally, cell senescence. Our results suggest that the BRG1-containing complexes control cellular proliferation and senescence by modulating the pRB pathway via multiple mechanisms.
Collapse
Affiliation(s)
- Hyeog Kang
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
78
|
Falcone G, Ciuffini L, Gauzzi MC, Provenzano C, Strano S, Gallo R, Castellani L, Alemà S. v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene 2004; 22:8302-15. [PMID: 14614454 DOI: 10.1038/sj.onc.1206915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.
Collapse
Affiliation(s)
- Germana Falcone
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo 00016, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Moen PT, Johnson CV, Byron M, Shopland LS, de la Serna IL, Imbalzano AN, Lawrence JB. Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 2003; 15:197-206. [PMID: 14617810 PMCID: PMC307540 DOI: 10.1091/mbc.e03-06-0388] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies have shown that in a given cell type, certain active genes associate with SC-35 domains, nuclear regions rich in RNA metabolic factors and excluded from heterochromatin. This organization is not seen for all active genes; therefore, it is important to determine whether and when this locus-specific organization arises during development and differentiation of specific cell types. Here, we investigate whether gene organization relative to SC-35 domains is cell type specific by following several muscle and nonmuscle genes in human fibroblasts, committed but proliferative myoblasts, and terminally differentiated muscle. Although no change was seen for other loci, two muscle genes (Human beta-cardiac myosin heavy chain and myogenin) became localized to the periphery of an SC-35 domain in terminally differentiated muscle nuclei, but not in proliferative myoblasts or in fibroblasts. There was no apparent change in gene localization relative to either the chromosome territory or the heterochromatic compartment; thus, the gene repositioning seemed to occur specifically with respect to SC-35 domains. This gene relocation adjacent to a prominent SC-35 domain was recapitulated in mouse 3T3 cells induced into myogenesis by introduction of MyoD. Results demonstrate a cell type-specific reorganization of specific developmentally regulated loci relative to large domains of RNA metabolic factors, which may facilitate developmental regulation of genome expression.
Collapse
Affiliation(s)
- Phillip T Moen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LMP, Mohd-Sarip A, Vries RGJ, Hoeben RC, Verrijzer CP. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2003; 279:3807-16. [PMID: 14604992 DOI: 10.1074/jbc.m309333200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hSNF5 chromatin-remodeling factor is a tumor suppressor that is inactivated in malignant rhabdoid tumors (MRTs). A number of studies have shown that hSNF5 re-expression blocks MRT cell proliferation. However, the pathway through which hSNF5 acts remains unknown. To address this question, we generated MRT-derived cell lines in which restoration of hSNF5 expression leads to an accumulation in G(0)/G(1), induces cellular senescence and increased apoptosis. Following hSNF5 expression, we observed transcriptional activation of the tumor suppressor p16(INK4a) but not of p14(ARF), repression of several cyclins and CD44, a cell surface glycoprotein implicated in metastasis. Chromatin immunoprecipitations indicated that hSNF5 activates p16(INK4a) transcription and CD44 down-regulation by mediating recruitment of the SWI/SNF complex. Thus, hSNF5 acts as a dualistic co-regulator that, depending on the promoter context, can either mediate activation or repression. Three lines of evidence established that p16(INK4a) is an essential effector of hSNF5-induced cell cycle arrest. 1) Overexpression of p16(INK4a) mimics the effect of hSNF5 induction and leads to cellular senescence. 2) Expression of a p16(INK4a)-insensitive form of CDK4 obstructs hSNF5-induced cell cycle arrest. 3) Inhibition of p16(INK4a) activation by siRNA blocks hSNF5-mediated cellular senescence. Collectively, these results indicate that in human MRT cells, the p16(INK4a)/pRb, rather than the p14(ARF)/p53 pathway, mediates hSNF5-induced cellular senescence.
Collapse
Affiliation(s)
- Igor Oruetxebarria
- Gene Regulation Laboratory and Center for Biomedical Genetics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zhang P. Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics 2003; 82:109-21. [PMID: 12837262 DOI: 10.1016/s0888-7543(03)00104-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Skeletal myogenesis is a well-studied differentiation process. However, despite the identification and functional characterization of the myogenic basic HLH transcription factors, molecular details are still lacking. With the advent of microarray technology, it has become possible to look at changes in gene expression profiles in a biological process on an unprecedented scale. In this study, we applied this technology to profile gene expression during the in vitro differentiation of an established myoblast cell line, C2C12. We report over 1500 genes whose expression is altered when these cells differentiate, including 624, or about 40% of the total number of genes, with unknown functions. This analysis reveals the existence of 12 groups of coordinately regulated genes that are expressed in temporal waves of gene expression prior to the transcriptional induction of myogenin. Among these are multiple families of transcription factors that are important for the process of myogenesis. In addition, the induction of the Notch signaling pathway suggests that previously unappreciated intercellular signaling occurs during myogenic differentiation. These results provide a molecular description of the skeletal myogenesis up to the activation of myogenin.
Collapse
Affiliation(s)
- Ivan Delgado
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Gregg RG, Willer GB, Fadool JM, Dowling JE, Link BA. Positional cloning of the young mutation identifies an essential role for the Brahma chromatin remodeling complex in mediating retinal cell differentiation. Proc Natl Acad Sci U S A 2003; 100:6535-40. [PMID: 12748389 PMCID: PMC164481 DOI: 10.1073/pnas.0631813100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zebrafish with the young (yng) mutation show a defect in retinal cell differentiation. Here we demonstrate that a mutation in a brahma-related gene (brg1) is responsible for the yng phenotype. Brahma homologues function as essential subunits for SWI/SNF-type chromatin remodeling complexes. Our analysis indicates that brg1 is required for the wave of mitogen-activated protein kinase activity that precedes retinal cell differentiation. Using specific inhibitors of the mitogen-activated protein kinase pathway we show this signal has a direct role in retinal cell differentiation. Lastly, through investigations of mutants in other chromatin remodeling subunits, we provide genetic evidence for gene and tissue specificity of the Brahma chromatin remodeling complex.
Collapse
Affiliation(s)
- Ronald G Gregg
- Department of Biochemistry and Molecular Biology, University of Louisville, 319 Abraham Flexner Way, KY 40202, USA
| | | | | | | | | |
Collapse
|
83
|
Katsani KR, Mahmoudi T, Verrijzer CP. Selective gene regulation by SWI/SNF-related chromatin remodeling factors. Curr Top Microbiol Immunol 2003; 274:113-41. [PMID: 12596906 DOI: 10.1007/978-3-642-55747-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromatin is a highly dynamic structure that plays a key role in the orchestration of gene expression patterns during cellular differentiation and development. The packaging of DNA into chromatin generates a barrier to the transcription machinery. The two main strategies by which cells alleviate chromatin-mediated repression are through the action of ATP-dependent chromatin remodeling complexes and enzymes that covalently modify the histones. Various signaling pathways impinge upon the targeting and activity of these enzymes, thereby controlling gene expression in response to physiological and developmental cues. Chromatin structure also underlies many so-called epigenetic phenomena, leading to the mitotically stable propagation of differential expression of genetic information. Here, we will focus on the role of SWI/SNF-related ATP-dependent chromatin remodeling complexes in developmental gene regulation. First, we compare different models for how remodelers can act in a gene-selective manner, and either cooperate or antagonize other chromatin-modulating systems in the cell. Next, we discuss their functioning during the control of developmental gene expression programs.
Collapse
Affiliation(s)
- K R Katsani
- Department of Molecular and Cell Biology, Center for Biomedical Genetics, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
84
|
Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M, Felsani A. MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Mol Cell Biol 2003; 23:2893-906. [PMID: 12665587 PMCID: PMC152540 DOI: 10.1128/mcb.23.8.2893-2906.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The induction of RB gene transcription by MyoD is a key event in the process of skeletal muscle differentiation, because elevated levels of the retinoblastoma protein are essential for myoblast cell cycle arrest as well as for the terminal differentiation and survival of postmitotic myocytes. We previously showed that MyoD stimulates transcription from the RB promoter independently of direct binding to promoter sequences. Here we demonstrate that stimulation by MyoD requires a cyclic AMP-responsive element (CRE) in the RB promoter, bound by the transcription factor CREB in differentiating myoblasts. We also show that both the CREB protein level and the level of phosphorylation of the CREB protein at Ser-133 rapidly increase at the onset of muscle differentiation and that both remain high throughout the myogenic process. Biochemical and functional evidence indicates that in differentiating myoblasts, MyoD becomes associated with CREB and is targeted to the RB promoter CRE in a complex also containing the p300 transcriptional coactivator. The resulting multiprotein complex stimulates transcription from the RB promoter. These and other observations strongly suggest that MyoD functions by promoting the efficient recruitment of p300 by promoter-bound, phosphorylated CREB.
Collapse
|
85
|
Abstract
Heterozygous carriers of loss-of-function germline mutations in the BRCA1 or BRCA2 breast cancer susceptibility genes have a predisposition to breast and ovarian cancer. Multiple functions have been ascribed to the products of these genes, linking them to pathways that inhibit progression to neoplasia. Various investigators have assigned roles for these tumor suppressor gene products in the cell functions of genome repair, transcription, and growth control. There is emerging evidence that BRCA1 may participate in ubiquitin E3 ligase activity. BRCA1 and BRCA2 have each been implicated in chromatin remodeling dynamics via protein partnering. Ubiquitin ligase and chromatin remodeling activities need not be mutually exclusive and both may function in DNA repair, transcriptional regulation, or cell cycle control. Here we highlight certain recent findings and currently unanswered questions regarding BRCA1 and BRCA2 in breast cancer.
Collapse
Affiliation(s)
- Dianne C Daniel
- Mount Sinai School of Medicine, Department of Pathology, New York, New York 10029, USA.
| |
Collapse
|
86
|
Abstract
Several findings published within the past year have further established key roles for chromatin-modifying enzymes in the control of muscle gene expression, and have thus refined our thinking of how chromatin structure influences muscle differentiation, hypertrophy and fiber type determination. We discuss the interface between chromatin-modifying enzymes and myogenic transcription factors, signaling mechanisms that impinge on these transcriptional complexes, and how these multicomponent regulatory cascades may be exploited in the development of novel therapeutics to more effectively treat myopathies in humans.
Collapse
|
87
|
Abstract
It has been a long-standing challenge to decipher the principles that enable cells to both organize their genomes into compact chromatin and ensure that the genetic information remains accessible to regulatory factors and enzymes within the confines of the nucleus. The discovery of nucleosome remodeling activities that utilize the energy of ATP to render nucleosomal DNA accessible has been a great leap forward. In vitro, these enzymes weaken the tight wrapping of DNA around the histone octamers, thereby facilitating the sliding of histone octamers to neighboring DNA segments, their displacement to unlinked DNA, and the accumulation of patches of accessible DNA on the surface of nucleosomes. It is presumed that the collective action of these enzymes endows chromatin with dynamic properties that govern all nuclear functions dealing with chromatin as a substrate. The diverse set of ATPases that qualify as the molecular motors of the nucleosome remodeling process have a common history and are part of a superfamily. The physiological context of their remodeling action builds on the association with a wide range of other proteins to form distinct complexes for nucleosome remodeling. This review summarizes the recent progress in our understanding of the mechanisms underlying the nucleosome remodeling reaction, the targeting of remodeling machines to selected sites in chromatin, and their integration into complex regulatory schemes.
Collapse
Affiliation(s)
- Peter B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, 80336 Munich, Germany.
| | | |
Collapse
|
88
|
Peschiaroli A, Figliola R, Coltella L, Strom A, Valentini A, D'Agnano I, Maione R. MyoD induces apoptosis in the absence of RB function through a p21(WAF1)-dependent re-localization of cyclin/cdk complexes to the nucleus. Oncogene 2002; 21:8114-27. [PMID: 12444547 DOI: 10.1038/sj.onc.1206010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 08/30/2002] [Accepted: 09/03/2002] [Indexed: 01/12/2023]
Abstract
During differentiation of skeletal myoblasts, MyoD promotes growth arrest through the induction of the cdk inhibitor p21 and the accumulation of hypophosphorylated RB protein. Myoblasts lacking RB function fail to accomplish full differentiation and undergo apoptosis. Here we show that exogenous MyoD induces apoptosis in several cell backgrounds sharing RB inactivation. This process is associated with increased levels of cell cycle-driving proteins and aberrant cell cycle progression. The inability of MyoD to induce apoptosis in a p21-null background, highlights a requirement of p21 in RB-regulated apoptosis during myogenesis. This pro-apoptotic function of p21 cannot be exerted by simple p21 over-expression, but requires the co-operation of MyoD. We also suggest that the essential aspect of p21 activity involved in such a process is related to its ability to induce the nuclear accumulation and aberrant activity of cyclin/cdk complexes. These results establish a novel link between MyoD, p21 and RB during myogenesis, providing new insights into the antagonism between muscle differentiation and loss of RB function.
Collapse
Affiliation(s)
- Angelo Peschiaroli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
89
|
Roy K, de la Serna IL, Imbalzano AN. The myogenic basic helix-loop-helix family of transcription factors shows similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture. J Biol Chem 2002; 277:33818-24. [PMID: 12105204 DOI: 10.1074/jbc.m205159200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myogenic basic helix-loop-helix family of transcription factors, MyoD, Myf5, myogenin, and MRF4, can each activate the muscle differentiation program when ectopically expressed in non-muscle cells. SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes. We demonstrated previously that SWI/SNF enzymes promote MyoD-mediated muscle differentiation. To ascertain the requirement for SWI/SNF enzymes in muscle differentiation mediated by different MyoD family members, we examined MyoD, Myf5, MRF4, and myogenin-mediated induction of muscle differentiation in cells expressing dominant negative versions of BRG1 or BRM-based SWI/SNF enzymes. We demonstrated that expression of dominant negative BRG1 or BRM inhibited the induction of muscle-specific gene expression by Myf5 and MRF4; however, myogenin failed to induce measurable quantities of muscle-specific mRNAs, even in cells not expressing dominant negative SWI/SNF. In contrast, all four myogenic regulators induced expression of the cell cycle regulators p21, Rb, and cyclin D3 and promoted cell cycle arrest independently of the SWI/SNF enzymes. We proposed that SWI/SNF enzymes are required for the induction of all muscle-specific gene expression by MyoD, Myf5, and MRF4, whereas induction of the cell cycle regulators, p21, Rb, and cyclin D3 occurred independently of SWI/SNF function.
Collapse
Affiliation(s)
- Kanaklata Roy
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | | | | |
Collapse
|
90
|
Liu H, Kang H, Liu R, Chen X, Zhao K. Maximal induction of a subset of interferon target genes requires the chromatin-remodeling activity of the BAF complex. Mol Cell Biol 2002; 22:6471-9. [PMID: 12192045 PMCID: PMC135632 DOI: 10.1128/mcb.22.18.6471-6479.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian SWI/SNF-like chromatin-remodeling BAF complex plays several important roles in controlling cell proliferation and differentiation. Interferons (IFNs) are key mediators of cellular antiviral and antiproliferative activities. In this report, we demonstrate that the BAF complex is required for the maximal induction of a subset of IFN target genes by alpha IFN (IFN-alpha). The BAF complex is constitutively associated with the IFITM3 promoter in vivo and facilitates the chromatin remodeling of the promoter upon IFN-alpha induction. Furthermore, we show that the ubiquitous transcription activator Sp1 interacts with the BAF complex in vivo and augments the BAF-mediated activation of the IFITM3 promoter. Sp1 binds constitutively to the IFITM3 promoter in the absence of the BAF complex, suggesting that it may recruit and/or stabilize the BAF complex binding to the IFITM3 promoter. Our results bring new mechanistic insights into the antiproliferative effects of the chromatin-remodeling BAF complex.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
91
|
Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene 2002; 21:4908-20. [PMID: 12118370 DOI: 10.1038/sj.onc.1205629] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/23/2002] [Accepted: 04/26/2002] [Indexed: 11/09/2022]
Abstract
In classical Hodgkin lymphoma the malignant Hodgkin/Reed-Sternberg (HRS) cells characteristically constitute only a small minority of the tumour load. Their origin has been debated for decades, but on the basis of rearrangement and somatic hypermutations of their immunoglubulin (Ig) genes, HRS cells are now ascribed to the B-cell lineage. Nevertheless, phenotypically HRS cells have lost their B cell identity: they usually lack common B cell-specific surface markers such as CD19 and CD79a as well as Ig gene transcripts. Here we demonstrate that Ig promoters as well as both intronic and 3' enhancer sequences are transcriptionally inactive in HRS cell lines. This inactivity correlates with either reduced levels or even a complete lack of several B cell-specific transcription factors required for their expression: Oct-2, OBF-1, PU.1, E47/E12, PAX-5 and EBF. Moreover, we demonstrate that PU.1 and PAX-5 are significantly down-regulated in HRS cells in pathological specimens from primary tumour tissues. However, forced expression of these transcription factors can activate regulatory sequences of silenced B cell marker genes, and in one instance also transcription from a silenced endogenous locus. Thus, HRS cells are dedifferentiated B cells with global down-regulation of B cell-specific genes.
Collapse
Affiliation(s)
- Christina B Hertel
- Institute of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
92
|
Rickheim DG, Nelsen CJ, Fassett JT, Timchenko NA, Hansen LK, Albrecht JH. Differential regulation of cyclins D1 and D3 in hepatocyte proliferation. Hepatology 2002; 36:30-8. [PMID: 12085346 DOI: 10.1053/jhep.2002.33996] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Substantial evidence suggests that cyclin D1 plays a pivotal role in the control of the hepatocyte cell cycle in response to mitogenic stimuli, whereas the closely related protein cyclin D3 has not been extensively evaluated. In the current study, we examined the regulation of cyclins D1 and D3 during hepatocyte proliferation in vivo after 70% partial hepatectomy (PH) and in culture. In contrast to cyclin D1, which was nearly undetectable in quiescent liver and substantially up-regulated after PH, cyclin D3 was constitutively expressed and induced only modestly. In the regenerating liver, the concentration of cyclin D3 was only about 10% of that of cyclin D1. Cyclin D1 formed complexes primarily with cyclin-dependent kinase 4 (cdk4), which were markedly activated in the regenerating liver and readily sequestered the cell cycle inhibitory proteins, p21 and p27. Cyclin D3 bound to both cdk4 and cdk6. Cyclin D3/cdk6 activity was readily detectable in quiescent liver and changed little after PH, and this complex appeared to play a minor role in sequestering p21 and p27. In cultured hepatocytes, epidermal growth factor or insulin had little effect, but the combination of these agents substantially induced cyclin D1 and cell cycle progression. Inhibition of Mek1 or phosphoinositide 3-kinase markedly inhibited cyclin D1 expression and replication. In contrast, cyclin D3 was expressed in the absence of mitogens and was only modestly affected by these manipulations. In addition, growth-inhibitory extracellular matrix conditions inhibited cyclin D1 but not cyclin D3 expression. In conclusion, these results support the concept that cyclin D1 is critically regulated by extracellular stimuli that control proliferation, whereas cyclin D3 is regulated through different pathways and plays a distinct role in the liver.
Collapse
Affiliation(s)
- David G Rickheim
- Department of Medicine, Hennepin County Medical Center, 701 Park Avenue, Minneapolis, MN 55415, USA
| | | | | | | | | | | |
Collapse
|
93
|
Rupp RAW, Singhal N, Veenstra GJC. When the embryonic genome flexes its muscles. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2294-9. [PMID: 11985611 DOI: 10.1046/j.1432-1033.2002.02885.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of multicellular organisms, both transient and stable gene expression patterns have to be established in a precisely orchestrated sequence. Evidence from diverse model organisms indicates that this epigenetic program involves not only transcription factors, but also the local structure, composition, and modification of chromatin, which define and maintain the accessibility and transcriptional competence of the nucleosomal DNA template. A paradigm for the interdependence of development and chromatin is constituted by the mechanisms controlling the specification and differentiation of the skeletal muscle cell lineage in vertebrates, which is the topic of this review.
Collapse
Affiliation(s)
- Ralph A W Rupp
- Adolf-Butenandt-Institut, Department of Molecular Biology, München, Germany.
| | | | | |
Collapse
|