51
|
New branched amino acids for high affinity dendrimeric DC-SIGN ligands. Bioorg Med Chem 2018; 26:1006-1015. [DOI: 10.1016/j.bmc.2017.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 11/19/2022]
|
52
|
Probing Multivalent Protein–Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer. Methods Enzymol 2018; 598:71-100. [DOI: 10.1016/bs.mie.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
53
|
Morbioli I, Porkolab V, Magini A, Casnati A, Fieschi F, Sansone F. Mannosylcalix[n]arenes as multivalent ligands for DC-SIGN. Carbohydr Res 2017; 453-454:36-43. [PMID: 29121497 DOI: 10.1016/j.carres.2017.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/30/2022]
Abstract
DC-SIGN is a receptor protruded from the membrane of immature dendritic cells (DCs) that participates in the activation of the immune response through the recognition of pathogen-associated molecular patterns (PAMPs). On the other hand, HIV exploits the interaction between high-mannose structures of its envelope glycoprotein gp120 and DC-SIGN to be transported towards and infect T-cells. DC-SIGN is involved in the recognition process in the form of a tetramer and the multiple exposition of carbohydrate recognition sites (CRSs) is amplified by the formation on the DCs membrane of patches of tetramers. DC-SIGN is then considered an interesting target to fight the virus and multivalent systems exposing multiple copies of ligating units for its CRSs are becoming valuable tools to reach this goal. We herein prepared four mannosylated calix[n]arenes (1a-d) and tested them by Surface Plasmon Resonance (SPR) competition assays as inhibitors of the binding between DC-SIGN and a mannosylated BSA used as model of HIV gp120. IC50s in the μM range were found evidencing in particular for compound 1a that, although rather moderate, a multivalent effect is taking place in the inhibition activity of this cluster. A relative potency (rp/n) around 4, respect to the monovalent methyl α-mannoside and normalized for the number of monosaccharide on the scaffold, was observed. This result, compared with previously reported data relative to dendrimers with the same valency, indicates the calixarene as a promising scaffold to build efficient inhibitors for DC-SIGN and, in perspective, for HIV.
Collapse
Affiliation(s)
- Ilaria Morbioli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Vanessa Porkolab
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| | - Andrea Magini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France.
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
54
|
Facile access to pseudo-thio-1,2-dimannoside, a new glycomimetic DC-SIGN antagonist. Bioorg Med Chem 2017; 25:5142-5147. [DOI: 10.1016/j.bmc.2017.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023]
|
55
|
Ordanini S, Goti G, Bernardi A. From optimized monovalent ligands to size-controlled dendrimers: an efficient strategy towards high-activity DC-SIGN antagonists. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This short review describes our work on the development of dendrimeric antagonists of DC-SIGN, a dendritic cells (DCs) receptor recognizing highly mannosylated structures and primarily involved in the recognition of viruses such as HIV. The structure of pseudo-di-mannoside and pseudo-tri-mannoside compounds was first finely modified to obtain DC-SIGN ligands that were more stable and selective than mannose. Their DC-SIGN affinity differences were amplified once presented on multivalent dendrimer-like scaffolds, including poly-alkyne terminated and phenylene-ethynylene rod-like ones. Libraries of mannosylated dendrimers were synthesized, improving their stability and maximizing their monodispersity. The effect of the dendrimers valency, structure, and size on DC-SIGN affinity and antiviral potency was investigated. Both the valency and the topology of the architectures were revealed as key parameters for activity optimization, together with the intrinsic affinity of the monovalent ligand. The stability, rigidity, and length of the scaffolds were also tuned. The design of geometrically adapted scaffolds afforded one of the most potent inhibitors of DC-SIGN mediated HIV infections to date. This monodispersed, not cytotoxic, and highly active compound was also tested with DCs; its internalization into endolysosomal compartments and its ability to induce the overexpression of signaling molecules makes it a good precursor to produce pathogen-entry inhibitors with immunomodulant properties.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Giulio Goti
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| |
Collapse
|
56
|
Guo Y, Nehlmeier I, Poole E, Sakonsinsiri C, Hondow N, Brown A, Li Q, Li S, Whitworth J, Li Z, Yu A, Brydson R, Turnbull WB, Pöhlmann S, Zhou D. Dissecting Multivalent Lectin-Carbohydrate Recognition Using Polyvalent Multifunctional Glycan-Quantum Dots. J Am Chem Soc 2017; 139:11833-11844. [PMID: 28786666 PMCID: PMC5579584 DOI: 10.1021/jacs.7b05104] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Multivalent protein-carbohydrate interactions initiate the first contacts between virus/bacteria and target cells, which ultimately lead to infection. Understanding the structures and binding modes involved is vital to the design of specific, potent multivalent inhibitors. However, the lack of structural information on such flexible, complex, and multimeric cell surface membrane proteins has often hampered such endeavors. Herein, we report that quantum dots (QDs) displayed with a dense array of mono-/disaccharides are powerful probes for multivalent protein-glycan interactions. Using a pair of closely related tetrameric lectins, DC-SIGN and DC-SIGNR, which bind to the HIV and Ebola virus glycoproteins (EBOV-GP) to augment viral entry and infect target cells, we show that such QDs efficiently dissect the different DC-SIGN/R-glycan binding modes (tetra-/di-/monovalent) through a combination of multimodal readouts: Förster resonance energy transfer (FRET), hydrodynamic size measurement, and transmission electron microscopy imaging. We also report a new QD-FRET method for quantifying QD-DC-SIGN/R binding affinity, revealing that DC-SIGN binds to the QD >100-fold tighter than does DC-SIGNR. This result is consistent with DC-SIGN's higher trans-infection efficiency of some HIV strains over DC-SIGNR. Finally, we show that the QDs potently inhibit DC-SIGN-mediated enhancement of EBOV-GP-driven transduction of target cells with IC50 values down to 0.7 nM, matching well to their DC-SIGN binding constant (apparent Kd = 0.6 nM) measured by FRET. These results suggest that the glycan-QDs are powerful multifunctional probes for dissecting multivalent protein-ligand recognition and predicting glyconanoparticle inhibition of virus infection at the cellular level.
Collapse
Affiliation(s)
- Yuan Guo
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center, Kellnerweg 4, Gottingen 37077, Germany
| | - Emma Poole
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Chadamas Sakonsinsiri
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicole Hondow
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andy Brown
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Qing Li
- Department
of Chemical Biology, Peking University Health
Sciences Centre, Beijing 100191, People’s Republic
of China
| | - Shuang Li
- Department
of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Jessie Whitworth
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Zhongjun Li
- Department
of Chemical Biology, Peking University Health
Sciences Centre, Beijing 100191, People’s Republic
of China
| | - Anchi Yu
- Department
of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Rik Brydson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center, Kellnerweg 4, Gottingen 37077, Germany
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, and School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
57
|
Hanč P, Schulz O, Fischbach H, Martin SR, Kjær S, Reis e Sousa C. A pH- and ionic strength-dependent conformational change in the neck region regulates DNGR-1 function in dendritic cells. EMBO J 2016; 35:2484-2497. [PMID: 27753620 PMCID: PMC5109244 DOI: 10.15252/embj.201694695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/18/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
DNGR-1 is receptor expressed by certain dendritic cell (DC) subsets and by DC precursors in mouse. It possesses a C-type lectin-like domain (CTLD) followed by a poorly characterized neck region coupled to a transmembrane region and short intracellular tail. The CTLD of DNGR-1 binds F-actin exposed by dead cell corpses and causes the receptor to signal and potentiate cross-presentation of dead cell-associated antigens by DCs. Here, we describe a conformational change that occurs in the neck region of DNGR-1 in a pH- and ionic strength-dependent manner and that controls cross-presentation of dead cell-associated antigens. We identify residues in the neck region that, when mutated, lock DNGR-1 in one of the two conformational states to potentiate cross-presentation. In contrast, we show that chimeric proteins in which the neck region of DNGR-1 is replaced by that of unrelated C-type lectin receptors fail to promote cross-presentation. Our results suggest that the neck region of DNGR-1 is an integral receptor component that senses receptor progression through the endocytic pathway and has evolved to maximize extraction of antigens from cell corpses, coupling DNGR-1 function to its cellular localization.
Collapse
Affiliation(s)
- Pavel Hanč
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Hanna Fischbach
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | |
Collapse
|
58
|
Mauro N, Ferruti P, Ranucci E, Manfredi A, Berzi A, Clerici M, Cagno V, Lembo D, Palmioli A, Sattin S. Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Sci Rep 2016; 6:33393. [PMID: 27641362 PMCID: PMC5027566 DOI: 10.1038/srep33393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
The initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such as human papilloma virus HPV-16 and herpes simplex virus HSV-2. An amphoteric, but prevailingly anionic PAA named ISA23 proved inactive. It was speculated that the substitution of mannosylated units for a limited percentage of AGMA1 repeating units, while imparting anti-HIV activity, would preserve the fundamentals of its HPV-16 and HSV-2 infection inhibitory activity. In this work, four biocompatible linear PAAs carrying different amounts of mannosyl-triazolyl pendants, Man-ISA7, Man-ISA14, Man-AGMA6.5 and Man-AGMA14.5, were prepared by reaction of 2-(azidoethyl)-α-D-mannopyranoside and differently propargyl-substituted AGMA1 and ISA23. All mannosylated PAAs inhibited HIV infection. Both Man-AGMA6.5 and Man-AGMA14.5 maintained the HPV-16 and HSV-2 activity of the parent polymer, proving broad-spectrum, dual action mode virus infection inhibitors.
Collapse
Affiliation(s)
- Nicolò Mauro
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario di Scienza e Tecnologia dei Materiali, via G. Giusti 9, 56121 Firenze, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Angela Berzi
- Department of Biomedical and Clinical Sciences “Sacco”, University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Mario Clerici
- Department of Medical, Surgical and Transplants Physiopathology, University of Milan, via Fratelli Cervi 93, 20090 Segrate, Milan, and Don C. Gnocchi Foundation IRCCS, Via Capecelatro 66, 20148 Milan, Italy
| | - Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliero Universitaria S. Luigi Gonzaga, via Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliero Universitaria S. Luigi Gonzaga, via Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Alessandro Palmioli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| |
Collapse
|
59
|
Hanske J, Aleksić S, Ballaschk M, Jurk M, Shanina E, Beerbaum M, Schmieder P, Keller BG, Rademacher C. Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin. J Am Chem Soc 2016; 138:12176-86. [DOI: 10.1021/jacs.6b05458] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas Hanske
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Stevan Aleksić
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Martin Ballaschk
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marcel Jurk
- Department
of Bioinformatics, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Elena Shanina
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Monika Beerbaum
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Bettina G. Keller
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
60
|
Léger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach PY. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis. Traffic 2016; 17:639-56. [PMID: 26990254 DOI: 10.1111/tra.12393] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marilou Tetard
- INRS-Institut Armand-Frappier, Laval, Canada.,Current address: Inserm UMR_S1134, Paris, France
| | - Berthe Youness
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRS-Institut Armand-Frappier, Laval, Canada.,Reproduction Genetics Unit, Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital, Heidelberg, Germany
| | - Nicole Cordes
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ronan N Rouxel
- INRS-Institut Armand-Frappier, Laval, Canada.,UR_0892 Unité de Virologie et Immunologie Moléculaire, INRA, CRJ, Jouy-en-Josas, France
| | - Marie Flamand
- Structural Virology, Institut Pasteur, Paris, France
| | - Pierre-Yves Lozach
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRS-Institut Armand-Frappier, Laval, Canada
| |
Collapse
|
61
|
Guo Y, Sakonsinsiri C, Nehlmeier I, Fascione MA, Zhang H, Wang W, Pöhlmann S, Turnbull WB, Zhou D. Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein-Ligand Interactions. Angew Chem Int Ed Engl 2016; 55:4738-42. [PMID: 26990806 PMCID: PMC4979658 DOI: 10.1002/anie.201600593] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 12/22/2022]
Abstract
A highly efficient cap-exchange approach for preparing compact, dense polyvalent mannose-capped quantum dots (QDs) has been developed. The resulting QDs have been successfully used to probe multivalent interactions of HIV/Ebola receptors DC-SIGN and DC-SIGNR (collectively termed as DC-SIGN/R) using a sensitive, ratiometric Förster resonance energy transfer (FRET) assay. The QD probes specifically bind DC-SIGN, but not its closely related receptor DC-SIGNR, which is further confirmed by its specific blocking of DC-SIGN engagement with the Ebola virus glycoprotein. Tuning the QD surface mannose valency reveals that DC-SIGN binds more efficiently to densely packed mannosides. A FRET-based thermodynamic study reveals that the binding is enthalpy-driven. This work establishes QD FRET as a rapid, sensitive technique for probing structure and thermodynamics of multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Yuan Guo
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Chadamas Sakonsinsiri
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Haiyan Zhang
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Weili Wang
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
62
|
Guo Y, Sakonsinsiri C, Nehlmeier I, Fascione MA, Zhang H, Wang W, Pöhlmann S, Turnbull WB, Zhou D. Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein-Ligand Interactions. ACTA ACUST UNITED AC 2016; 128:4816-4820. [PMID: 27563159 PMCID: PMC4979676 DOI: 10.1002/ange.201600593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 12/24/2022]
Abstract
A highly efficient cap-exchange approach for preparing compact, dense polyvalent mannose-capped quantum dots (QDs) has been developed. The resulting QDs have been successfully used to probe multivalent interactions of HIV/Ebola receptors DC-SIGN and DC-SIGNR (collectively termed as DC-SIGN/R) using a sensitive, ratiometric Förster resonance energy transfer (FRET) assay. The QD probes specifically bind DC-SIGN, but not its closely related receptor DC-SIGNR, which is further confirmed by its specific blocking of DC-SIGN engagement with the Ebola virus glycoprotein. Tuning the QD surface mannose valency reveals that DC-SIGN binds more efficiently to densely packed mannosides. A FRET-based thermodynamic study reveals that the binding is enthalpy-driven. This work establishes QD FRET as a rapid, sensitive technique for probing structure and thermodynamics of multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Yuan Guo
- School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
| | - Chadamas Sakonsinsiri
- School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
| | - Inga Nehlmeier
- Infection Biology Unit German Primate Center Kellnerweg 4 37077 Göttingen Germany
| | - Martin A Fascione
- Department of Chemistry University of York Heslington York YO10 5DD UK
| | - Haiyan Zhang
- School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
| | - Weili Wang
- School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
| | - Stefan Pöhlmann
- Infection Biology Unit German Primate Center Kellnerweg 4 37077 Göttingen Germany
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
63
|
Pustylnikov S, Dave RS, Khan ZK, Porkolab V, Rashad AA, Hutchinson M, Fieschi F, Chaiken I, Jain P. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators. AIDS Res Hum Retroviruses 2016; 32:93-100. [PMID: 26383762 DOI: 10.1089/aid.2015.0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rajnish S. Dave
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vanessa Porkolab
- University Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Matthew Hutchinson
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Frank Fieschi
- University Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
64
|
Kotar A, Tomašič T, Lenarčič Živković M, Jug G, Plavec J, Anderluh M. STD NMR and molecular modelling insights into interaction of novel mannose-based ligands with DC-SIGN. Org Biomol Chem 2016; 14:862-75. [DOI: 10.1039/c5ob01916h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
STD-NMR and molecular modelling study of four α-d-mannosides show new contacts in DC-SIGN binding site to help develop potent DC-SIGN antagonists.
Collapse
Affiliation(s)
- Anita Kotar
- Slovenian NMR center
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | | | - Gregor Jug
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Janez Plavec
- Slovenian NMR center
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
- EN-FIST Centre of Excellence
| | - Marko Anderluh
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| |
Collapse
|
65
|
Ordanini S, Varga N, Porkolab V, Thépaut M, Belvisi L, Bertaglia A, Palmioli A, Berzi A, Trabattoni D, Clerici M, Fieschi F, Bernardi A. Designing nanomolar antagonists of DC-SIGN-mediated HIV infection: ligand presentation using molecular rods. Chem Commun (Camb) 2015; 51:3816-9. [PMID: 25648900 DOI: 10.1039/c4cc09709b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DC-SIGN antagonists were designed combining one selective monovalent glycomimetic ligand with trivalent dendrons separated by a rigid core of controlled length. The design combines multiple multivalency effects to achieve inhibitors of HIV infection, which are active in nanomolar concentration.
Collapse
Affiliation(s)
- Stefania Ordanini
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chabrol E, Thépaut M, Dezutter-Dambuyant C, Vivès C, Marcoux J, Kahn R, Valladeau-Guilemond J, Vachette P, Durand D, Fieschi F. Alteration of the langerin oligomerization state affects Birbeck granule formation. Biophys J 2015; 108:666-77. [PMID: 25650933 DOI: 10.1016/j.bpj.2014.10.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 11/16/2022] Open
Abstract
Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Cell Line
- Chromatography, High Pressure Liquid
- Cross-Linking Reagents/pharmacology
- Crystallography, X-Ray
- Cytoplasmic Granules/metabolism
- Fibroblasts/metabolism
- Fibroblasts/ultrastructure
- HIV Envelope Protein gp120/metabolism
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/metabolism
- Mannans/metabolism
- Mannose-Binding Lectins/chemistry
- Mannose-Binding Lectins/metabolism
- Mice
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation/genetics
- Protein Binding/drug effects
- Protein Multimerization/drug effects
- Protein Structure, Tertiary
- Scattering, Small Angle
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
Collapse
Affiliation(s)
- Eric Chabrol
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Michel Thépaut
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | | | - Corinne Vivès
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Julien Marcoux
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Richard Kahn
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Jenny Valladeau-Guilemond
- Centre Léon Bérard-UMR INSERM 1052-CNRS 5286, Centre de recherche en Cancérologie de Lyon, Lyon, France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France.
| | - Franck Fieschi
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
67
|
André S, O'Sullivan S, Koller C, Murphy PV, Gabius HJ. Bi- to tetravalent glycoclusters presenting GlcNAc/GalNAc as inhibitors: from plant agglutinins to human macrophage galactose-type lectin (CD301) and galectins. Org Biomol Chem 2015; 13:4190-203. [PMID: 25721929 DOI: 10.1039/c5ob00048c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging insights into the functional spectrum of tissue lectins leads to identification of new targets for the custom-made design of potent inhibitors, providing a challenge for synthetic chemistry. The affinity and selectivity of a carbohydrate ligand for a lectin may immensely be increased by a number of approaches, which includes varying geometrical or topological features. This perspective leads to the design and synthesis of glycoclusters and their testing using assays of physiological relevance. Herein, hydroquinone, resorcinol, benzene-1,3,5-triol and tetra(4-hydroxyphenyl)ethene have been employed as scaffolds and propargyl derivatives obtained. The triazole-containing linker to the α/β-O/S-glycosides of GlcNAc/GalNAc presented on these scaffolds was generated by copper-catalysed azide-alkyne cycloaddition. This strategy was used to give a panel of nine glycoclusters with bi-, tri- and tetravalency. Maintained activity for lectin binding after conjugation was ascertained for both sugars in solid-phase assays with the plant agglutinins WGA (GlcNAc) and DBA (GalNAc). Absence of cross-reactivity excluded any carbohydrate-independent reactivity of the bivalent compounds, allowing us to proceed to further testing with a biomedically relevant lectin specific for GalNAc. Macrophage galactose(-binding C)-type lectin, involved in immune defence by dendritic cells and in virus uptake, was produced as a soluble protein without/with its α-helical coiled-coil stalk region. Binding to ligands presented on a matrix and on cell surfaces was highly susceptible to the presence of the tetravalent inhibitor derived from the tetraphenylethene-containing scaffold, and presentation of GalNAc with an α-thioglycosidic linkage proved favorable. Cross-reactivity of this glycocluster to human galectins-3 and -4, which interact with Tn-antigen-presenting mucins, was rather small. Evidently, the valency and spatial display of α-GalNAc residues is a key factor to design potent and selective inhibitors for this lectin.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
68
|
Pederson K, Mitchell DA, Prestegard JH. Structural characterization of the DC-SIGN-Lewis(X) complex. Biochemistry 2014; 53:5700-9. [PMID: 25121780 PMCID: PMC4159204 DOI: 10.1021/bi5005014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a C-type lectin highly expressed on the surface of antigen-presenting dendritic cells. DC-SIGN mediates interactions among dendritic cells, pathogens, and a variety of epithelia, myeloid cells, and endothelia by binding to high mannose residues on pathogenic invaders or fucosylated residues on the membranes of other immune cells. Although these interactions are normally beneficial, they can also contribute to disease. The structural characterization of binding geometries is therefore of interest as a basis for the construction of mimetics that can mediate the effects of abnormal immune response. Here, we report the structural characteristics of the interaction of the DC-SIGN carbohydrate recognition domain (CRD) with a common fucosylated entity, the Lewis(X) trisaccharide (Le(X)), using NMR methods. Titration of the monomeric DC-SIGN CRD with Le(X) monitored by 2D NMR revealed significant perturbations of DC-SIGN cross-peak positions in (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra and identified residues near the binding site. Additionally, saturation transfer difference (STD) and transferred nuclear Overhauser effect (trNOE) NMR experiments, using a tetrameric form of DC-SIGN, identified binding epitopes and bound conformations of the Le(X) ligand. The restraints derived from these multiple experiments were used to generate models for the binding of Le(X) to the DC-SIGN CRD. Ranking of the models based on the fit of model-based simulations of the trNOE data and STD buildup curves suggested conformations distinct from those seen in previous crystal structures. The new conformations offer insight into how differences between binding of Lewis(X) and mannose-terminated saccharides may be propagated.
Collapse
Affiliation(s)
- Kari Pederson
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | | | | |
Collapse
|
69
|
Aretz J, Wamhoff EC, Hanske J, Heymann D, Rademacher C. Computational and experimental prediction of human C-type lectin receptor druggability. Front Immunol 2014; 5:323. [PMID: 25071783 PMCID: PMC4090677 DOI: 10.3389/fimmu.2014.00323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 01/21/2023] Open
Abstract
Mammalian C-type lectin receptors (CTLRS) are involved in many aspects of immune cell regulation such as pathogen recognition, clearance of apoptotic bodies, and lymphocyte homing. Despite a great interest in modulating CTLR recognition of carbohydrates, the number of specific molecular probes is limited. To this end, we predicted the druggability of a panel of 22 CTLRs using DoGSiteScorer. The computed druggability scores of most structures were low, characterizing this family as either challenging or even undruggable. To further explore these findings, we employed a fluorine-based nuclear magnetic resonance screening of fragment mixtures against DC-SIGN, a receptor of pharmacological interest. To our surprise, we found many fragment hits associated with the carbohydrate recognition site (hit rate = 13.5%). A surface plasmon resonance-based follow-up assay confirmed 18 of these fragments (47%) and equilibrium dissociation constants were determined. Encouraged by these findings we expanded our experimental druggability prediction to Langerin and MCL and found medium to high hit rates as well, being 15.7 and 10.0%, respectively. Our results highlight limitations of current in silico approaches to druggability assessment, in particular, with regard to carbohydrate-binding proteins. In sum, our data indicate that small molecule ligands for a larger panel of CTLRs can be developed.
Collapse
Affiliation(s)
- Jonas Aretz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Potsdam , Germany ; Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , Berlin , Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Potsdam , Germany ; Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , Berlin , Germany
| | - Jonas Hanske
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Potsdam , Germany ; Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , Berlin , Germany
| | - Dario Heymann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Potsdam , Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Potsdam , Germany ; Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
70
|
Sutkeviciute I, Thépaut M, Sattin S, Berzi A, McGeagh J, Grudinin S, Weiser J, Le Roy A, Reina JJ, Rojo J, Clerici M, Bernardi A, Ebel C, Fieschi F. Unique DC-SIGN clustering activity of a small glycomimetic: A lesson for ligand design. ACS Chem Biol 2014; 9:1377-85. [PMID: 24749535 DOI: 10.1021/cb500054h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DC-SIGN is a dendritic cell-specific C-type lectin receptor that recognizes highly glycosylated ligands expressed on the surface of various pathogens. This receptor plays an important role in the early stages of many viral infections, including HIV, which makes it an interesting therapeutic target. Glycomimetic compounds are good drug candidates for DC-SIGN inhibition due to their high solubility, resistance to glycosidases, and nontoxicity. We studied the structural properties of the interaction of the tetrameric DC-SIGN extracellular domain (ECD), with two glycomimetic antagonists, a pseudomannobioside (1) and a linear pseudomannotrioside (2). Though the inhibitory potency of 2, as measured by SPR competition experiments, was 1 order of magnitude higher than that of 1, crystal structures of the complexes within the DC-SIGN carbohydrate recognition domain showed the same binding mode for both compounds. Moreover, when conjugated to multivalent scaffolds, the inhibitory potencies of these compounds became uniform. Combining isothermal titration microcalorimetry, analytical ultracentrifugation, and dynamic light scattering techniques to study DC-SIGN ECD interaction with these glycomimetics revealed that 2 is able, without any multivalent presentation, to cluster DC-SIGN tetramers leading to an artificially overestimated inhibitory potency. The use of multivalent scaffolds presenting 1 or 2 in HIV trans-infection inhibition assay confirms the loss of potency of 2 upon conjugation and the equal efficacy of chemically simpler compound 1. This study documents a unique case where, among two active compounds chemically derived, the compound with the lower apparent activity is the optimal lead for further drug development.
Collapse
Affiliation(s)
- Ieva Sutkeviciute
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Sara Sattin
- Dipartimento
di Chimica, Universita’ di Milano, via Golgi 19, Milano 20133, Italy
| | - Angela Berzi
- Department
of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
| | - John McGeagh
- Anterio Consult&Research GmbH, Augustaanlage 23, Mannheim D-68165, Germany
| | - Sergei Grudinin
- INRIA Grenoble, Saint Ismier Cedex F-38334, France
- CNRS Laboratoire
Jean Kuntzmann, Grenoble 38041, France
| | - Jörg Weiser
- Anterio Consult&Research GmbH, Augustaanlage 23, Mannheim D-68165, Germany
| | - Aline Le Roy
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Jose J. Reina
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC−Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC−Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Mario Clerici
- Department
of Physiopatology and Transplantation, University of Milan and Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20148, Italy
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita’ di Milano, via Golgi 19, Milano 20133, Italy
| | - Christine Ebel
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| |
Collapse
|
71
|
Monovalent mannose-based DC-SIGN antagonists: Targeting the hydrophobic groove of the receptor. Eur J Med Chem 2014; 75:308-26. [DOI: 10.1016/j.ejmech.2014.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 01/09/2023]
|
72
|
Varga N, Sutkeviciute I, Ribeiro-Viana R, Berzi A, Ramdasi R, Daghetti A, Vettoretti G, Amara A, Clerici M, Rojo J, Fieschi F, Bernardi A. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials 2014; 35:4175-84. [PMID: 24508075 DOI: 10.1016/j.biomaterials.2014.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/08/2014] [Indexed: 01/31/2023]
Abstract
DC-SIGN is a C-type lectin receptor on antigen presenting cells (dendritic cells) which has an important role in some viral infection, notably by HIV and Dengue virus (DV). Multivalent presentation of carbohydrates on dendrimeric scaffolds has been shown to inhibit DC-SIGN binding to HIV envelope glycoprotein gp120, thus blocking viral entry. This approach has interesting potential applications for infection prophylaxis. In an effort to develop high affinity inhibitors of DC-SIGN mediated viral entry, we have synthesized a group of glycodendrimers of different valency that bear different carbohydrates or glycomimetic DC-SIGN ligands and have studied their DC-SIGN binding activity and antiviral properties both in an HIV and a Dengue infection model. Surface Plasmon Resonance (SPR) competition studies have demonstrated that the materials obtained bind efficiently to DC-SIGN with IC50s in the μm range, which depend on the nature of the ligand and on the valency of the scaffold. In particular, a hexavalent presentation of the DC-SIGN selective antagonist 4 displayed high potency, as well as improved accessibility and chemical stability relative to previously reported dendrimers. At low μm concentration the material was shown to block both DC-SIGN mediated uptake of DV by Raji cells and HIV trans-infection of T cells.
Collapse
Affiliation(s)
- Norbert Varga
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy
| | - Ieva Sutkeviciute
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France
| | - Renato Ribeiro-Viana
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Americo Vespucio 49, 41092 Sevilla, Spain
| | - Angela Berzi
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Via GB Grassi 74, 20157 Milano, Italy
| | - Rasika Ramdasi
- INSERM U944, Laboratoire de Pathologie et Virologie Moléculaire, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Anna Daghetti
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy
| | - Gerolamo Vettoretti
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy
| | - Ali Amara
- INSERM U944, Laboratoire de Pathologie et Virologie Moléculaire, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-chirurgica e dei Trapianti, Via F.lli Cervi 93, 20090 Segrate, Italy; Fondazione Don Gnocchi IRCCS, Via Capecelatro 66, 20148 Milano, Italy
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Americo Vespucio 49, 41092 Sevilla, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France
| | - Anna Bernardi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy; CNR-ISTM, Institute of Molecular Science and Technologies, Milan, Italy.
| |
Collapse
|
73
|
Small-angle X-ray scattering to obtain models of multivalent lectin-glycan complexes. Methods Mol Biol 2014; 1200:511-26. [PMID: 25117261 DOI: 10.1007/978-1-4939-1292-6_42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in small-angle X-ray scattering (SAXS) have led to the ability to model the glycans on glycoproteins and to obtain the low-resolution solution structures of complexes of lectins bound to multivalent glycan-presenting scaffolds. This progress in SAXS can respond to the increasing interest in the biological action of glycoproteins and lectins and in the design of multivalent glycan-based antagonists. Carbohydrates make up a significant part of the X-ray scattering content in SAXS and should be included in the model together with the protein, whose structure is most often based on a crystal structure or NMR ensemble, to give a far-improved fit with the experimental data. The modeling of the spatial positioning of glycans on proteins or in the architecture of lectin-glycan complexes delivers low-resolution structural information hitherto unmatched by any other method. SAXS data on the bacterial lectin FimH, strongly bound to heptyl α-D-mannose on a sevenfold derivatized β-cyclodextrin, permitted determination of the stoichiometry of the complex and the geometry of the lectin deposition on the multivalent β-cyclodextrin. The SAXS methods can be applied to larger complexes as the technique imposes no limit on the size of the macromolecular assembly in solution.
Collapse
|
74
|
Benedetti M, Andreani F, Leggio C, Galantini L, Di Matteo A, Pavel NV, De Lorenzo G, Cervone F, Federici L, Sicilia F. A single amino-acid substitution allows endo-polygalacturonase of Fusarium verticillioides to acquire recognition by PGIP2 from Phaseolus vulgaris. PLoS One 2013; 8:e80610. [PMID: 24260434 DOI: 10.1371/10.1371/journal.pone.0080610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/12/2013] [Indexed: 05/25/2023] Open
Abstract
Polygalacturonases (PGs) are secreted by phytopathogenic fungi to degrade the plant cell wall homogalacturonan during plant infection. To counteract Pgs, plants have evolved polygalacturonase-inhibiting proteins (PGIPs) that slow down fungal infection and defend cell wall integrity. PGIPs favour the accumulation of oligogalacturonides, which are homogalacturonan fragments that act as endogenous elicitors of plant defence responses. We have previously shown that PGIP2 from Phaseolus vulgaris (PvPGIP2) forms a complex with PG from Fusarium phyllophilum (FpPG), hindering the enzyme active site cleft from substrate. Here we analyse by small angle X-ray scattering (SAXS) the interaction between PvPGIP2 and a PG from Colletotrichum lupini (CluPG1). We show a different shape of the PG-PGIP complex, which allows substrate entry and provides a structural explanation for the different inhibition kinetics exhibited by PvPGIP2 towards the two isoenzymes. The analysis of SAXS structures allowed us to investigate the basis of the inability of PG from Fusarium verticilloides (FvPG) to be inhibited by PvPGIP2 or by any other known PGIP. FvPG is 92.5% identical to FpPG, and we show here, by both loss- and gain-of-function mutations, that a single amino acid site acts as a switch for FvPG recognition by PvPGIP2.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Benedetti M, Andreani F, Leggio C, Galantini L, Di Matteo A, Pavel NV, De Lorenzo G, Cervone F, Federici L, Sicilia F. A single amino-acid substitution allows endo-polygalacturonase of Fusarium verticillioides to acquire recognition by PGIP2 from Phaseolus vulgaris. PLoS One 2013; 8:e80610. [PMID: 24260434 PMCID: PMC3834070 DOI: 10.1371/journal.pone.0080610] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/12/2013] [Indexed: 12/04/2022] Open
Abstract
Polygalacturonases (PGs) are secreted by phytopathogenic fungi to degrade the plant cell wall homogalacturonan during plant infection. To counteract Pgs, plants have evolved polygalacturonase-inhibiting proteins (PGIPs) that slow down fungal infection and defend cell wall integrity. PGIPs favour the accumulation of oligogalacturonides, which are homogalacturonan fragments that act as endogenous elicitors of plant defence responses. We have previously shown that PGIP2 from Phaseolus vulgaris (PvPGIP2) forms a complex with PG from Fusarium phyllophilum (FpPG), hindering the enzyme active site cleft from substrate. Here we analyse by small angle X-ray scattering (SAXS) the interaction between PvPGIP2 and a PG from Colletotrichum lupini (CluPG1). We show a different shape of the PG-PGIP complex, which allows substrate entry and provides a structural explanation for the different inhibition kinetics exhibited by PvPGIP2 towards the two isoenzymes. The analysis of SAXS structures allowed us to investigate the basis of the inability of PG from Fusarium verticilloides (FvPG) to be inhibited by PvPGIP2 or by any other known PGIP. FvPG is 92.5% identical to FpPG, and we show here, by both loss- and gain-of-function mutations, that a single amino acid site acts as a switch for FvPG recognition by PvPGIP2.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Federico Andreani
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Claudia Leggio
- Dipartimento di Chimica, Sapienza Università di Roma, Roma, Italy
| | | | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | | | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Luca Federici
- Dipartimento di Scienze Sperimentali e Cliniche and Centro Scienze dell’Invecchiamento, Università di Chieti-Pescara “G. d’ Annunzio”, Chieti, Italy
| | - Francesca Sicilia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
76
|
Abstract
The recent introduction of saturation transfer difference (STD) NMR has increased the tools for the study of protein–carbohydrate complexes. This is useful when it is combined with transfer nuclear Overhauser enhancement spectroscopy (NOESY) measurement, or when it is interpreted using the expected calculated values of transference, yielding additional, very valuable information for the study of this type of complex. The objective of this work is to cover the advances of the STD technique as exemplified by the investigations of DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) recognition by simple carbohydrates or mimics of them, based on structures containing a terminal mannose or fucose. We also will discuss the methods for quantification of the STD values based on the initial growing rates with the saturation time.
Collapse
|
77
|
Doknic D, Abramo M, Sutkeviciute I, Reinhardt A, Guzzi C, Schlegel MK, Potenza D, Nieto PM, Fieschi F, Seeberger PH, Bernardi A. Synthesis and Characterization of Linker-Armed Fucose-Based Glycomimetics. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
78
|
Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak J, Koeppe JR, Delgado R, Rojo J, Davis BG. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat Commun 2013; 3:1303. [PMID: 23250433 PMCID: PMC3535419 DOI: 10.1038/ncomms2302] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023] Open
Abstract
Ligand polyvalency is a powerful modulator of protein–receptor interactions. Host–pathogen infection interactions are often mediated by glycan ligand–protein interactions, yet its interrogation with very high copy number ligands has been limited to heterogenous systems. Here we report that through the use of nested layers of multivalency we are able to assemble the most highly valent glycodendrimeric constructs yet seen (bearing up to 1,620 glycans). These constructs are pure and well-defined single entities that at diameters of up to 32 nm are capable of mimicking pathogens both in size and in their highly glycosylated surfaces. Through this mimicry these glyco-dendri-protein-nano-particles are capable of blocking (at picomolar concentrations) a model of the infection of T-lymphocytes and human dendritic cells by Ebola virus. The high associated polyvalency effects (β>106, β/N ~102–103) displayed on an unprecedented surface area by precise clusters suggest a general strategy for modulation of such interactions. Host–pathogen relationships can be mediated by polyvalent glycan ligand–protein interactions. Here well-defined highly valent glycodendrimeric constructs are synthesized that can mimic pathogens, and can inhibit a model of infection by the Ebola virus.
Collapse
Affiliation(s)
- Renato Ribeiro-Viana
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
79
|
Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proc Natl Acad Sci U S A 2013; 110:8795-800. [PMID: 23671078 DOI: 10.1073/pnas.1221708110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis mannose-capped lipoarabinomannan inhibits the release of proinflammatory cytokines by LPS-stimulated human dendritic cells (DCs) via targeting the C-type lectin receptor DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN). With the aim of mimicking the bioactive supramolecular structure of mannose-capped lipoarabinomannan, we designed and synthesized a set of poly(phosphorhydrazone) dendrimers grafted with mannose units, called mannodendrimers, that differed by size and the number and length of their (α1→2)-oligommanoside caps. A third-generation dendrimer bearing 48 trimannoside caps (3T) and a fourth-generation dendrimer bearing 96 dimannosides (4D) displayed the highest binding avidity for DC-SIGN. Moreover, these dendrimers inhibited proinflammatory cytokines, including TNF-α, production by LPS-stimulated DCs in a DC-SIGN-dependent fashion. Finally, in a model of acute lung inflammation in which mice were exposed to aerosolized LPS, per os administration of 3T mannodendrimer was found to significantly reduce neutrophil influx via targeting the DC-SIGN murine homolog SIGN-related 1. The 3T mannodendrimer therefore represents an innovative fully synthetic compound for the treatment of lung inflammatory diseases.
Collapse
|
80
|
Varga N, Sutkeviciute I, Guzzi C, McGeagh J, Petit-Haertlein I, Gugliotta S, Weiser J, Angulo J, Fieschi F, Bernardi A. Selective Targeting of Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin (DC-SIGN) with Mannose-Based Glycomimetics: Synthesis and Interaction Studies of Bis(benzylamide) Derivatives of a Pseudomannobioside. Chemistry 2013; 19:4786-97. [DOI: 10.1002/chem.201202764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2012] [Indexed: 11/09/2022]
|
81
|
Thépaut M, Guzzi C, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Varga N, Chabrol E, Rojo J, Bernardi A, Angulo J, Nieto PM, Fieschi F. Structure of a Glycomimetic Ligand in the Carbohydrate Recognition Domain of C-type Lectin DC-SIGN. Structural Requirements for Selectivity and Ligand Design. J Am Chem Soc 2013; 135:2518-29. [DOI: 10.1021/ja3053305] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Cinzia Guzzi
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Ieva Sutkeviciute
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Sara Sattin
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Renato Ribeiro-Viana
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Norbert Varga
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Eric Chabrol
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Anna Bernardi
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Jesus Angulo
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Pedro M. Nieto
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- Institut Universitaire de France, 103 boulevard Saint-Michel 75005 Paris, France
| |
Collapse
|
82
|
Garcia-Vallejo JJ, Koning N, Ambrosini M, Kalay H, Vuist I, Sarrami-Forooshani R, Geijtenbeek TBH, van Kooyk Y. Glycodendrimers prevent HIV transmission via DC-SIGN on dendritic cells. Int Immunol 2013; 25:221-33. [PMID: 23291968 DOI: 10.1093/intimm/dxs115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells efficient in capturing pathogens, and processing their antigenic determinants for presentation to antigen-specific T cells to induce robust immune responses. Their location at peripheral tissues and the expression of pattern-recognition receptors, among them DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), facilitates the capture of pathogens before spreading. However, some pathogens have developed strategies to escape the immune system. One of the most successful is HIV-1, which targets DC-SIGN for transport to the lymph node where the virus infects CD4(+) T cells. Contact of HIV-1 with DC-SIGN is thus the first event in the pathogenic cascade and, therefore, it is the primary target point for therapies aimed at HIV infection prevention. DC-SIGN recognizes specific glycans on HIV-1 and this interaction can be blocked by competitive inhibition through glycans. Although the affinity of glycans is relatively low, multivalency may increase avidity and the strength to compete with HIV-1 virions. We have designed multivalent dendrimeric compounds based on Lewis-type antigens that bind DC-SIGN with high selectivity and avidity and that effectively block gp120 binding to DC-SIGN and, consequently, HIV transmission to CD4(+) T cells. Binding to DC-SIGN and gp120 inhibition was higher on glycodendrimers with larger molecular diameter, indicating that the geometry of the compounds is an important factor determining their functionality. Our compounds elicited DC-SIGN internalization, a property of the receptor upon triggering, but did not affect the maturation status of DCs. Thus, Le(X) glycodendrimers could be incorporated into topic prophylactic approaches for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
The key role of carbohydrates in many biological events has attracted the interest of the scientific community. This fact has demanded the access to new tools necessary to understand this role and the interaction of carbohydrates with their corresponding receptors, lectins. Glycodendrimers and glycodendritic structures in general, have demonstrated to be very efficient and interesting tools to intervene in those processes where carbohydrates participate. In this review, we discuss the different glycodendritic structures that have been used to interfere with DC-SIGN, a very attractive lectin involved in infection processes and in the regulation of the immune response.
Collapse
|
84
|
Richichi B, Imberty A, Gillon E, Bosco R, Sutkeviciute I, Fieschi F, Nativi C. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria. Org Biomol Chem 2013; 11:4086-94. [DOI: 10.1039/c3ob40520f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
85
|
Chabrol E, Nurisso A, Daina A, Vassal-Stermann E, Thepaut M, Girard E, Vivès RR, Fieschi F. Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode. PLoS One 2012; 7:e50722. [PMID: 23226363 PMCID: PMC3511376 DOI: 10.1371/journal.pone.0050722] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022] Open
Abstract
Langerin is a C-type lectin specifically expressed in Langerhans cells. As recently shown for HIV, Langerin is thought to capture pathogens and mediate their internalisation into Birbeck Granules for elimination. However, the precise functions of Langerin remain elusive, mostly because of the lack of information on its binding properties and physiological ligands. Based on recent reports that Langerin binds to sulfated sugars, we conducted here a comparative analysis of Langerin interaction with mannose-rich HIV glycoprotein gp120 and glycosaminoglycan (GAGs), a family of sulfated polysaccharides expressed at the surface of most mammalian cells. Our results first revealed that Langerin bound to these different glycans through very distinct mechanisms and led to the identification of a novel, GAG-specific binding mode within Langerin. In contrast to the canonical lectin domain, this new binding site showed no Ca(2+)-dependency, and could only be detected in entire, trimeric extracellular domains of Langerin. Interestingly binding to GAGs, did not simply rely on a net charge effect, but rather on more discrete saccharide features, such as 6-O-sulfation, or iduronic acid content. Using molecular modelling simulations, we proposed a model of Langerin/heparin complex, which located the GAG binding site at the interface of two of the three Carbohydrate-recognition domains of the protein, at the edge of the a-helix coiled-coil. To our knowledge, the binding properties that we have highlighted here for Langerin, have never been reported for C-type lectins before. These findings provide new insights towards the understanding of Langerin biological functions.
Collapse
Affiliation(s)
- Eric Chabrol
- Groupe Membrane & Pathogens, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
| | - Alessandra Nurisso
- Département de Pharmacochimie, Université de Genève, Genève, Switzerland
| | - Antoine Daina
- Département de Pharmacochimie, Université de Genève, Genève, Switzerland
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Emilie Vassal-Stermann
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Groupe SAGAG, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
| | - Michel Thepaut
- Groupe Membrane & Pathogens, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
| | - Eric Girard
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Groupe ELMA, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
| | - Romain R. Vivès
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Franck Fieschi
- Groupe Membrane & Pathogens, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
86
|
S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 2012; 422:590-5. [PMID: 22595457 PMCID: PMC7124250 DOI: 10.1016/j.bbrc.2012.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/08/2012] [Indexed: 01/30/2023]
Abstract
It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI > 9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca2+-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.
Collapse
|
87
|
Haspot F, Lavault A, Sinzger C, Laib Sampaio K, Stierhof YD, Pilet P, Bressolette-Bodin C, Halary F. Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS One 2012; 7:e34795. [PMID: 22496863 PMCID: PMC3322158 DOI: 10.1371/journal.pone.0034795] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/08/2012] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection.
Collapse
Affiliation(s)
- Fabienne Haspot
- Unité Mixte de Recherche_S 1064, ex643, Institut National de la Santé et de la Recherche Médicale, Institute for Transplantation/Urology and Nephrology, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
|
89
|
A glycomimetic compound inhibits DC-SIGN-mediated HIV infection in cellular and cervical explant models. AIDS 2012; 26:127-37. [PMID: 22045343 DOI: 10.1097/qad.0b013e32834e1567] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Dendritic cell-specific intercellular adhesion molecule (ICAM)-3 grabbing nonintegrin (DC-SIGN) participates in the initial stages of sexually transmitted HIV-1 infection by recognizing highly mannosylated structures presented in multiple copies on HIV-1 gp120 and promoting virus dissemination. Inhibition of HIV interaction with DC-SIGN thus represents a potential therapeutic approach for viral entry inhibition at the mucosal level. DESIGN Herein we evaluate the efficacy in inhibiting HIV-1 infection and the potential toxicity of a multimeric glycomimetic DC-SIGN ligand (Dendron 12). METHODS The ability of Dendron 12 to block HIV-1 infection was assessed in cellular and human cervical explant models. Selectivity of Dendron 12 towards DC-SIGN and langerin was evaluated by surface plasmon resonance studies. β chemokine production following stimulation with Dendron 12 was also analyzed. Toxicity of the compound was evaluated in cellular and tissue models. RESULTS Dendron 12 averted HIV-1 trans infection of CD4(+) T lymphocytes in presence of elevated viral loads and prevented HIV-1 infection of human cervical tissues, under conditions mimicking compromised epithelial integrity, by multiple clades of R5 and X4 tropic viruses. Treatment with Dendron 12 did not interfere with the activity of langerin and also significantly elicited the production of the β chemokines MIP-1α, MIP-1β and RANTES. CONCLUSION Dendron 12 thus inhibits HIV-1 infection by competition with binding of HIV to DC-SIGN and stimulation of β-chemokine production. Dendron 12 represents a promising lead compound for the development of anti-HIV topical microbicides.
Collapse
|
90
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
91
|
Lozach PY, Kühbacher A, Meier R, Mancini R, Bitto D, Bouloy M, Helenius A. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 2011; 10:75-88. [PMID: 21767814 DOI: 10.1016/j.chom.2011.06.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/13/2011] [Accepted: 06/15/2011] [Indexed: 10/17/2022]
Abstract
During natural transmission, bunyaviruses are introduced into the skin through arthropod bites, and dermal dendritic cells (DCs) are the first to encounter incoming viruses. DC-SIGN is a C-type lectin highly expressed on the surface of dermal DCs. We found that several arthropod-borne phleboviruses (Bunyaviridae), including Rift Valley fever and Uukuniemi viruses, exploit DC-SIGN to infect DCs and other DC-SIGN-expressing cells. DC-SIGN binds the virus directly via interactions with high-mannose N-glycans on the viral glycoproteins and is required for virus internalization and infection. In live cells, virus-induced clustering of cell surface DC-SIGN could be visualized. An endocytosis-defective mutant of DC-SIGN was unable to mediate virus uptake, indicating that DC-SIGN is an authentic receptor required for both attachment and endocytosis. After internalization, viruses separated from DC-SIGN and underwent trafficking to late endosomes. Our study provides real-time visualization of virus-receptor interactions on the cell surface and establishes DC-SIGN as a phlebovirus entry receptor.
Collapse
Affiliation(s)
- Pierre-Yves Lozach
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
92
|
Sabatte J, Faigle W, Ceballos A, Morelle W, Rodríguez Rodrígues C, Remes Lenicov F, Thépaut M, Fieschi F, Malchiodi E, Fernández M, Arenzana-Seisdedos F, Lortat-Jacob H, Michalski JC, Geffner J, Amigorena S. Semen clusterin is a novel DC-SIGN ligand. THE JOURNAL OF IMMUNOLOGY 2011; 187:5299-309. [PMID: 22013110 DOI: 10.4049/jimmunol.1101889] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The C-type lectin receptor dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is an important player in the recognition of pathogens by dendritic cells. A plethora of pathogens including viruses, bacteria, parasites, and fungi are recognized by DC-SIGN through both mannose and fucose-containing glycans expressed on the pathogen surface. In this study, we identified semen clusterin as a novel DC-SIGN ligand. Semen clusterin, but not serum clusterin, expresses an extreme abundance of fucose-containing blood-type Ags such as Le(x) and Le(y), which are both excellent DC-SIGN ligands. These motifs enable semen clusterin to bind DC-SIGN with very high affinity (K(d) 76 nM) and abrogate the binding of HIV-1 to DC-SIGN. Depletion of clusterin from semen samples, however, did not completely prevent the ability of semen to inhibit the capture of HIV-1 by DC-SIGN, supporting that besides clusterin, semen contains other DC-SIGN ligands. Further studies are needed to characterize these ligands and define their contribution to the DC-SIGN-blocking activity mediated by semen. Clusterin is an enigmatic protein involved in a variety of physiologic and pathologic processes including inflammation, atherosclerosis, and cancer. Our results uncover an unexpected heterogeneity in the glycosylation pattern of clusterin and suggest that the expression of high concentrations of fucose-containing glycans enables semen clusterin to display a unique set of biological functions that might affect the early course of sexually transmitted infectious diseases.
Collapse
Affiliation(s)
- Juan Sabatte
- INSERM U653, Immunité et Cancer, Institut Curie Paris, Paris 75248, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Benedetti M, Leggio C, Federici L, De Lorenzo G, Pavel NV, Cervone F. Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering. PLANT PHYSIOLOGY 2011; 157:599-607. [PMID: 21859985 PMCID: PMC3192570 DOI: 10.1104/pp.111.181057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/15/2011] [Indexed: 05/07/2023]
Abstract
We report here the low-resolution structure of the complex formed by the endo-polygalacturonase from Fusarium phyllophilum and one of the polygalacturonase-inhibiting protein from Phaseolus vulgaris after chemical cross-linking as determined by small-angle x-ray scattering analysis. The inhibitor engages its concave surface of the leucine-rich repeat domain with the enzyme. Both sides of the enzyme active site cleft interact with the inhibitor, accounting for the competitive mechanism of inhibition observed. The structure is in agreement with previous site-directed mutagenesis data and has been further validated with structure-guided mutations and subsequent assay of the inhibitory activity. The structure of the complex may help the design of inhibitors with improved or new recognition capabilities to be used for crop protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie C. Darwin (M.B., G.D.L., F.C.) and Dipartimento di Chimica (C.L., N.V.P.), Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; Dipartimento di Scienze Biomediche, Centro Scienze dell’Invecchiamento, Universitá di Chieti G. D’Annunzio, 66013 Chieti, Italy (L.F.)
| |
Collapse
|
94
|
Luczkowiak J, Sattin S, Sutkevičiu̅tė I, Reina JJ, Sánchez-Navarro M, Thépaut M, Martínez-Prats L, Daghetti A, Fieschi F, Delgado R, Bernardi A, Rojo J. Pseudosaccharide Functionalized Dendrimers as Potent Inhibitors of DC-SIGN Dependent Ebola Pseudotyped Viral Infection. Bioconjug Chem 2011; 22:1354-65. [DOI: 10.1021/bc2000403] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Sara Sattin
- Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, and CISI, Milano, Italy
| | - Ieva Sutkevičiu̅tė
- Institut de Biologie Structurale, CNRS, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble France
- Université Joseph Fourier, Institut Universitaire de France, 38000 Grenoble, France
| | - José Juan Reina
- Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, and CISI, Milano, Italy
| | - Macarena Sánchez-Navarro
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC − Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain
| | - Michel Thépaut
- Institut de Biologie Structurale, CNRS, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble France
- CEA, DSV, 38027 Grenoble France
| | - Lorena Martínez-Prats
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Anna Daghetti
- Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, and CISI, Milano, Italy
| | - Franck Fieschi
- Institut de Biologie Structurale, CNRS, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble France
- Université Joseph Fourier, Institut Universitaire de France, 38000 Grenoble, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, and CISI, Milano, Italy
- CNR-ISTM, Institute of Molecular Sciences and Technologies, Milano, Italy
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC − Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
95
|
Guzzi C, Angulo J, Doro F, Reina JJ, Thépaut M, Fieschi F, Bernardi A, Rojo J, Nieto PM. Insights into molecular recognition of LewisX mimics by DC-SIGN using NMR and molecular modelling. Org Biomol Chem 2011; 9:7705-12. [DOI: 10.1039/c1ob05938f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
96
|
Andreini M, Doknic D, Sutkeviciute I, Reina JJ, Duan J, Chabrol E, Thepaut M, Moroni E, Doro F, Belvisi L, Weiser J, Rojo J, Fieschi F, Bernardi A. Second generation of fucose-based DC-SIGN ligands : affinity improvement and specificity versus Langerin. Org Biomol Chem 2011; 9:5778-86. [DOI: 10.1039/c1ob05573a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Plazolles N, Humbert JM, Vachot L, Verrier B, Hocke C, Halary F. Pivotal advance: The promotion of soluble DC-SIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells. J Leukoc Biol 2010; 89:329-42. [PMID: 20940323 PMCID: PMC7166666 DOI: 10.1189/jlb.0710386] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DC-SIGN is a member of the C-type lectin family. Mainly expressed by myeloid DCs, it is involved in the capture and internalization of pathogens, including human CMV. Several transcripts have been identified, some of which code for putative soluble proteins. However, little is known about the regulation and the functional properties of such putative sDC-SIGN variants. To better understand how sDC-SIGN could be involved in CMV infection, we set out to characterize biochemical and functional properties of rDC-SIGN as well as naturally occurring sDC-SIGN. We first developed a specific, quantitative ELISA and then used it to detect the presence sDC-SIGN in in vitro-generated DC culture supernatants as cell-free secreted tetramers. Next, in correlation with their inflammatory status, we demonstrated the presence of sDC-SIGN in several human body fluids, including serum, joint fluids, and BALs. CMV infection of human tissues was also shown to promote sDC-SIGN release. Based on the analysis of the cytokine/chemokine content of sDC-SIGN culture supernatants, we identified IFN-γ and CXCL8/IL-8 as inducers of sDC-SIGN production by MoDC. Finally, we demonstrated that sDC-SIGN was able to interact with CMV gB under native conditions, leading to a significant increase in MoDC CMV infection. Overall, our results confirm that sDC-SIGN, like its well-known, counterpart mDC-SIGN, may play a pivotal role in CMV-mediated pathogenesis.
Collapse
Affiliation(s)
- N Plazolles
- CNRS, UMR 5234, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Entry of enveloped viruses into host cells depends on the interactions of viral surface proteins with cell surface receptors. Many enveloped viruses maximize the efficiency of receptor engagement by first binding to attachment‐promoting factors, which concentrate virions on target cells and thus increase the likelihood of subsequent receptor engagement. Cellular lectins can recognize glycans on viral surface proteins and mediate viral uptake into immune cells for subsequent antigen presentation. Paradoxically, many viral and non‐viral pathogens target lectins to attach to immune cells and to subvert cellular functions to promote their spread. Thus, it has been proposed that attachment of HIV to the dendritic cell lectin DC‐SIGN enables the virus to hijack cellular transport processes to ensure its transmission to adjacent T cells. However, recent studies show that the consequences of viral capture by immune cell lectins can be diverse, and can entail negative and positive regulation of viral spread. Here, we will describe key concepts proposed for the role of lectins in HIV attachment to host cells, and we will discuss recent findings in this rapidly evolving area of research.
Collapse
|
99
|
Abstract
Abstract
Small-angle scattering (SAS) of X-rays and neutrons reveals low-resolution structures of biological macromolecules in solution. With the recent experimental and methodological advances, SAS became a unique tool for characterising biological systems. The method covers an extremely broad range of molecule sizes (from a few kDa to hundreds of MDa) and experimental conditions (temperature, pH, salinity, ligand addition, etc.), which is of primary importance for a systemic approach in structural biology. The method provides unique information about the overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and hierarchical systems. New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are briefly reviewed, with a special emphasis on technical and methodological approaches useful for structural systems biology. Possibilities of synergistic use of the method with other techniques are considered.
Collapse
|
100
|
Sattin S, Daghetti A, Thépaut M, Berzi A, Sánchez-Navarro M, Tabarani G, Rojo J, Fieschi F, Clerici M, Bernardi A. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol 2010; 5:301-12. [PMID: 20085340 DOI: 10.1021/cb900216e] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV infection is pandemic in humans and is responsible for millions of deaths every year. The discovery of new cellular targets that can be used to prevent the infection process represents a new opportunity for developing more effective antiviral drugs. In this context, dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), a lectin expressed at the surface of immature dendritic cells and involved in the initial stages of HIV infection, is a promising therapeutic target. Herein we show the ability of a new tetravalent dendron containing four copies of a linear trimannoside mimic to inhibit the trans HIV infection process of CD4+ T lymphocytes at low micromolar range. This compound presents a high solubility in physiological media, a neglectable cytotoxicity, and a long-lasting effect and is based on carbohydrate-mimic units. Notably, the HIV antiviral activity is independent of viral tropism (X4 or R5). The formulation of this compound as a gel could allow its use as topical microbicide.
Collapse
Affiliation(s)
- Sara Sattin
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Anna Daghetti
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Michel Thépaut
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- CNRS, UMR 5075, 38000 Grenoble, France
| | - Angela Berzi
- Dipartimento di Scienze Precliniche, Università degli Studi di Milano, via GB Grassi 74, 20157 Milano, Italy
| | - Macarena Sánchez-Navarro
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Georges Tabarani
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Javier Rojo
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Franck Fieschi
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Mario Clerici
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, via Flli Cervi 93, 20090 Segrate, Italy
- Don C. Gnocchi ONLUS Foundation IRCCS, Via Capecelatro 66, 20148 Milano, Italy
| | - Anna Bernardi
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|