51
|
Ayer A, Tan SX, Grant CM, Meyer AJ, Dawes IW, Perrone GG. The critical role of glutathione in maintenance of the mitochondrial genome. Free Radic Biol Med 2010; 49:1956-68. [PMID: 20888410 DOI: 10.1016/j.freeradbiomed.2010.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022]
Abstract
Glutathione (GSH) is a key redox buffer and protectant. Growth (approx. one or two divisions) of cells lacking γ-glutamylcysteine synthetase (gsh1) in the absence of GSH led to irreversible respiratory incompetency in all cells, and after five divisions 75% of cells completely lacked mitochondrial DNA (mtDNA). The level of GSH required to allow continuous growth was distinct from that required to prevent loss of mtDNA. GSH limitation led to a change in the transcript levels of 190 genes, including 30 genes regulated by the Aft1p and/or Aft2p transcription factors, which regulate the cellular response to changes in iron availability. Disruption of AFT1 but not AFT2 in gsh1 cells afforded a protective effect on maintenance of respiratory competency, as did overexpression of GRX3 or GRX4 (encoding monothiol glutaredoxins that act as negative regulators of Aft1p). Importantly, an iron-independent mechanism (~30%) was also observed to mediate GSH-dependent mtDNA loss. Analysis of the redox environment in the cytosol, mitochondrial matrix, and intermembrane space (IMS) found that the cytosol was most severely and rapidly affected by GSH depletion. GSH may also modulate the redox environment of the IMS. The implications of altered GSH homeostasis for maintenance of mtDNA, compartmental redox, and the pathophysiology of certain diseases are discussed.
Collapse
Affiliation(s)
- Anita Ayer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
52
|
Lin H, Li L, Jia X, Ward DM, Kaplan J. Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J Biol Chem 2010; 286:3851-62. [PMID: 21115478 DOI: 10.1074/jbc.m110.190959] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity.
Collapse
Affiliation(s)
- Huilan Lin
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
53
|
Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010; 2010. [PMID: 20862391 PMCID: PMC2939393 DOI: 10.1155/2010/329394] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/04/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022] Open
Abstract
Erythropoiesis in animals is a synchronized process of erythroid cell differentiation that depends on successful acquisition of iron. Heme synthesis depends on iron through its dependence on iron sulfur (Fe-S) cluster biogenesis. Here, we review the relationship between Fe-S biogenesis and heme synthesis in erythropoiesis, with emphasis on the proteins, GLRX5, ABCB7, ISCA, and C1orf69. These Fe-S biosynthesis proteins are highly expressed in erythroid tissues, and deficiency of each of these proteins has been shown to cause anemia in zebrafish model. GLRX5 is involved in the production and ABCB7 in the export of an unknown factor that may function as a gauge of mitochondrial iron status, which may indirectly modulate activity of iron regulatory proteins (IRPs). ALAS2, the enzyme catalyzing the first step in heme synthesis, is translationally controlled by IRPs. GLRX5 may also provide Fe-S cofactor for ferrochelatase, the last enzyme in heme synthesis. ISCA and C1orf69 are thought to assemble Fe-S clusters for mitochondrial aconitase and for lipoate synthase, the enzyme producing lipoate for pyruvate dehydrogenase complex (PDC). PDC and aconitase are involved in the production of succinyl-CoA, a substrate for heme biosynthesis. Thus, many steps of heme synthesis depend on Fe-S cluster assembly.
Collapse
|
54
|
Abstract
Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial machinery that includes the scaffold protein Isu for assembling a protein-bound FeS cluster intermediate. Frataxin interacts with Isu, iron, and the cysteine desulfurase Nfs1, which supplies sulfide, thus placing it at the center of mitochondrial FeS cluster biosynthesis.
Collapse
Affiliation(s)
- Timothy L Stemmler
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, France
| | - Emmanuel Lesuisse
- Laboratoire Mitochondrie, Metaux et Stress Oxydant, Institut Jacques Monod, CNRS-Universite Paris Diderot, 75205 Paris, France
| | - Debkumar Pain
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
56
|
Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM, Baughman J, Paradkar PN, Kingsley PD, Culotta VC, Kaplan J, Palis J, Paw BH, Mootha VK. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab 2009; 10:119-30. [PMID: 19656490 PMCID: PMC2745341 DOI: 10.1016/j.cmet.2009.06.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/21/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022]
Abstract
Heme biosynthesis consists of a series of eight enzymatic reactions that originate in mitochondria and continue in the cytosol before returning to mitochondria. Although these core enzymes are well studied, additional mitochondrial transporters and regulatory factors are predicted to be required. To discover such unknown components, we utilized a large-scale computational screen to identify mitochondrial proteins whose transcripts consistently coexpress with the core machinery of heme biosynthesis. We identified SLC25A39, SLC22A4, and TMEM14C, which are putative mitochondrial transporters, as well as C1orf69 and ISCA1, which are iron-sulfur cluster proteins. Targeted knockdowns of all five genes in zebrafish resulted in profound anemia without impacting erythroid lineage specification. Moreover, silencing of Slc25a39 in murine erythroleukemia cells impaired iron incorporation into protoporphyrin IX, and vertebrate Slc25a39 complemented an iron homeostasis defect in the orthologous yeast mtm1Delta deletion mutant. Our results advance the molecular understanding of heme biosynthesis and offer promising candidate genes for inherited anemias.
Collapse
Affiliation(s)
- Roland Nilsson
- Department of Systems Biology, Harvard Medical School; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; and Broad Institute of MIT/Harvard, Cambridge, MA 02142 USA
| | - Iman J. Schultz
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Eric L. Pierce
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Kathleen A. Soltis
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Amornrat Naranuntarat
- Department of Environmental Health Sciences, Toxicological Sciences Division, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Diane M. Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Joshua Baughman
- Department of Systems Biology, Harvard Medical School; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; and Broad Institute of MIT/Harvard, Cambridge, MA 02142 USA
| | - Prasad N. Paradkar
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Paul D. Kingsley
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Toxicological Sciences Division, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA
| | - Barry H. Paw
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
- Co-corresponding Authors: B.H.P., E-mail: ; V.K.M., E-mail:
| | - Vamsi K. Mootha
- Department of Systems Biology, Harvard Medical School; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; and Broad Institute of MIT/Harvard, Cambridge, MA 02142 USA
- Co-corresponding Authors: B.H.P., E-mail: ; V.K.M., E-mail:
| |
Collapse
|